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Notation:

G semisimple (reductive) connected Lie group,

g Lie algebra,

K max compact subgroup

g = k⊕ p Cartan decomposition with Cartan involution θ
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Notation:

G semisimple (reductive) connected Lie group,

g Lie algebra,

K max compact subgroup

g = k⊕ p Cartan decomposition with Cartan involution θ

H reductive subgroup of G with max compact subgroup

KH = H ∩K

h Lie algebra of H
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Problem:

Suppose that π is an irreducible unitary representation of G.

Understand the restriction of π to H.
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Problem:

Suppose that π is an irreducible unitary representation of G.

Understand the restriction of π to H.

Precisely:

π|H =
∫
M
πν dν

I want to get information about the discrete part of this integral

decomposition.
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Problem:

Suppose that π is an irreducible unitary representation of G.

Understand the restriction of π to H.

Precisely:

π|H =
∫
M
πν dν

I want to get information about the discrete part of this integral

decomposition.

Applications to the cohomology of discrete groups and automor-

phic forms.
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Remarks about the restriction of unitary representations.

First case: If as a unitary representation on a Hilbert space

π|H = ⊕πH
for irreducible unitary representations πH ∈ Ĥ then we call π

H-admissible case:

Theorem (Kobayashi)

Suppose that π is H-admissible for a symmetric subgroup H.

Then the underlying (g,K) module is a direct sum of irreducible

(h,KH) -modules ( i.e π is infinitesimally H-admissible).

If an irreducible (h,K ∩ H) module U is a direct summand of a

H-admissible representation π , we say that it is a H-type of π.
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Toshiyuki Kobayashi also obtained sufficient conditions for π to

be infinitesimally H-admissible.

Such conditions are subtle as the following example shows:
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Toshiyuki Kobayashi also obtained sufficient conditions for π to

be infinitesimally H-admissible.

Such conditions are subtle as the following example shows:

Example: (joint with B. Orsted)

Let G=SL(4,R). There are 2 conjugacy classes of symplectic

subgroups. Let H1 and H2 be symplectic groups in different

conjugacy classes.
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Toshiyuki Kobayashi also obtained sufficient conditions for π to

be infinitesimally H-admissible.

Such conditions are subtle as the following example shows:

Example: (joint with B. Orsted)

Let G=SL(4,R). There are 2 conjugacy classes of symplectic

subgroups. Let H1 and H2 be symplectic groups in different

conjugacy classes.

There exists an unitary representation π of G which is H1 admis-

sible but not H2 admissible .
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Some representations and their (g,K)-modules

Let gC be the complexification of g and let T be a maximal torus

in K. Then x0 ∈ T defines a θ–stable parabolic subalgebra

qC = lC ⊕ uC

of gC.
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Some representations and their (g,K)-modules

Let gC be the complexification of g and let T be a maximal torus

in K. Then x0 ∈ T defines a θ–stable parabolic subalgebra

qC = lC ⊕ uC

of gC.

For a θ–stable parabolic q and an integral and sufficiently regular

character λ of q we can construct a family of representations

Aq(λ).

These representations Aq(λ) were constructed by Parthasarathy

using the Dirac operator and also independently using homolog-

ical algebra by G. Zuckerman in 1978. Write Aq := Aq(0)
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Consider G= U(p,q), K=U(p)×U(q) with p, q > 1.

H1 =U(p,1)× U(q-1)

H3 =U(p-1) ×U(1,q) .
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Consider G= U(p,q), K=U(p)×U(q) with p, q > 1.

H1 =U(p,1)× U(q-1)

H3 =U(p-1) ×U(1,q) .

Suppose q is a θ-stable parabolic subalgebra defined by x0 ∈ U(p).

and Gx0 = L =U(p-r)× U(r,q), with p− r > 0 .
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Consider G= U(p,q), K=U(p)×U(q) with p, q > 1.

H1 =U(p,1)× U(q-1)

H3 =U(p-1) ×U(1,q) .

Suppose q is a θ-stable parabolic subalgebra defined by x0 ∈ U(p).

and Gx0 = L =U(p-r)× U(r,q), with p− r > 0 .

Theorem 1.

Aq is always H1-admissible
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Consider G= U(p,q), K=U(p)×U(q) with p, q > 1.

H1 =U(p,1)× U(q-1)

H3 =U(p-1) ×U(1,q) .

Suppose q is a θ-stable parabolic subalgebra defined by x0 ∈ U(p).

and Gx0 = L =U(p-r)× U(r,q), with p− r > 0 .

Theorem 1.

Aq is always H1-admissible

If Aq is not holomorphic or anti holomorphic it is not not H3-
admissible.
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A Blattner type formula describes the multiplicities of irreducible

H1-types in the restriction of Aq of U(p,q) to H1 confirming a

conjecture by S-Orsted.
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A Blattner type formula describes the multiplicities of irreducible

H1-types in the restriction of Aq of U(p,q) to H1 confirming a

conjecture by S-Orsted.

**********************

Similar results are also true for the connect component of

G =S0(p,q), H1 connected component of SO(p,q-1) and H3

connected component of SO(p-1,q).
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Applications to the cohomology of discrete groups

Γ ⊂ G(Q) a torsion-free congruence subgroup.

S(Γ) := Γ\X = Γ\G/K is a locally symmetric space.

S(Γ) has finite volume under a G-invariant volume form inherited

from X.
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Applications to the cohomology of discrete groups

Γ ⊂ G(Q) a torsion-free congruence subgroup.

S(Γ) := Γ\X = Γ\G/K is a locally symmetric space.

S(Γ) has finite volume under a G-invariant volume form inherited

from X.

S(Γ) is orientable if Γ is small enough. Fix an orientation.
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Applications to the cohomology of discrete groups

Γ ⊂ G(Q) a torsion-free congruence subgroup.

S(Γ) := Γ\X = Γ\G/K is a locally symmetric space.

S(Γ) has finite volume under a G-invariant volume form inherited

from X.

S(Γ) is orientable if Γ is small enough. Fix an orientation.

Consider

H∗(Γ,C) = H∗deRahm(S(Γ),C).
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By (Matsushima-Murakami)

H∗(Γ\X,C) = H∗(g,K,C∞(Γ\G)).
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By (Matsushima-Murakami)

H∗(Γ\X,C) = H∗(g,K,C∞(Γ\G)).

For an irreducible finite dimensional rep. E of G,

H∗(Γ\X, Ẽ) = H∗(g,K,C∞(Γ\G)⊗ E).
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By (Matsushima-Murakami)

H∗(Γ\X,C) = H∗(g,K,C∞(Γ\G)).

For an irreducible finite dimensional rep. E of G,

H∗(Γ\X, Ẽ) = H∗(g,K,C∞(Γ\G)⊗ E).

If π be a representation of G we can also define H∗(g,K, π ⊗E).

For an irreducible unitary representation π

H∗(g,K, π ⊗ E) = HomK(∧∗p, π ⊗ E).

Here g = k⊕ p is the Cartan deposition of g.
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Example: If G = U(p, q) then H∗(g,K,Aq) 6= 0.
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Example: If G = U(p, q) then H∗(g,K,Aq) 6= 0.

If Γ cocompact L2(Γ\G) = ⊕m(π,Γ)π, and

H∗(g,K,C∞(Γ\G)) = ⊕π∈Ĝm(π,Γ)H∗(g,K, π).
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Example: If G = U(p, q) then H∗(g,K,Aq) 6= 0.

If Γ cocompact L2(Γ\G) = ⊕m(π,Γ)π, and

H∗(g,K,C∞(Γ\G)) = ⊕π∈Ĝm(π,Γ)H∗(g,K, π).

Vanishing theorems for H∗(Γ\X, Ẽ) by G. Zuckerman in 1978

and later by Vogan-Zuckerman 1982, nonvanishing theorems by

Li using representation theory and classification of irreducible

representations with nontrivial (g,K)-cohomology.
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Back to the example G = U(p, q) and the representation Aq.

Proposition

If π is a H1-type of Aq then there exists a finite dimensional

representation F of H1 so that

H∗(h1,K ∩H1, π ⊗ F ) 6= 0.
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Back to the example G = U(p, q) and the representation Aq.

Proposition

If π is a H1-type of Aq then there exists a finite dimensional

representation F of H1 so that

H∗(h1,K ∩H1, π ⊗ F ) 6= 0.

Write q = l⊕ u and s = dim u ∩ p. Then s is the smallest degree

so that

Hs(g,K,Aq) = HomK(∧sp,Aq) 6= 0.
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Back to the example G = U(p, q) and the representation Aq.

Proposition

If π is a H1-type of Aq then there exists a finite dimensional

representation F of H1 so that

H∗(h1,K ∩H1, π ⊗ F ) 6= 0.

Write q = l⊕ u and s = dim u ∩ p. Then s is the smallest degree

so that

Hs(g,K,Aq) = HomK(∧sp,Aq) 6= 0.

Let g = h⊕ q and q1 = p ∩ q .
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Let AqH1
the H1 type of Aq generated by the minimal K-type of

Aq and s1 = dim u ∩ p ∩ h1 .

There is canonical identification of

HomK(∧sp,Aq)

and

HomK∩H1
(∧s1(p ∩ h1)∗, AqH1

⊗ ∧s−s1q1)

Theorem 2.

Hs1(h,K ∩H,AqH1
⊗ ∧s−s1q) 6= 0
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Let AqH1
the H1 type of Aq generated by the minimal K-type of

Aq and s1 = dim u ∩ p ∩ h1 .

There is canonical identification of

HomK(∧sp,Aq)

and

HomK∩H1
(∧s1(p ∩ h1)∗, AqH1

⊗ ∧s−s1q1)

Theorem 2.

Hs1(h,K ∩H,AqH1
⊗ ∧s−s1q) 6= 0

Remark 1: Under our assumptions: s1 < s.
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Remark 2:

This result combined with Matsushima Murakami and ”Oda re-

striction” of differential forms allows an maps from cohomology

of X\Γ to a locally symmetric space for H1..
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Remark 2:

This result combined with Matsushima Murakami and ”Oda re-

striction” of differential forms allows an maps from cohomology

of X\Γ to a locally symmetric space for H1..

Remark 3:

I conjecture that in the restriction of Aq to H3 there is always a

direct summand AqH3
whose lowest nontrivial cohomology class

is in degree s. Special case of this conjecture was proved by Li

and Harris.
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More about restrictions of representations, which are not

H-admissible.
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More about restrictions of representations, which are not

H-admissible.

Theorem 3. (Kobayashi)

Let π be an irreducible unitary representations of G and suppose

that U is an irreducible direct summand of π. If the intersection

of the underlying (h,K ∩ H)–module of U with the underlying

(g,K)–module of π is nontrivial then the representation π is H–

admissible.
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More about restrictions of representations, which are not

H-admissible.

Theorem 3. (Kobayashi)

Let π be an irreducible unitary representations of G and suppose

that U is an irreducible direct summand of π. If the intersection

of the underlying (h,K ∩ H)–module of U with the underlying

(g,K)–module of π is nontrivial then the representation π is H–

admissible.

Consider G=SO(n,1), L= SO(2r) × SO(n-2r,1) , 2r 6= n and
H= SO(n-1,1) × SO(1). The representation Aq is not H-admissible,
so Kobayashi’s theorem implies that finding direct summands is
an analysis problem and not an algebra problem.
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Warning: There exists a unitary representation π of SL(2,C)

whose restriction to SL(2,R) contains a direct summand σ but σ

doesn’t contain any smooth vectors of π. (joint with Venkatara-

mana)
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Warning: There exists a unitary representation π of SL(2,C)

whose restriction to SL(2,R) contains a direct summand σ but σ

doesn’t contain any smooth vectors of π. (joint with Venkatara-

mana)

π̂ nonspherical principal series representation of SL(2,C) with

infinitesimal character ρ. The restriction to SL(2,R) has the

discrete series D+⊕D− with infinitesimal character ρH as direct

summand, but

(D+ ⊕D−) ∩ π̂∞

Proof uses concrete models of the representations. J. Vargas

recently proved more general case.
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Restriction of complementary series representations.

Let G = SL(2,C), B(C) the Borel subgroup of upper triangular

matrices in G,

and

ρ(

(
a n

0 a−1

)
) =| a |2 .

For u ∈ C

πu = {f ∈ C∞(G)| f(bg) = ρ(b)1+uf(g)

for all b ∈ B(C) and all g ∈ G(C) and in addition are SU(2)-finite.

For 0 < u < 1 completion to the unitary complementary series

rep π̂u with respect to an inner product < , >πu.
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Similiar define the complementary series σ̂t of H=Sl(2,R) for

0 < t < 1.
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Similiar define the complementary series σ̂t of H=Sl(2,R) for

0 < t < 1.

Theorem 4. (Mucunda 74) Let 1
2 < u < 1 and t = 2u − 1. The

complementary series representation σ̂t of SL(2,R) is a direct

summand of the restriction of the complementary series repre-

sentation π̂u of SL(2,C).
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Similiar define the complementary series σ̂t of H=Sl(2,R) for

0 < t < 1.

Theorem 4. (Mucunda 74) Let 1
2 < u < 1 and t = 2u − 1. The

complementary series representation σ̂t of SL(2,R) is a direct

summand of the restriction of the complementary series repre-

sentation π̂u of SL(2,C).

Idea of a different proof jointly with Venkataramana: Consider
the geometric restriction res of functions on G to functions on
H. We show that

res : π−u → σ−t

is continuous with respect to the inner products < , >πu and
< , >σt
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More precisely we prove

Theorem 5. (joint with Venkataramana)

There exists a constant C such that for all ψ ∈ π−u, the estimate

C || ψ ||2π−u ≥ || res(ψ) ||2σ−(2u−1)
.

holds.
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More precisely we prove

Theorem 5. (joint with Venkataramana)

There exists a constant C such that for all ψ ∈ π−u, the estimate

C || ψ ||2π−u ≥ || res(ψ) ||2σ−(2u−1)
.

holds.

We conjecture that similar estimates hold for the geometric re-

striction map of groups G of rank one of the subgroups H of the

same type.
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Generalization to the restriction of complementary series

representations of G=SO(n,1) to H=SO(n-1,1).

τn standard representation of SO(n-2).

For 0 < s < 1 − 2i
n−1 we have a unitary complementary series

representation

R(n,∧iτn, s) = IndGP ∧
i τn ⊗ ρ1−s

with the (g,K)–modules

r(n,∧iτn, s) = indGP ∧
i τn ⊗ ρ1−s
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Theorem 6. (joint with Venkataramana)

If
1

n− 1
< s <

2i

n− i
and i ≤ [n/2]− 1,

then

R(n− 1,∧iτn−1,
(n− 1)s− 1

n− 2
)

occurs discretely in the restriction of the complementary series

representation R(n,∧iτn, s) to SO(n-1,1).
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Theorem 6. (joint with Venkataramana)

If
1

n− 1
< s <

2i

n− i
and i ≤ [n/2]− 1,

then

R(n− 1,∧iτn−1,
(n− 1)s− 1

n− 2
)

occurs discretely in the restriction of the complementary series

representation R(n,∧iτn, s) to SO(n-1,1).

As s tends to the limit 2i
n−i the representation R(n,∧iτn, s) tends

to a representation Anqi in the Fell topology.
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Theorem 7. (joint with Venkataramana)

The representation An−1
qi of SO(n-1,1) occurs discretely in the

restriction of the representation Anqi of SO(n,1).
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Theorem 7. (joint with Venkataramana)

The representation An−1
qi of SO(n-1,1) occurs discretely in the

restriction of the representation Anqi of SO(n,1).

Applications to Automorphic forms

The representation Anqi of SO(n,1) is the unique representation

of SO(n,1) with nontrivial (g,K)- cohomology in degree i.

It is tempered for i=[n/2].
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The representation Anqi is not isolated in the unitary dual SO(n,1).
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The representation Anqi is not isolated in the unitary dual SO(n,1).

The automorphic dual of G is the set of all unitary represen-

tations which isomorphic to a representation in L2(G/Γ) for an

arithmetic subgroup Γ.
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The representation Anqi is not isolated in the unitary dual SO(n,1).

The automorphic dual of G is the set of all unitary represen-

tations which isomorphic to a representation in L2(G/Γ) for an

arithmetic subgroup Γ.

Theorem 8. (joint with Venkataramana)

If for all n, the tempered representation Anqi (i.e. when i =

[n/2]) is not a limit of complementary series in the automorphic

dual of SO(n, 1), then for all integers n, and for i < [n/2], the

cohomological representation Anqi is isolated (in the Fell topology)

in the automorphic dual of SO(n, 1).
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Conjecture (Bergeron)

Let X be the real hyperbolic n-space and Γ ⊂ SO(n, 1) a con-

gruence arithmetic subgroup. Then non-zero eigenvalues λ of

the Laplacian acting on the space Ωi(X) of differential forms of

degree i satisfy:

λ > ε

for some ε > 0 independent of the congruence subgroup Γ, pro-

vided i is strictly less than the middle” dimension (i.e. i ¡ [n/2]).
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Conjecture (Bergeron)

Let X be the real hyperbolic n-space and Γ ⊂ SO(n, 1) a con-

gruence arithmetic subgroup. Then non-zero eigenvalues λ of

the Laplacian acting on the space Ωi(X) of differential forms of

degree i satisfy:

λ > ε

for some ε > 0 independent of the congruence subgroup Γ, pro-

vided i is strictly less than the middle” dimension (i.e. i ¡ [n/2]).

Evidence for this conjecture

For n=2 Selberg proved that Eigen values λ of the Laplacian

on function satisfy λ > 3/16 and more generally Clozel showed

there exists a lower bound on the eigenvalues of the Laplacian

on functions independent of Γ.
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A consequence of the previous theorem:

Corrollary(Joint with Venkataramana)

If the above conjecture holds true in the middle degree for all

even integers n, then the conjecture holds for arbitrary degrees

of the differential forms
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Happy Birthday, Gregg
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