kgp.at Function References¶
sort_by¶
sort_by:(KGBElt -> int) f->([KGBElt] v) [KGBElt]
Defined in line number 51.Given a list of KGB elements and a function f assigning integers to them, sort the list by weakly increasing value of f
KGP_elt¶
KGP_elt:KGPElt pair->KGPElt
Defined in line number 65.S¶
S:KGPElt(S,)->[int]
Defined in line number 68.The list S of simple roots of a KGP element
root_datum¶
root_datum:KGPElt(,x)->RootDatum
Defined in line number 71.The root datum of the RealForm G of a KGP element
real_form¶
real_form:KGPElt(,x)->RealForm
Defined in line number 74.The RealForm G of a KGP element
complement¶
complement:int n,[int] S->[int]
Defined in line number 77.Complement of subset of simple roots in rank n
find_ascent¶
find_ascent:[int] S, KGBElt x->[KGBElt]
Defined in line number 81.An ascent of x by a generator in S, if any exist
down_neighbors¶
down_neighbors:[int] S,KGBElt x->[int]
Defined in line number 89.All descents of x by generators in S, there may be duplicates
is_maximal_in_partial_order¶
is_maximal_in_partial_order:[int] S,KGBElt x->bool
Defined in line number 100.Decide whether x is maximal in the partial order defined by S
maxima_in_partial_order¶
maxima_in_partial_order:RealForm G,[int] S->[KGBElt]
Defined in line number 103.List maximal KGB elements in the partial order defined by S
maximal¶
maximal:[int] S, KGBElt x->KGBElt
Defined in line number 109.(unique) maximal element in equivalence class of x
canonical_representative¶
canonical_representative:KGPElt y->KGPElt
Defined in line number 114.The representative of a KGP element with maximal x
=¶
=:KGPElt (S,x),KGPElt (T,y)->bool
Defined in line number 121.Equality of KGP elements: (S,x)=(T,y) if these give the same K-orbit of parabolics
equivalence_class_of¶
equivalence_class_of:KGPElt(S,x):y->[KGBElt]
Defined in line number 126.The equivalence class of a KGB element in partial order defined by S
x_min¶
x_min:KGPElt P->KGBElt
Defined in line number 141.A minimal KGB element from an equivalence class defined by S (unlike x_max, it is not unique)
KGP¶
KGP:RealForm G,[int] S->[KGPElt]
Defined in line number 146.The set of KGP elements associated to a RealForm and a set of simple roots S; KGP(G,S) is in bijection with \(K\backslash G/P_S\)
KGP_numbers¶
KGP_numbers:RealForm G,[int] S->[int]
Defined in line number 150.Just the index numbers (maximal x) of KGP(G,S)
is_open¶
is_open:KGPElt y->bool
Defined in line number 155.Test whether y in \(K\backslash G/P_S\) is open: <=> last element of y is last element of KGB
is_closed¶
is_closed:KGPElt P->bool
Defined in line number 158.Test whether y in \(K\backslash G/P_S\) is closed: <=> length(first element)=0
KGP_elt¶
KGP_elt:ratvec lambda,KGBElt x->KGPElt
Defined in line number 161.Parabolic determined by (the stabilizer in W of) a weight lambda
KGPElt¶
([int], KGBElt)
Defined in line number 46.Parabolic¶
([int], KGBElt)
Defined in line number 47.