polynomial.at Function IndexΒΆ

Functions

Function Argument(s) -> Results
strip poly v->poly
degree poly P->int
eval poly v,int k->int
eval vec v,Split w->Split
at_s vec v->Split: eval(v,Split
transpose poly_mat M->poly_mat
dot_product [poly] v,[poly] w->poly
* poly_mat A,poly_mat B->poly_mat
poly_list_add [poly] v,[poly] w->[poly]
poly_list_sub [poly] v,[poly] w->[poly]
- poly_mat M->poly_mat
+ poly_mat A,poly_mat B->poly_mat
- poly_mat A,poly_mat B->poly_mat
scalar_multiply [poly] v,poly f->[poly]
* poly f,poly_mat M->poly_mat
* int c, poly_mat M->poly_mat
update_row [poly] R, int j,poly v->[poly]: R[j]
update_matrix_row poly_mat M, int i, [poly] row->poly_mat: M[i]
update_matrix_entry poly_mat M, int i, int j, poly v->poly_mat
zero_poly_row int n->[poly]: for i
zero_poly_matrix int n->poly_mat
scalar_poly_matrix int n, int c->poly_mat
+ poly_mat M, poly p->poly_mat
- poly_mat M, poly p->poly_mat
= poly_mat A,poly_mat B->bool
is_zero poly_mat M->bool
upper_unitriangular_inverse poly_mat P->poly_mat
poly_permute_basis poly P, poly_mat A->poly_mat
stringPoly poly v, string q->string
printPoly poly v->void
printPolyMatrix poly_mat M,int space_size->void
printPolyMatrix poly_mat M->void
sgn_poly int k->poly
divide_by int k,poly v->poly
principal_minor poly_mat M,int size->poly_mat
divide poly p,poly d->(poly,poly)
monic_divide poly P, poly D->(poly,poly)

Data Types

Data Type Name Definition
poly vec
poly_mat [[poly]]