complex_nilpotent_orbits.at Function Index¶

Functions

Function Argument(s) -> Results
root_datum_of ComplexNilpotent O->RootDatum
semisimple_element ComplexNilpotent O->vec
dim_nilpotent RootDatum rd,ratvec H->int
diagram ComplexNilpotent O->[int]
dim_eigenspace RootDatum rd, ratvec H, int k->int
max_eigenspace RootDatum rd, ratvec H->int
all_eigenspaces RootDatum rd, ratvec H->[int]
extract_even [int] v->for i
extract_odd [int] v->for i
even_eigenspaces RootDatum rd, ratvec H->[int]
odd_eigenspaces RootDatum rd, ratvec H->[int]
support KGBElt x->[int]
support Param p->[int]
blocku RealForm G->[Param]
sort_by ((vec, rat)-> rat) f->([(vec,rat)] v) [(vec,rat)]
all_H RootDatum rd->[(vec,rat)]
all_H_dimensions RootDatum rd->[int]
sort_by ((ratvec, [vec])-> int) f->([(ratvec,[vec])] v) [(ratvec,[vec])]
find_H Parabolic P->[(vec,[vec])]
max_only [(vec,[vec])] arg->[(vec,[vec])]
<= [int] a,[int] b->all(for i
principal_block RealForm G->Block
real_form Block B->RealForm
rho Block B->ratvec
choose_gamma KGBElt x,KGBElt y->ratvec
choose_gamma Block B->ratvec
convert_list_W_cells Block B,ratvec gamma,[[int]] Wcells->[[Param]]
tau_invariants Block B->[[int]]
tau_invariants_of_cell Block B, [int] cell->[(int,[int])]
tau_invariants_of_cell_raw Block B, [int] cell->[[int]]
tau_containing Block B,[int] P->[int]
is_Aq Param p->bool
Blocku RealForm G->[int]
is_Aq_cell Block B,[int] C->bool
is_Aq Block B,int i->bool

Data Types

Data Type Name Definition
ComplexNilpotent (RootDatum,vec)