
COMPANION TO NOTES FOR ATLAS WORKSHOP

Abstract. This is a companion to the notes written by Prof.
Jeff Adams for the Atlas workshop. We have worked out all of the
exercises suggested in those notes.
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1. Representations of SL(2,R)

Exercise 1.0.2. Let

E =
1

2

(
1 i
i −1

)
, F =

1

2

(
1 −i
−i −1

)
, H =

(
0 −i
i 0

)
.

Show thatH,E and F satisfy the familiar identities [H,E] = 2E, [H,F ] =
−2F and [E,F ] = H. Also, iH is a basis of k0 ⊂ g0.

Solution: We only check [E,F ] = H the others are similar:

[E,F ] = EF − FE

=
1

2

(
1 i
i −1

)
1

2

(
1 −i
−i −1

)
− 1

2

(
1 −i
−i −1

)
1

2

(
1 i
i −1

)
=

1

4

{(
2 −2i
2i 2

)
−
(

2 2i
−2i 2

)}
=

(
0 −i
i 0

)
= H.

To show that iH forms a basis for k0, note that k0 ∼= iR by differenti-
ating the following isomorphism of SO(2) and S1(

cos θ sin θ
− sin θ cos θ

)
7→
(
eiθ 0
0 e−iθ

)
7→ eiθ.

1
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Therefore k0 has i as its basis element. Now,

iH =

(
0 1
−1 0

)
∼
(
i 0
0 −i

)
.

Therefore, under the isomorphism above, iH 7→ i, therefore, {iH}
forms a basis for k0.

Exercise 1.0.5. Verify that V (λ, ε) is a (g, K) - module.

Solution: We need to verify the following

(1) This is a representation of g and K.
(2) Every vector is K- finite : dim〈π(k)v|k ∈ K〉 <∞ for all v ∈ V .
(3) The representation of g, restricted to k0, is the differential of

the representation of K.

Recall that V (λ, ε) is defined as Span{vj|j ∈ ε + 2Z} with the action
of K given by

(1) π(t(eiθ))(vk) = eikθvk

and the action of g given by

π(H)vj = jvj(2)

π(E)vj =
1

2
(λ+ (j + 1))vj+2(3)

π(F )vj =
1

2
(λ− (j − 1))vj−2(4)

Therefore to check (a), we first check that π is a representation of g.
It amounts to show that

[π(X), π(Y )] = π([X, Y ])

for all X, Y ∈ g. We then only need to show that the above equa-
tion holds true for the basis {H,E, F} of g. We work out one of the
commutation relations, i.e. we show that

[π(E), π(F )]vj = π([E,F ]) = π(H)vj for all j



COMPANION TO NOTES FOR ATLAS WORKSHOP 3

[π(E), π(F )]vj = π(E)π(F )vj − π(F )π(E)vj

=
1

2
(λ− (j − 1))π(E)vj−2 −

1

2
(λ+ (j + 1))π(F )vj+2

=
1

4
(λ− (j − 1))(λ+ ((j − 2) + 1))vj − (λ+ (j + 1))(λ+ ((j + 2)− 1))vj

=
1

4
{(λ− (j − 1))(λ+ (j − 1))− (λ+ (j + 1))(λ− (j + 1))}vj

=
1

4
{λ2 − (j − 1)2 − λ2 + (j + 1)2}vj

= jvj.

The other relations are similar.
To show that π defines a representation of K we only need to show the
following

π(t(eiθ)π(t(eiφ)vk = eikφπ(t(eiθ)vk = eikφeikθvk

= eik(φ+θ)vk

= π(t(ei(θ+φ)))vk

To prove (b), we note that given any v ∈ V , v =
∑

j∈I ajvj where I

is a finite subset of ε+ 2Z. Then we have π(t(eiθ))v =
∑

j∈I e
ijθajvj.

Therefore, ifW = Span{vj|j ∈ I}, W is finite dimensional and 〈π(k)v|k ∈
K〉 ⊂ W . Therefore, proving that 〈π(k)v|k ∈ K〉 is finite dimensional.

To prove (c), note that the differential of the action π(t(eiθ))vk =
eikθvk is precisely,

d

dθ
π(t(eiθ))|θ=0vk =

d

dθ
eikθ|θ=0vk = ikvk = π(iH)vk.

Exercise 1.0.10. (1) V (λ, ε) is reducible if and only if

λ ∈ ε+ 2Z + 1.

(2) Suppose λ = n ∈ ε+ 2Z + 1 with n ≥ 0. Then V (λ, ε) has two
infinite dimensional sub-representations

V+(λ, ε) = 〈vn+1, vn+3, . . . 〉
V−(λ, ε) = 〈v−n−1, v−n−3, . . . 〉

Furthermore V
(V+⊕V−)

is an irreducible finite dimensional repre-

sentation V0(λ, ε) of dimension n with basis {v−n+1, v−n+3, . . . , vn−3, vn−1}
(the image of these in the quotient).
In other words, there is an exact sequence of (g, K)- modules:

0→ V+(λ, ε)⊕ V−(λ, ε)→ V (λ, ε)→ V0(λ, ε)→ 0.
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Furthermore,

V±(λ, ε) ∼= V±(−λ, ε)
V0(λ, ε) ∼= V0(−λ, ε)

An important spcial case is ε = 1, λ = 0, in which case V =
V+ ⊕ V− and V0 vanish.

(3) Suppose λ = ε+2Z+1, and n ≤ 0. Then V (λ, ε) has a finite di-
mensional sub-representation V0(λ, ε) = 〈vn+1, vn+3, . . . , v−n−1〉
of dimension n (vanishing if n = 0), and V

V0
is the direct sum of

two irreducible, infinite dimensional representations:

V+(λ, ε) = 〈v−n+1, v−n+3, . . . 〉
V−(λ, ε) = 〈vn−1, vn−3, . . . 〉

In other words, there is an exact sequence

0→ V0(λ, ε)→ V (λ, ε)→ V+(λ, ε)⊕ V−(λ, ε)→ 0.

Solution:

(1) We first show that V (λ, ε) is irreducible if and only if π(E)vj 6= 0
and π(F )vj 6= 0 for all j.
Suppose π(E)vj = 0 would mean that 〈vj − 2k|k > 0〉 is an in-
variant subspace of V (λ, ε), therefore V (λ, ε) is reducible. Con-
versely, if π(E)vj 6= 0 for all j then we see that 〈π(E)vj|j ∈
ε+ Z〉 = 〈vj|j ∈ ε+ Z〉 = V (λ, ε).
Now,

V (λ, ε)is reducible ⇔ π(E)vj = 0 or π(F )vj = 0, for some j ∈ ε+ 2Z

⇔ 1

2
(λ+ (j + 1))vj+2 = 0 or

1

2
(λ− (j − 1))vj−2 = 0

⇔ 1

2
(λ+ (j + 1)) = 0 or

1

2
(λ− (j − 1)) = 0 since vj 6= 0∀j

⇔ λ = j ± 1, i.e. λ ∈ ε+ 2Z + 1.

(2) Without loss of generality we may assume π(E)vj = 1
2
(λ+ (j+

1))vj+2 = 0. Therefore, λ = −j − 1 = n and since n ≥ 0 we
must have j ≤ 0. Also, π(F )v−j = 1

2
(λ − (−j − 1)v−j+2 = 0.

Therefore,

V+(λ, ε) = 〈π(E)v−j+2k|k ≥ 0〉 = 〈vn+1, vn+3, . . . 〉
V−(λ, ε) = 〈π(F )vj−2k|k ≥ 0〉 = 〈v−n−1, v−n−3, . . . 〉
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The irreducibility of the above sub-representations is clear. Also,
it is easy to see that V0(λ, ε) = V

(V+⊕V−)
is an irreducible finite di-

mensional representation of dimension n with basis {v−n+1, v−n+3, . . . , vn−3, vn−1}.
To prove the isomorphisms at the end of (2) we need to first
prove (3).

(3) Without loss of generality we may assume π(E)vj = 1
2
(λ+ (j+

1))vj+2 = 0. Therefore, λ = −j − 1 = n, i.e. −j = n + 1, and
since n ≤ 0 we must have j ≥ 0. Also, π(F )v−j = 1

2
(λ− (−j −

1)v−j+2 = 0. Therefore,

V0(λ, ε) = 〈v−j, v−j+2, . . . , vj−2, vj〉 = 〈vn+1, vn+3, . . . , v−n−1〉
is an irreducible invariant subspace of V (λ, ε). The rest of the
problem follows from this assertion.

Exercise 1.0.13. Let C be defined as C = H2 + 2EF + 2FE + 1.
Then show that π(C)π(X) = π(X)π(C) for all X ∈ g. and that given
λ, ε,

π(C)v = (λ2 − 1)v, for all v ∈ V (λ, ε).

Solution:We only need to check the commutativity on the basis ele-
ments {H,E, F}: For example, we show that

π(C)π(E) = π(E)π(C).

In fact one can show that

CX = XC

for all X ∈ g.

CE − EC = (H2 + 2EF + 2FE + 1)E − E(H2 + 2EF + 2FE + 1)

= H(HE) + 2EFE + 2(FE)E − (EH)H − 2E(EF )− 2EFE

= H([H,E]− EH) + 2([F,E]− EF )E − ([E,H]−HE)H − 2E([E,F ]− FE)

= H(2E − EH) + 2(−H − EFE)E − (−2E −HE)H − 2E(H − FE)

= 0

We now compute

π(C)vk = π(H)2vk + 2π(E)π(F )vk + 2π(F )π(E)vk + vk

= (k2 +
1

2
(λ2 − (k − 1)2) +

1

2
(λ2 − (k + 1)2))vk + vk

= (λ2 − 1)vk + vk

= λ2vk

Since the {vk} form a basis for V (λ, ε), we are done.
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Exercise 1.0.15. Show that V ∗ is a (g, K) - module. What is V (λ, ε)∗?
Include the cases when this module is reducible. What about V0(λ, ε)

∗

and V±(λ, ε)∗?

Solution: The fact that V (λ, ε)∗ is a g and K representation is easy
to check from the definition of the actions. What remains to check is
the K finite condition, which follows from the definition of V ∗ (find
elements in Hom(V,C) which are not K - finite).

To compute V (λ, ε)∗ we do the following: Let {fj|j ∈ ε+ 2Z} be the
dual basis to {vj|j ∈ ε+ 2Z}.

π∗(t(eiθ))(fk)(vj) = fk(π(t(eiθ)−1)vj) = e−ikθδk,j

π∗(H)(fk)(vj) = fk(−π(H)vj) = −jδk,j

π∗(E)(fk)(vj) = fk(−π(E)vj) = fk(−
1

2
(λ+ (j + 1))vj+2) =

1

2
(−λ− (j + 1))δk,j+2

π∗(F )(fk)(vj) = fk(−π(F )vj) = fk(−
1

2
(λ− (j − 1))vj+2) =

1

2
(−λ+ (j − 1))δk,j−2.

So that

π∗(t(eiθ))(fk) = e−ikθfk

π∗(H)(fk) = −kfk

π∗(E)(fk) =
1

2
(−λ− (k − 1))fk−2

π∗(F )(fk) =
1

2
(−λ+ (k + 1))fk+2.

Let τ : (g, K) −→ (g, K) be the map defined by

τ(k) = k−1 ∀k ∈ K
τ(H) = −H, τ(E) = F, τ(F ) = E

We can now define an isomorphism Φ : (π, V (−λ, ε)) −→ V (λ, ε)∗ as
follows:

Φ(vk) = f−k ∀k ∈ ε+ 2Z.
We only need to show that this is an intertwining operator.
Now,

π∗(t(eiθ))(Φ(vk)) = π∗(t(eiθ))(f−k) = eikθf−k = eikθΦ(vk) = Φ(eikθvk)

= Φ(π(t(eiθ))vk)



COMPANION TO NOTES FOR ATLAS WORKSHOP 7

Therefore, Φ intertwines the action on K.

Also,

π∗(H)(Φ(vk)) = π∗(H)(f−k) = kf−k = kφ(vk)

= φ(π(H)vk)

π∗(E)(Φ(vk)) = π∗(E)(f−k) =
1

2
(−λ− (−k − 1))f−k−2 =

1

2
(−λ+ (k + 1))f−(k+2)

=
1

2
(−λ+ (k + 1))Φ(vk+2) = Φ(π(E)vk)

Similarly we have,

π∗(F )(Φ(vk)) = π∗(F )(f−k) =
1

2
(−λ+ (−k + 1))f−k+2 =

1

2
(−λ− (k − 1))f−(k−2)

=
1

2
(−λ− (k − 1))Φ(vk−2) = Φ(π(F )vk)

We have hence shown that Φ intertwines the g action too. We are
done.

2. Hermitian Forms

Exercise 2.0.3. Show that the invariance condition is equivalent to

(π(k)v, π(k)w) = (v, w) ∀k ∈ K
(π(E)v, w) = −(v, π(F )w)

(π(F )v, w) = −(v, π(E)w)(5)

(π(H)v, w) = (v, π(H)w)

Solution: We need to show (5) and

(π(k)v, π(k)w) = (v, w) ∀k ∈ K
(6)

(π(X)v, w) + (v, π(σ(X)w) = 0 ∀X ∈ g

are equivalent. But this follows from noting that σ is the complex
conjugation map, and when applied to E,F and H gives the following
identities:

σ(E) = F, σ(F ) = E, σ(H) = −H.
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Exercise 2.0.5. Suppose (, ) is an invariant Hermitian form on V (λ, ε).
Then (vj, vk) = 0 for j 6= k.

Solution: We have

(vj, vk) =
1

j
(π(H)vj, vk) =

1

j
(vj, π(H)vk)

=
k

j
(vj, vk)

which shows that if (vj, vk) 6= 0 we must have j = k.

Exercise 2.0.6. Suppose V (λ, ε) is irreducible and V (λ, ε) has an in-
variant form. Show that we must have

(vj+2, vj+2) =
(−λ− (j + 1))

(λ+ (j + 1))
(vj, vj) ∀j.

Solution: For j ∈ ε+ 2Z,

(vj+2, vj+2) =

(
2

λ+ j + 1
π(E)vj, vj+2

)
=

−2

(λ+ j + 1)
(vj, π(F )vj+2)

=
−2

(λ+ j + 1)

(
vj,

λ− (j + 1)

2
vj

)
=

(−λ+ (j + 1))

(λ+ (j + 1))
(vj, vj).

Note that since V (λ, ε) is irreducible, λ /∈ 1 + ε + 2Z and hence λ 6=
−j − 1 for j ∈ ε+ 2Z. Therefore we are done.

Exercise 2.0.9. Suppose V (λ, ε) is irreducible, and V (λ, ε) has a c-
invariant form. Show that for all j:

(7) (vj+2, vj+2)c =
(λ− (j + 1))

(λ+ (j + 1))
(vj, vj)c.

Conclude that if λ ∈ R then V (λ, ε) supports a unique c-invariant Her-
mitian form normalized so that (v0, v0) = 1 (ε = 0) or (v−1, v−1)c =
1 (ε = 1).

Solution: Note that

σc(H) = −H σc(E) = −F σc(F ) = −E.

Thus we have a similar version of invariance condition for the c-invariant
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Hermitian form as in Exercise (2.0.3):

(π(E)v, w)c = (v, π(F )w)c

(π(F )v, w)c = (v, π(E)w)c(8)

(π(H)v, w)c = −(v, π(H)w)c

for all v, w ∈ V . So that,

(vj+2, vj+2)c =

(
2

λ+ j + 1
π(E)vj, vj+2

)
c

=
2

(λ+ j + 1)
(vj, π(F )vj+2)c

=
2

(λ+ j + 1)

(
vj,

λ− (j + 1)

2
vj

)
c

=
(λ− (j + 1))

(λ+ (j + 1))
(vj, vj)c.

Note that the denominator is undefined when λ = −(j+1) ∈ 1+ε+2Z,
which case is not allowed since V (λ, ε) is irreducible. Now suppose
λ /∈ Z. If λ ∈ R we have λ = λ and we can define

(v0, v0)c = 1 if ε = 0, (v−1, v−1)c = 1 if ε = 1.

and using Equation (7) we can inductively define (vj, vj)c ∈ R assuming
(v0, v0)c = 1 or (v−1, v−1)c = 1 depending whether ε = 0 or 1, and
(vi, vj) = 0 if i 6= j. What remains to be shown is that the form defined
this way is invariant. It is enough to show on the basis elements. We
work out one of the cases, the others are similar.

(π(E)vj, vj)c + (vj, π(σc(E))vj)c = (π(E)vj, vj)c + (vj, π(−F )vj)c

= (π(E)vj, vj)c − (vj, π(F )vj)c

=
1

2
(λ+ (j + 1))(vj+2, vj)c +

1

2
(−λ+ (j + 1))(vj, vj−2)c

= 0.

Exercise 2.0.11. Show that the n-dimensional irreducible representa-
tion has a positive definite c-invariant Hermitian form. It supports an
invariant Hermitian form, which is not positive definite unless n = 1.

Solution: We recall that any finite dimensional irreducible represen-
tation is of the form V0(−n, ε), n > 0, with basis {v−n+1, v−n+3, . . . , vn−3, vn−1}.
From previous exercise, we know that if ε = 0, we can set (v0, v0)c = 1

and we have
−n− j − 1

−n+ j + 1
> 0 if and only if −n+1 ≤ j < n−1 and hence

(vj, vj)c > 0 for all j. Therefore, we have a positive definite c-invariant
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Hermitian form. Similar argument holds for the case ε = 1 by setting
(v1, v1)c = 1. However, from the formula for invariant Hermitian form,
we must have

(vj+2, vj+2) =
n− (j + 1)

−n+ j + 1
(vj, vj).

Note that
n− (j + 1)

−n+ j + 1
=

n− j − 1

−n+ j + 1
= −1 for all j 6= −n− 1. There-

fore, such Hermitian invariant form cannot be positive definite unless
n = 1.

Exercise 2.0.12. Suppose λ > 0 and λ /∈ Z,

(1) Show that V (λ, 1) has an invariant Hermitian form, which is
not positive definite.

(2) Show that V (λ, 0) has an invariant Hermitian form, which is
positive definite if and only if λ < 1.

The representations in (2) are the complimentary series for SL(2,R).

Solution:

(1) If λ ∈ R+ and λ /∈ Z then V (λ, 1) has an invariant Hermitian
form because we can set (v1, v1) = 1 and use the formula

(vj+2, vj+2) =
−λ+ j + 1

λ+ j + 1
(vj, vj)

to define the form for all j. We now have an invariant Hermitian
form, but is not positive definite since (v−1, v−1) = −1.

(2) If we set (v0, v0) = 1 then

(v−2, v−2) =
λ− 1

−λ− 1
(v0, v0) =

λ− 1

−λ− 1
.

Note that λ−1
−λ−1 > 0 if and only if −1 < λ < 1, but from as-

sumption only positive λ is allowed, so we conclude that V (λ, 0)
has a positive invariant Hermitian form if and only if λ < 1.

3. Tori

Exercise 3.0.2. Try proving this result. It is equivalent to proving
that any involution in GL(2,Z) is conjugate to a matrix with diagonal

entries 1, -1 or 2× 2 matrices

(
0 1
1 0

)
.

Exercise 3.0.5. Prove that there is a natural isomorphism

T̂ (R) ∼= X∗/(1− θ)X∗.
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Solution: Define the map Φ : X∗(C) −→ Ĥ(C)θ by,

Φ(α) = α|H(C)θ α ∈ X∗.
We show that Ker(Φ) = (1− θ)X∗.

For, α ∈ (1− θ)X∗ we have α = (1− θ)β for some β ∈ X∗. Therefore,
for h ∈ H(C)θ,

Φ(α)(h) = (1− θ)β(h) = β((1− θ)(h)) = β(h− θ(h)) = 0.

Hence, (1− θ)X∗ ⊂ Ker(Φ).
Conversely, suppose α ∈ Ker(Φ). Any h ∈ H(C)θ is of the form

h = (z1, . . . , za,±1, . . . ,±1, u1, u1, . . . , uc, uc),

and since α is trivial onH(C)θ we must have α = (0, . . . , 0, 2k1, . . . , 2kb, p1,−p1, . . . , pc,−pc).
We need to show that

(9) α = (1− θ)β,
for some β ∈ X∗. Any element of H(C) is of the form

h = (z1, . . . , za, w1, . . . , wb, v1, u1, . . . , vc, uc),

and β is determined as

β(h) = (zn1
1 , . . . , z

na
a , w

r1
1 , . . . , w

rb
b , v

s1
1 , u

t1
1 , . . . , v

sc
c , u

tc
c ),

so that
β = (n1, . . . , na, r1, . . . , rb, s1, t1, . . . , sc, tc).

where ni, ri, si, ti ∈ Z are integers to be determined. We compute the
following:

(1− θ)β(h) = β((1− θ)h)

= β(z1z
−1
1 , . . . , zaz

−1
a , w1w1, . . . , wbwb, v1u

−1
1 , u1v

−1
1 , . . . , vcu

−1
c , ucv

−1
c )

=

(
1, . . . , 1, w2r1

1 , . . . , w2rb
b ,

(
v1
u1

)s1
,

(
u1
v1

)t1
, . . . ,

(
vc
uc

)sc
,

(
uc
vc

)tc)

=

(
1, . . . , 1, w2r1

1 , . . . , w2rb
b ,

(
v1
u1

)s1
,

(
v1
u1

)−t1
, . . . ,

(
vc
uc

)sc
,

(
vc
uc

)−tc)
,

so that

(1− θ)β = (0, . . . , 0, 2r1, . . . , 2rb, s1,−t1, . . . , sc,−tc).
Therefore, to get α = (1 − θ)β we can take ri = ki, i = 1, . . . , b and
sj = tj = pj, j = 1, . . . , c.
Hence Ker(Φ) ⊂ (1− θ)X∗, completing the proof that

Ker(Φ) = (1− θ)X∗.
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Since we are allowed to assume that any algebraic character of H(C)θ

is the restriction of a character of H(C), we note that Φ is surjective.
Therefore, by the second isomorphism theorem we have the result of
the exercise.

Exercise 3.0.7. Show that the irreducible (h, H(C)θ) modules are pa-
rameterized by pairs (λ, κ) satisfying:

(1) λ ∈ X∗ ⊗ C ∼= h∗;
(2) κ ∈ X∗

(1−θ)X∗ ;

(3) (1 + θ)λ = (1 + θ)κ.

The corresponding character Λ of H(R) is the differential λ and the
restriction of Λ to H(R)θ is the restriction of κ.

Solution: The irreducible (h, H(C)θ)- modules are given as a pair
(Λ,C) such that

(a) Λ is a h representation, we denote its action on h by λ.
(b) Λ is a H(C)θ - representation, we denote its action on H(C)θ

by κ.
(c) dκ = λ on Lie(H(C)θ).

From above we have λ ∈ h∗ and κ ∈ Ĥ(C)θ ∼= X∗

(1−θ)X∗ . We have

therefore found a choice of (λ, κ) which satisfies conditions (1) and
(2) of the exercise. We only need to show that (λ, κ) gives rise to a
(h, H(C)θ) module if and only if condition (3) of the exercise holds.
That is we need to show that

dκ = λ on Lie(H(C)θ)⇔ (1 + θ)λ = (1 + θ)κ on h.

We first note that

(10) hθ = (1 + θ)h.

If h = (1+θ)h1 = h1+θ(h1), then θ(h) = θ(h1)+θ2(h1) = θ(h1)+h1 =
h. Hence, (1 + θ)h ⊂ hθ.
Conversely, if h ∈ hθ, we can take h1 = h

2
, so that h = (1 + θ)(h1).

Therefore, hθ ⊂ (1 + θ)h, proving the equality in (10).

Now,

dκ = λ on Lie(H(C)θ) ⇔ dκ(h) = λ(h) ∀h ∈ hθ = (1 + θ)h,

⇔ dκ(h1 + θ(h1)) = λ(h1 + θ(h1)) h1 ∈ h,

⇔ dκ((1 + θ)(h1)) = λ((1 + θ)(h1)) h1 ∈ h,

⇔ (1 + θ)λ(h1) = (1 + θ)κ(h1) h1 ∈ h,

⇔ (1 + θ)λ = (1 + θ)κ on h.
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This completes the solution.

Exercise 3.0.8. Work out the case of H(R) ∼= C∗. In this case H(C) ∼=
C∗ × C∗, and σ(z, w) = (w−1, z−1), and θ(z, w) = (w, z).

Solution: We have H(R) = C∗, hence H(C) = C∗ × C∗. We have
H(C)θ = {(z, z)|z ∈ C∗} ∼= C∗ and H(C)σ = {(z, 1

z
)|z 6= 0} ∼= C∗.

Also, h∗ ∼= C× C.

We find a parameter set for X∗

(1−θ)X∗ . For (n1,m1), (n2,m2) ∈ X∗, we

have

(n1,m1) ∼ (n2,m2) ⇔ (n1 − n2,m1 −m2) ∈ (1− θ)X∗

⇔ (n1 − n2,m1 −m2) = (1− θ)(n3,m3)

⇔ (n1 − n2,m1 −m2) = (n3 −m3,m3 − n3)

⇔ (n1 − n2,m1 −m2) = (l,−l) for some l ∈ Z

Therefore,

(n,m) ≡ (n+ l,m− l) for any l ∈ Z.
Therefore a set of representatives for X∗

(1−θ)X∗ is given by

{(n, 0)|n ∈ Z}.

is a set of representatives of X∗

(1−θ)X∗ . Therefore, for λ = (λ1, λ2) ∈ C×C
and κ ∈ {(n, 1)|n ∈ Z} we compute:

(1 + θ)λ(z, w) = λ((1 + θ)(z, w)) = λ((z, w) + (w, z))

= λ1(z + w) + λ2(z + w) = (λ1 + λ2)(z + w).

Also,

(1 + θ)κ(z, w) = κ(z + w, z + w)

= n(z + w)

Therefore, characters are parameterized by (λ, κ), such that λ =
(λ1, λ2) ∈ C× C and κ ∈ {(n, 0)|n ∈ Z} such that

λ1 + λ2 = n.

Note: This parameterization agrees with the familiar parameteriza-

tion of Ĉ∗ given by (ν, k) where

χν,k(re
iθ) = rνeikθ.
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Our choice of parameter ((λ1, λ2), k) gives χν,k by defining

ψ((λ1,λ2),k)(re
iθ) = (reiθ)λ1(reiθ)−λ2 = r(λ1−λ2)ei(λ1+λ2)θ

= rνeikθ,

where, λ1 − λ2 = ν and λ1 + λ2 = k.

3.1. Covers of Tori.

Exercise 3.1.4. The genuine characters of H(R)γ are canonically pa-
rameterized by the set of pairs (λ, κ) with λ ∈ h∗ and κ ∈ γ + X∗

(1−θ)X∗ ,

and satisfying (1 + θ)λ = (1 + θ)κ.

Solution: By Exercise (3.0.7) we know that Ĥ(R)γ is parameterized

by (λ, κ) where λ ∈ h∗ and κ ∈ X∗(Hγ)
(1−θ)X∗(Hγ)

satisfying (1+θ)λ = (1+θ)κ.

Therefore, starting with a genuine character Λ of H(R)γ we get (λ, κ) as
above, where κ is a genuine character of T (R)γ = H(R)θγ. The goal is to

show that γ+ X∗

(1−θ)X∗ parametrizes the genuine characters of T (R)γ. Let

ζ = (1,−1) be the nontrivial element in Hγ First note that for γ+κ′ ∈
γ + X∗

(1−θ)X∗ , with κ′ a character of T (R), (γ + κ′)(ζ) = γ(ζ) · 1 = −1

since γ is a genuine character of Hγ. Thus, γ+κ′ is a genuine character
of T (R)γ. Conversely, we need to show that every genuine character
κ of T (R)γ is in γ + X∗

(1−θ)X∗ . But that is equivalent to showing that

κ − γ ∈ X∗

(1−θ)X∗ , i.e. just need to claim that κ − γ is a nongenuine

character of T (R)γ and hence it factors through T (R). Recall that
κ = Λ|T (R)γ and hence (κ− γ)(ζ) = (Λ)(ζ)(γ(ζ))−1 = (−1) · (−1) = 1,
since both Λ and γ are genuine characters of Hγ. So we can conclude

that κ− γ ∈ T̂ (R) = X∗

(1−θ)X∗ . Therefore, κ ∈ γ + X∗

(1−θ)X∗ .

Exercise 3.1.5. Think through Example 3.2.5.

Solution: Let G = SL(2,R).

First consider H(R) =

{(
x 0
0 1/x

)
: x ∈ R

}
, the split Cartan sub-

group of G. Note that for every g =

(
x 0
0 1/x

)
∈ H(R), 2ρ(g) =

x2 > 0 and therefore ρ(g) =
√
x2 is a well-defined character of H(R).

So we have that H(R)ρ ' H(R)× Z/2Z.

Now let H(R) be the compact Cartan subgroup of G, then H(R) '{(
eiθ 0
0 −eiθ

)
: θ ∈ [0, 2π]

}
' {eiθ} = S1. Write every g ∈ H(R) as
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g = eiθ. Then 2ρ(eiθ) = e2iθ and we can define ρ such that ρ(eiθ) = eiθ

for all θ or ρ(eiθ) = −eiθ for all θ, either of which is a well-defined
character of H(R) ' S1. So H(R)ρ ' H(R)× Z/2Z.

Next let G = PSL(2,R) = [SL(2,C)/± I]σ, where σ(g) = g.

Note that the complex Cartan H =

{(
z 0
0 z−1

)/
± I : z ∈ C

}
First consider the anti-holomorphic involution σ(g) = g−1 of H.

Then H(R) = Hσ =
{(

eiθ 0
0 −eiθ

)/
± I
}
' {eiθ : θ ∈ [0, π)} ' S1

H(R)ρ ' {(eiθ,±eiθ) : θ ∈ [0, π)} = {(eiθ, eiθ) : θ ∈ [0, π)}∪{(eiθ, ei(θ+π)) :
θ ∈ [0, π)} ' {eiθ : θ ∈ [0, 2π)} = S1.
Thus, we can view H(R)ρ is a 2-fold cover of H(R) via the covering
map z → z2.

Next consider the anti-holomorphic involution σ(g) = g of H, then
it’s easy to check that

H(R) = Hσ =

{(
x 0
0 x−1

)/
± I : x ∈ R

}
∪
{(

ix 0
0 −ix−1

)/
± I : x ∈ R

}
Therefore, we can write an typical element of H(R) to be

g =

(
x 0
0 x−1

)
, x > 0, or g =

(
ix 0
0 −ix−1

)
, x > 0. So H(R) is iso-

morphic to R∗ by sending

(
x 0
0 x−1

)
to x and sending

(
ix 0
0 −ix−1

)
to −x.

Since 2ρ

(
x 0
0 x−1

)
= x2 and 2ρ

(
ix 0
0 ix−1

)
= −x2, we haveH(R)ρ ={((

x 0
0 x−1

)
,±x

)
: x > 0

}
∪
{((

ix 0
0 −ix−1

)
,±ix

)
: x > 0

}
,

which is clearly isomorphic to R∗ ∪ iR∗ and

((
i 0
0 −i

)
, i

)
is an

element of order 4.

On the other hand, Hρ =

{((
z 0
0 z−1

)/
± I,±z

)
: z ∈ C

}
and

hence Hρ(R) =

{((
z 0
0 z−1

)/
± I,±z

)
: z ∈ C

}σ
=

{(( x 0
0 x−1

)/
± I, x

)
: x ∈ R

}
∪
{((

ix 0
0 −ix−1

)/
± I, ix

)
: x ∈ R

}
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since

((
x 0
0 x−1

)/
± I,±x

)
define the same element in Hσ

ρ , and

also

((
ix 0
0 −ix−1

)/
± I,±ix

)
define the same element in Hσ

ρ .

Therefore we can write

Hρ(R) =

{((
x 0
0 x−1

)
, x

)
: x > 0

}
∪
{((

ix 0
0 −ix−1

)
, ix

)
: x > 0

}
,

which is clearly isomorphic to R∗ and is a subgroup of index 2 in H(R)ρ.

4. Cartan Subgroups

Exercise 4.0.6. Show that every semi simple element of GL(2,R) is

conjugate to either diag(x, y) or

(
a b
−b a

)
. Conclude that GL(2,R)

has two Cartan subgroups (upto conjugacy), one R∗ and the other C∗.

Solution: Let A ∈ GL(2,R) be a semi simple element. Since complex
zeros of the characteristic polynomial occur in conjugate pairs, A either
has both real or both complex eigen values.
In the case when there is one (and hence both) real eigen-value, A is
conjugate (over R) diag(x, y) for some x, y ∈ R∗. If A has a complex
eigen-value a + ib with b 6= 0, we know that there is a complex eigen
vector (v + iw, u+ it) ∈ C2 with wt 6= 0. In this case, we see that(

p q
r s

)(
v + iw
u+ it

)
= (a+ ib)

(
v + iw
u+ it

)
=

(
(a+ ib)(v + iw)
(a+ ib)(u+ it)

)
i.e

(
(pv + qu) + i(pw + qt)
(rv + su) + i(wr + st)

)
=

(
(av − bw) + i(aw + bv)
(au− bt) + i(at+ bu)

)

Comparing real and imaginary parts we get

pv + qu = av − bw,
pw + qt = aw + bv,

rv + su = au− bt,
wr + st = at+ bu,

The above equations can be combined into the following matrix equa-
tion: (

p q
r s

)(
v w
u t

)
=

(
v w
u t

)(
a b
−b a

)
,
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so that if A =

(
p q
r s

)
and T =

(
v w
u t

)
, we have(

v w
u t

)−1(
p q
r s

)(
v w
u t

)
=

(
a b
−b a

)
.

Exercise 4.0.7. Find representatives of all conjugacy classes of Cartan
subgroups in GL(n,R) and SL(n,R).

Solution: Let g ∈ GL(n,R) be an semisimple element with eigen-
values x1, · · · , xm, z1, z1, · · · , zl, zl, where xj ∈ R∗ and zj = aj+ibj ∈ C∗
with aj 6= 0, and n = m+2l. Then g is conjugate to diag(x1, · · · , xm, z1, z1, · · · , zl, zl)
under GL(n,C). By the previous Exercise,

g ∼



x1 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0

0 0 xm 0 0 0 0 0 0
0 0 0 a1 −b1 0 0 0 0
0 0 0 b1 a1 0 0 0 0

0 0 0 0 0
. . . 0 0 0

0 0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 0 al −bl
0 0 0 0 0 0 0 bl al


(conjugation over GL(n,R)). Therefore, such elements are the repre-
sentatives of the Cartan subgroup R∗m × C∗l, with n = m+ 2l.

Next consider SL(n,R).
First observe SL(2,R). Let g ∈ SL(2,R).

Suppose g has 2 real eigenvalues, then g = P

(
x 0
0 1/x

)
P−1 where

P ∈ GL(2, R) and x ∈ R. If detP > 0 then take P1 = P√
detP

∈

SL(2,R) and hence g = P1

(
x 0
0 1/x

)
P−11 . If detP < 0. then

interchanging two columns of P to get P1 with detP1 > 0 and set

P2 = P1√
detP1

∈ SL(2,R), and thus g = P2

(
1/x 0
0 x

)
P−12 . Therefore

{
(
x 0
0 1/x

)
, x ∈ R} form the set of representatives of the Cartan

subgroups R∗.

Suppose g has two complex eigenvalues e±iθ = cos θ ± i sin θ. Pick

a complex eigenvecor

(
v1
v2

)
+ i

(
w1

w2

)
corresponding to cos θ +
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i sin θ, then g = P

(
cos θ − sin θ
sin θ cos θ

)
P−1, where P =

(
v1 −w1

v2 −w2

)
∈

GL(2,R). If detP > 0, then g ∼
(

cos θ − sin θ
sin θ cos θ

)
under SL(2,R)

by dividing P by
√

detP . On the other hand, if detP < 0, let

P1 =

(
v1 w1

v2 w2

)
, then g = P1

(
cos θ sin θ
− sin θ cos θ

)
P−11 and hence g ∼(

cos θ sin θ
− sin θ cos θ

)
under SL(2,R).

First suppose n is odd. Every g ∈ SL(n,R) is conjugate under

SL(n,R) to



x1 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0

0 0 xm 0 0 0 0 0 0
0 0 0 a1 −b1 0 0 0 0
0 0 0 b1 a1 0 0 0 0

0 0 0 0 0
. . . 0 0 0

0 0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 0 al −bl
0 0 0 0 0 0 0 bl al


,

where x1 = [x2 · · ·xm(a21 + b21) · · · (a2l + b2l )]
−1, and such elements are

representatives in the Cartan subgroup R∗m−1×C∗l, where m > 0 and
m+ 2l = n.

Now suppose n is even. If g ∈ SL(n,R) has at least a real eigen-
value, then g is conjugate to an element described as above, and they
form the representatives of the Cartan subgroups R∗m−1 × C∗l, where
m > 0 and m + 2l = n. If g has no real eigenvalues, then g is conju-

gate to


z1 0 0 0 0
0 z1 0 0 0

0 0
. . . 0 0

0 0 0 zl 0
0 0 0 0 zl

 under GL(n,C), where l = n/2, with

∏
j(zjzj) = 1.

Note that the set {(z1, z1, · · · , zl, zl) : zj ∈ C,
∏

j(zjzj) = 1} is iso-

morphic to C∗l−1 × S1 as groups via the map (z1, z1, · · · , zl, zl) →
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(z1, · · · , zl−1, z1z2 · · · zl), and hence g ∼


a1 −b1 0 0 0
b1 a1 0 0 0

0 0
. . . 0 0

0 0 0 al −bl
0 0 0 bl al

,

where zj = aj + ibj and
∏

(zjzj) = 1, are the representatives for the
Cartan subgroup C∗l−1 × S1.
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