Vogan

 $SL(2,\mathbb{R})$ 

Picture of C

# Unitary representations of reductive Lie groups

David Vogan

Workshop on Unitary Representations University of Utah July 1–5, 2013  $SL(2,\mathbb{R})$ 

What's a (unitary) dual look like?

Topological grp G acts on X, have questions about X.

**Step 1.** Attach to X Hilbert space  $\mathcal{H}$  (e.g.  $L^2(X)$ ). Questions about  $X \rightsquigarrow$  questions about  $\mathcal{H}$ .

Step 2. Find finest G-eqvt decomp  $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$ . Questions about  $\mathcal{H} \leadsto$  questions about each  $\mathcal{H}_{\alpha}$ .

Each  $\mathcal{H}_{\alpha}$  is irreducible unitary representation of G: indecomposable action of G on a Hilbert space.

**Step 3.** Understand  $\hat{G}_u$  = all irreducible unitary representations of G: unitary dual problem.

**Step 4.** Answers about irr reps  $\rightsquigarrow$  answers about X.

This week: **Step 3** for reductive Lie group *G*.

Unitary representations

Vogan

 $SL(2,\mathbb{R})$ 

 $SL(2,\mathbb{R})$  acts on upper half plane  $\mathbb{H}$ ;  $\Delta_{\mathbb{H}} = \text{Laplacian}$ .

 $\rightarrow$  repn  $E(\nu)$  on  $\nu^2 - 1$  eigenspace of Laplacian  $\Delta_{\mathbb{H}}$ 

 $\nu \in \mathbb{C}$  parametrizes line bdle on circle where bdry values live.

Most  $E(\nu)$  irreducible; always unique irr subrep  $J(\nu) \subset E(\nu)$ .



Spectrum of self-adjt  $\Delta_{\mathbb{H}}$  on  $L^2(\mathbb{H})$  is  $(-\infty, -1]$ .  $\rightsquigarrow$ unitary principal series  $\longleftrightarrow$  { $E(\nu) \mid \nu \in i\mathbb{R}$ }.

 $E(\pm 1) = [\text{harm fns on } \mathbb{H}] \supset [\text{const fns on } \mathbb{H}] = J(\pm 1) = \text{triv rep.}$  $J(\nu)$  is Herm.  $\Leftrightarrow J(\nu) \simeq J(-\overline{\nu}) \Leftrightarrow \nu \in i\mathbb{R} \cup \mathbb{R}$ . By continuity, signature stays positive from 0 to  $\pm 1$ .

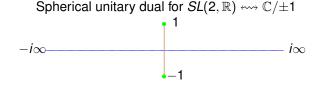
complementary series reps  $\longleftrightarrow \{E(t) \mid t \in (-1,1)\}.$ 

Unitary representations

Vogan

 $SL(2,\mathbb{R})$ 

Picture of  $\widehat{\mathcal{C}}$ 



$$\begin{split} SL(2,\mathbb{R}) & G(\mathbb{R}) \\ E(\nu),\nu \in \mathbb{C} & I(\nu),\nu \in \mathfrak{a}_{\mathbb{C}}^* \\ E(\nu),\nu \in i\mathbb{R} & I(\nu),\nu \in i\mathfrak{a}_{\mathbb{R}}^* \\ J(\nu) \hookrightarrow E(\nu) & I(\nu) \twoheadrightarrow J(\nu) \\ [-1,1] & \text{polytope in } \mathfrak{a}_{\mathbb{R}}^* \end{split}$$

Will deform Herm forms unitary axis  $i\mathfrak{a}_{\mathbb{R}}^* \leadsto \operatorname{real axis } \mathfrak{a}_{\mathbb{R}}^*$ .

Deformed form pos → unitary rep.

Reps appear in families, param by  $\nu$  in cplx vec space  $\mathfrak{a}^*$ .

Pure imag params  $\iff$   $L^2$  harm analysis  $\iff$  unitary.

Each rep in family has distinguished irr piece  $J(\nu)$ .

Difficult unitary reps  $\leftrightarrow$  deformation in real param

Vogan

Want to understand more explicitly analysis of repns  $E(\nu)$  for  $SL(2,\mathbb{R})$ . Use different picture

$$I(\nu, \epsilon) = \{f : (\mathbb{R}^2 - 0) \to \mathbb{C} \mid f(tx) = |t|^{-\nu - 1} \operatorname{sgn}(t)^{\epsilon} f(x) \},$$
 functions homogeneous of degree  $(-\nu - 1, \epsilon)$ .

The -1 next to  $-\nu$  makes later formulas simpler.

Lie algs easier than Lie gps  $\longrightarrow$  write  $\mathfrak{sl}(2,\mathbb{R})$  action, basis  $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$   $[D, E] = 2E, \quad [D, F] = -2F, \quad [E, F] = D.$ 

action on functions on  $\mathbb{R}^2$  is by

$$D=-x_1\frac{\partial}{\partial x_1}+x_2\frac{\partial}{\partial x_2},\quad E=-x_2\frac{\partial}{\partial x_1},\quad F=-x_1\frac{\partial}{\partial x_2}.$$

Now want to restrict to homogeneous functions...

*SL*(2, ℝ)

 $SL(2,\mathbb{R})$ 

# Principal series for $SL(2,\mathbb{R})$ (continued)

Study homog fns on  $\mathbb{R}^2 - 0$  by restr to  $\{(\cos \theta, \sin \theta)\}$ :

$$I(\nu,\epsilon)\simeq\{w\colon S^1\to\mathbb{C}\mid w(-s)=(-1)^\epsilon w(s)\},\ f(r,\theta)=r^{-\nu-1}w(\theta).$$

Compute Lie algebra action in polar coords using

$$\frac{\partial}{\partial x_1} = -x_2 \frac{\partial}{\partial \theta} + x_1 \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial x_2} = x_1 \frac{\partial}{\partial \theta} + x_2 \frac{\partial}{\partial r},$$
$$\frac{\partial}{\partial r} = -\nu - 1, \qquad x_1 = \cos \theta, \qquad x_2 = \sin \theta.$$

Plug into formulas on preceding slide: get

$$\begin{split} \rho^{\nu}(D) &= 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (\cos^2\theta - \sin^2\theta)(\nu + 1), \\ \rho^{\nu}(E) &= \sin^2\theta\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu + 1), \\ \rho^{\nu}(F) &= -\cos^2\theta\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu + 1). \end{split}$$

Hard to make sense of. Clear: family of reps analytic (actually linear) in complex parameter  $\nu$ .

Big idea: see how properties change as function of  $\nu$ .

### A more suitable basis

Have family  $\rho^{\nu,\epsilon}$  of reps of  $SL(2,\mathbb{R})$  defined on functions on  $S^1$  of homogeneity (or parity)  $\epsilon$ :

$$\begin{split} &\rho^{\nu}(D) = 2\sin\theta\cos\theta\,\frac{\partial}{\partial\theta} + (\cos^2\theta - \sin^2\theta)(\nu + 1),\\ &\rho^{\nu}(E) = \sin^2\theta\,\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu + 1),\\ &\rho^{\nu}(F) = -\cos^2\theta\,\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu + 1). \end{split}$$

Problem:  $\{D,E,F\}$  adapted to wt vectors for diagonal Cartan subalgebra; rep  $\rho^{\nu,\epsilon}$  has no such wt vectors.

But rotation matrix E - F acts simply by  $\partial/\partial\theta$ .

Suggests new basis of the complexified Lie algebra:

$$H = -i(E - F), \quad X = \frac{1}{2}(D + iE + iF), \quad Y = \frac{1}{2}(D - iE - iF).$$

Same commutation relations [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H, but cplx conj is different:  $\overline{H} = -H$ ,  $\overline{X} = Y$ .

$$\rho^{\nu}(H) = \frac{1}{i} \frac{\partial}{\partial \theta},$$

$$\rho^{\nu}(X) = \frac{e^{2i\theta}}{2i} \left( \frac{\partial}{\partial \theta} + i(\nu + 1) \right), \qquad \rho^{\nu}(Y) = \frac{-e^{-2i\theta}}{2i} \left( \frac{\partial}{\partial \theta} - i(\nu + 1) \right).$$

### Matrices for principal series

Have family  $\rho^{\nu,\epsilon}$  of reps of  $SL(2,\mathbb{R})$  defined on functions on  $S^1$  of homogeneity (or parity)  $\epsilon$ :

$$\rho^{\nu}(H) = \frac{1}{i} \frac{\partial}{\partial \theta},$$

$$\rho^{\nu}(X) = \frac{e^{2i\theta}}{2i} \left( \frac{\partial}{\partial \theta} + i(\nu + 1) \right), \quad \rho^{\nu}(Y) = \frac{-e^{-2i\theta}}{2i} \left( \frac{\partial}{\partial \theta} - i(\nu + 1) \right).$$

These ops act simply on basis  $w_m(\cos \theta, \sin \theta) = e^{im\theta}$ :

$$\rho^{\nu}(H)w_m=mw_m,$$

$$\rho^{\nu}(X)w_{m}=\frac{1}{2}(m+\nu+1)w_{m+2}, \quad \rho^{\nu}(Y)w_{m}=\frac{1}{2}(-m+\nu+1)w_{m-2}.$$

Suggests reasonable function space to consider:

$$I(\nu, \epsilon)^K = \text{fns homog of deg } (\nu, \epsilon), \text{ finite under rotation}$$

$$\simeq \text{trig polys on } S^1 \text{ of parity } \epsilon$$

$$= \text{span}(\{w_m \mid m \equiv \epsilon \pmod{2}\}).$$



Space  $I(\nu, \epsilon)^K$  has beautiful rep of  $\mathfrak{g}$ : irr for most  $\nu$ , easy submods otherwise. Not preserved by rep of  $G = SL(2, \mathbb{R})$ .

# Invariant forms on principal series by hand

Write 
$$I(\nu) = I(\nu, 0) = \text{even fns homog of deg } -\nu - 1$$

Need "signature" of invt Herm form on inf-diml space.

Basis 
$$\{w_m \mid m \in 2\mathbb{Z}\}, w_m \leftrightarrow e^{im\theta}, H \cdot w_m = mw_m,$$

$$X \cdot w_m = \frac{1}{2}(\nu + m + 1)w_{m+2}, \quad Y \cdot w_m = \frac{1}{2}(\nu - (m-1))w_{m-2}.$$

Requirements for invariant Hermitian form  $\langle , \rangle_{\nu}$ :

$$\langle H \cdot w, w' \rangle_{\nu} = \langle w, H \cdot w' \rangle_{\nu}, \qquad \langle X \cdot w, w' \rangle_{\nu} + \langle w, Y \cdot w' \rangle_{\nu} = 0.$$

Apply first requirement to  $w=w_m, \ w'=w_{m'};$  get  $m\langle w_m, w_{m'}\rangle_{\nu}=m'\langle w_m, w_{m'}\rangle_{\nu},$ 

and therefore  $\langle w_m, w_{m'} \rangle_{\nu} = 0$  for  $m \neq m'$ .

So only need  $\langle w_m, w_m \rangle_{\nu} \quad (m \in 2\mathbb{Z})$ . Second reqt says

$$((m+1)+\nu)\langle w_{m+2},w_{m+2}\rangle_{\nu}=((m+1)-\overline{\nu})\langle w_m,w_m\rangle_{\nu}.$$

Easy solution:  $\nu$  imaginary, all  $\langle w_m, w_m \rangle_{\nu}$  equal

THM: For  $\nu \in i\mathbb{R}$ ,  $L^2(S^1/\{\pm 1\}) \rightsquigarrow I(\nu,0)$  unitary rep of G.

# Invariant forms on $I(\nu)$ by hand, continued

Recall  $I(\nu)=$  even functions on  $\mathbb{R}^2$ , homog deg  $-\nu-1$ ; seeking invt Herm form  $\langle , \rangle_{\nu}$ , specified by values on basis

$$w_m(r,\theta) = r^{-\nu-1}e^{im\theta} \quad (m \in 2\mathbb{Z}).$$

$$((m+1)+\nu)\langle w_{m+2}, w_{m+2}\rangle_{\nu} = ((m+1)-\overline{\nu})\langle w_m, w_m\rangle_{\nu}.$$

Non-imag  $\nu$ : nonzero (real) solns exist iff  $\nu \in \mathbb{R}$ :

$$((m+1)+\nu)\langle w_{m+2},w_{m+2}\rangle_{\nu}=((m+1)-\nu)\langle w_m,w_m\rangle_{\nu} \qquad (\nu\in\mathbb{R}).$$

Natural to normalize  $\langle w_0, w_0 \rangle_{\nu} = 1$ , calculate

$$\langle w_{\pm 2}, w_{\pm 2} \rangle_{\nu} = \frac{(1-\nu)}{(1+\nu)}, \quad \langle w_{\pm 4}, w_{\pm 4} \rangle_{\nu} = \frac{(1-\nu)(3-\nu)}{(1+\nu)(3+\nu)}$$

$$\vdots$$

$$\langle w_{\pm 2m}, w_{\pm 2m} \rangle_{\nu} = \frac{(1-\nu)(3-\nu)\cdots(2m-1-\nu)}{(1+\nu)(3+\nu)\cdots(2m-1+\nu)}$$

If  $\nu \in (2m-1,2m+1)$ , sign alternates on  $w_0, w_2, \dots w_{2m}$ .

pos def for  $0 \le \nu < 1$ ; for  $\nu > 1$ , sign diff on  $w_0, w_2$ .

 $\langle, \rangle_{
u}$  "meromorphic" in (real) u

One *K*-type-at-a-time calc too complicated to generalize.

# Deforming signatures for $SL(2,\mathbb{R})$

Here's representation-theoretic picture of deforming  $\langle,\rangle_{\nu}.$ 

$$\nu=$$
 0,  $I(0)$  " $\subset$ "  $L^2(\mathbb{H})$ : unitary, signature positive.

$$0 < \nu < 1$$
,  $I(\nu)$  irr: signature remains positive.

$$\nu = 1$$
: form finite pos on quotient  $J(1) \iff SO(2)$  rep 0.

$$\nu=$$
 1: form has simple zero, pos residue on  $\ker(I(1) \to J(1))$ .

$$1 < \nu < 3$$
, across zero at  $\nu = 1$ , signature changes.

$$\nu = 3$$
: form finite  $-+-$  on quotient  $J(3)$ .

$$\nu=$$
 3: form has simple zero, neg residue on  $\ker(I(3) \to J(3))$ .

$$3 < \nu < 5$$
, across zero at  $\nu = 3$ , signature changes. ETC.

Conclude: 
$$J(\nu)$$
 unitary,  $\nu \in [0, 1]$ ; nonunitary,  $\nu \in (1, \infty)$ .

$$\cdots$$
 -6 -4 -2 0 +2 +4 +6  $\cdots$  SO(2) reps  $\cdots$  + + + + + + +  $\cdots$   $\nu$  = 0

$$\cdots + + + + + + + + \cdots 0 < \nu < 1$$

$$\cdots + + + + + + + \cdots \quad \nu = 1$$

$$\cdots - - - + - - - \cdots 1 < \nu < 3$$
  
 $\cdots - - + - - - \cdots \nu = 3$ 

$$\cdots$$
 + + - + - + +  $\cdots$  3 <  $\nu$  < 5

Calculated signatures of invt Herm forms on spherical reps of  $SL(2,\mathbb{R})$ .

Seek to do "same" for real reductive group. Need...

List of irr reps = ctble union (cplx vec space)/(fin grp).

reps for purely imag points " $\subset$ "  $L^2(G)$ : unitary!

Natural (orth) decomp of any irr (Herm) rep into fin-diml subspaces → define signature subspace-by-subspace.

Signature at  $\nu + i\tau$  by analytic cont  $t\nu + i\tau$ ,  $0 \le t \le 1$ .

Precisely: start w unitary (pos def) signature at t=0; add contribs of sign changes from zeros/poles of odd order in  $0 \le t \le 1 \rightsquigarrow$  signature at t=1.

Know a lot about complex repns of  $\Gamma$  algebraically. Want to study unitarity of repns algebraically. Helpful to step back, ask what we know about the **set** of representations of  $\Gamma$ .

Short answer: it's a complex algebraic variety.

Then ask Felix Klein question: what natural automorphisms exist on set of representations?

Short answer: from **auts of**  $\Gamma$  and from **lin alg**.

Try to relate unitary structure to these natural things.

Short answer: they're related to  $\mathbb{R}$ -rational structure on complex variety of repns.

 $\Gamma$  fin gen group, gens  $S = \{\sigma\}$ , relations  $R = \{\rho\}$ .

Relation is a noncomm word  $\rho = \sigma_1^{m_1} \cdots \sigma_n^{m_n} (\sigma_i \in S, m_i \in \mathbb{Z}).$ 

*N*-dim rep  $\pi \leftrightarrow N \times N$  matrices  $\{\pi(\sigma) \mid \sigma \in S\}$  subject to alg rels  $\pi(\rho) = I$  for  $\rho \in R$ :  $\pi(\sigma_1)^{m_1} \pi(\sigma_2)^{m_2} \cdots \pi(\sigma_n)^{m_n} = I$ .

Conclude:  $\{N\text{-dim reps of }\Gamma\}=\text{aff alg var in }GL(N,\mathbb{C})^S.$ 

Reduc reps are closed  $\bigcup_{0 \subseteq W \subseteq \mathbb{C}^N} \{\pi \mid \pi(\sigma)W = W \ (\sigma \in S)\}$ , so irr *N*-dimls reps are open-in-affine alg variety.

Reps up to equiv: divide by  $GL(N, \mathbb{C})$  conj; still more or less alg variety. (Possibly not *separated*, etc.)

Thm. Set  $\widehat{\Gamma}_{fin}$  of equiv classes of fin-diml reps of fin-gen  $\Gamma$  is (approx) disjt union of complex alg vars.

Similar ideas apply to  $(\mathfrak{g}, K)$ -modules: reps containing fixed rep of K with mult N are N-diml modules for a fin-gen cplx algebra.

Thm. Set  $\widehat{G}(\mathbb{R})$  of equiv classes of irr  $(\mathfrak{g}, K)$ -mods is (approx) disjt union of complex alg vars.

Langlands identifies alg vars as  $\mathfrak{a}^*/W^{\delta}$ .

```
Group automorphisms acting on reps
```

Γ fin gen group,  $\tau$  ∈ Aut(Γ),  $(\pi, V)$  rep of Γ  $\leadsto$   $(\pi^{\tau}, V)$  new rep on same space,  $\pi^{\tau}(\gamma) =_{\text{def}} \pi(\tau(\gamma))$ .

Gives (right) action of Aut(G) on  $\widehat{\Gamma}$ .

Inner auts act trivially: linear isom  $\pi(\gamma_0)$  intertwines  $\pi$  and  $\pi^{\text{Int}(\gamma_0)}$  since  $\pi^{\text{Int}(\gamma_0)}(\gamma)\pi(\gamma_0)=\pi(\gamma_0)\pi(\gamma)$ .

(Easy) Thm.  $Out(\Gamma) =_{def} Aut(\Gamma) / Int(\Gamma)$  acts by algebraic variety automorphisms on  $\widehat{\Gamma}_{fin}$ .

(Easy) Thm. Out( $G(\mathbb{R})$ ) acts by algebraic variety automorphisms on  $\widehat{G}(\mathbb{R})$ .

Main technical point: each aut of  $G(\mathbb{R})$  can be modified by inner aut so as to preserve K; so get action on  $(\mathfrak{g}, K)$ -modules.

```
Bilinear forms and dual spaces
```

V cplx vec space (or  $(\mathfrak{g}, K)$ -module).

Dual of 
$$V$$
  $V^* = \{\xi : V \to \mathbb{C} \text{ additive } | \xi(zv) = z\xi(v)\}$ 

(V alg K-rep  $\leadsto$  require  $\xi$  K-finite; V topolog.  $\leadsto$  require  $\xi$  cont.)

$$V = \mathbb{C}^N \ N \times 1 \ \text{column vectors} \leadsto V^h = \mathbb{C}^N, \, \xi(v) = {}^t \xi v.$$

Bilinear pairings between V and W

$$Bil(V, W) = \{\langle, \rangle \colon V \times W \to \mathbb{C}, \text{lin in } V, \text{lin in } W\}$$

$$Bil(V, W) \simeq Hom(V, W^*), \quad \langle v, w \rangle_T = (Tv)(w).$$

Exchange vars in forms to get linear isom

$$Bil(V, W) \simeq Bil(W, V).$$

Corr lin isom on maps is transpose:

$$\operatorname{Hom}(V, W^*) \simeq \operatorname{Hom}(W, V^*), \quad (T^t w)(v) = (Tv)(w).$$

$$(TS)^t = S^t T^t, \quad (zT)^t = z(T^h).$$

Bil form  $\langle , \rangle_T$  on V ( $\longleftrightarrow$   $T \in \text{Hom}(V, V^h)$ ) orthogonal if  $\langle v, v' \rangle_T = \langle v', v \rangle_T \iff T^t = T$ .

Bil form 
$$\langle , \rangle_{\mathcal{T}}$$
 on  $V$  ( $\longleftrightarrow$   $T \in \text{Hom}(V, V^h)$ ) symplectic if  $\langle v, v' \rangle_{\mathcal{S}} = -\langle v', v \rangle_{\mathcal{T}} \iff \mathcal{S}^t = -\mathcal{S}.$ 

 $(\pi, V)$  (g, K)-module; had (K-finite) dual space  $V^*$  of V. Want to construct functor

cplx linear rep 
$$(\pi, V) \rightsquigarrow$$
 cplx linear rep  $(\pi^*, V^*)$  using transpose map of operators.

Because transpose is antiaut REQUIRES twisting by antiaut of  $(\mathfrak{g}, K)$ .

 $X \mapsto -X$  is Lie alg antiaut, and  $k \mapsto k^{-1}$  group antiaut

Define contragredient (g, K)-module  $\pi^*$  on  $V^*$ ,

$$\pi^*(Z) \cdot \xi =_{\mathsf{def}} [\pi(-Z)]^t \cdot \xi \qquad (Z \in \mathfrak{g}, \ \xi \in V^*),$$
  
$$\pi^*(K) \cdot \xi =_{\mathsf{def}} [\pi(K^{-1})]^t \cdot \xi \qquad (K \in K, \ \xi \in V^*).$$

Thm. If  $\Gamma$  is a fin gen group, passage to contragredient is an involutive automorphism of the algebraic variety  $\widehat{\Gamma}$ .

Thm. If  $G(\mathbb{R})$  real reductive, passage to contragredient is an involutive automorphism of the algebraic variety  $G(\mathbb{R})$ .

Picture of  $\widehat{G}$ 

### Invariant bilinear forms

$$V = (\mathfrak{g}, K)$$
-module,  $\tau$  involutive aut of  $(\mathfrak{g}, K)$ .

An invt bilinear form on V is bilinear pairing  $\langle , \rangle$  such that

$$\langle Z \cdot v, w \rangle = \langle v, -Z \cdot w \rangle, \quad \langle k \cdot v, w \rangle = \langle v, k^{-1} \cdot w \rangle$$
  
 $(Z \in \mathfrak{g}; k \in K; v, w \in V).$ 

### **Proposition**

Invt bilinear form on  $V \leftrightarrow (\mathfrak{g}, K)$ -map  $T: V \to V^*$ :  $\langle v, w \rangle_T = (Tv)(w).$ 

Form is orthogonal  $\iff T^* = T$ .

Form is symplectic  $\iff T^* = -T$ .

Assume from now on V is irreducible.

 $V \simeq V^* \iff \exists invt bilinear form on V$ 

Invt bil form on V unique up to real scalar mult.; non-deg whenever nonzero.

Invt bil form must be either orthogonal or symplectic.

 $T \to T^* \iff$  involution of cplx line  $\operatorname{Hom}_{\mathfrak{a},K}(V,V^*)$ .

Existence of invt bil form  $\longleftrightarrow$  compute  $V \mapsto V^*$  on  $G(\mathbb{R})$ .

Deciding orth/symp usually somewhat harder.

## Hermitian forms and dual spaces

V cplx vec space (or  $(\mathfrak{g}, K)$ -module).

Herm dual of 
$$V$$
  $V^h = \{ \xi : V \to \mathbb{C} \text{ additive } | \xi(zv) = \overline{z}\xi(v) \}$ 

(
$$V$$
 alg  $K$ -rep  $\leadsto$  require  $\xi$   $K$ -finite;  $V$  topolog.  $\leadsto$  require  $\xi$  cont.)

$$V = \mathbb{C}^N \ N \times 1 \text{ column vectors} \rightsquigarrow V^h = \mathbb{C}^N, \ \xi(v) = {}^t \overline{\xi} v.$$

Sesquilinear pairings between V and W

$$\mathsf{Sesq}(\mathit{V}, \mathit{W}) = \{ \langle, \rangle \colon \mathit{V} \times \mathit{W} \to \mathbb{C}, \mathsf{lin} \; \mathsf{in} \; \mathit{V}, \mathsf{conj}\text{-}\mathsf{lin} \; \mathsf{in} \; \mathit{W} \}$$

$$\mathsf{Sesq}(V,W) \simeq \mathsf{Hom}(V,W^h), \quad \langle v,w\rangle_T = (Tv)(w).$$

Cplx conj of forms is (conj linear) isom

$$Sesq(V, W) \simeq Sesq(W, V).$$

Corr (conj lin) isom on maps is Hermitian transpose:

$$\operatorname{Hom}(V, W^h) \simeq \operatorname{Hom}(W, V^h), \quad (T^h w)(v) = \overline{(Tv)(w)}.$$

$$(TS)^h = S^h T^h, \qquad (zT)^h = \overline{z}(T^h).$$

Sesq form  $\langle , \rangle_T$  on  $V (\longleftrightarrow T \in \text{Hom}(V, V^h))$  Hermitian if  $\langle \mathbf{v}, \mathbf{v}' \rangle_T = \overline{\langle \mathbf{v}', \mathbf{v} \rangle}_T \iff T^h = T.$ 

### Defining Herm dual repn(s)

 $(\pi, V)$   $(\mathfrak{g}, K)$ -module; Recall Herm dual  $V^h$  of V.

Want to construct functor

cplx linear rep 
$$(\pi, V) \rightsquigarrow$$
 cplx linear rep  $(\pi^h, V^h)$ 

using Hermitian transpose map of operators.

Definition REQUIRES twisting by conj lin antiaut of  $\mathfrak{g}$ , gp antiaut of K.

Since  $\mathfrak{g}$  equipped with a real form  $\mathfrak{g}_0$ , have natural conj-lin aut  $\sigma_0(X+iY)=X-iY$   $(X,Y\in\mathfrak{g}_0)$ . Also  $X\mapsto -X$  is Lie alg antiaut, and  $k\mapsto k^{-1}$  gp antiaut.

Define Hermitian dual  $(\mathfrak{g}, K)$ -module  $\pi^h$  on  $V^h$ ,  $\pi^h(Z) \cdot \xi =_{\mathsf{def}} [\pi(-\sigma_0(Z))]^h \cdot \xi \quad (Z \in \mathfrak{g}, \xi \in V^h),$   $\pi^h(k) \cdot \xi =_{\mathsf{def}} [\pi(k^{-1})]^h \cdot \xi \quad (k \in K, \xi \in V^h).$ 

Need also a variant: suppose  $\tau$  inv aut of  $G(\mathbb{R})$  preserving K. Define  $\tau$ -herm dual  $(\mathfrak{g}, K)$ -module  $\pi^{h,\tau}$  on  $V^h$ ,

$$\pi^{h,\tau}(X) \cdot \xi = [\pi(-\tau(\sigma_0(Z))]^h \cdot \xi \quad (Z \in \mathfrak{g}, \ \xi \in V^h),$$
  
$$\pi^{h,\tau}(k) \cdot \xi = [\pi(\tau(k)^{-1})]^h \cdot \xi \quad (k \in K, \ \xi \in V^h).$$

### **Invariant Hermitian forms**

For 
$$\tau$$
 an inv aut of  $(G(\mathbb{R}), K)$ , defined  $\tau$ -herm dual

$$\pi^{h, au}(X) \cdot \xi = [\pi(-\tau(\sigma_0(Z))]^h \cdot \xi \quad (Z \in \mathfrak{g}, \ \xi \in V^h), \ \pi^{h, au}(k) \cdot \xi = [\pi(\tau(k)^{-1})]^h \cdot \xi \quad (k \in K, \ \xi \in V^h).$$

Thm.  $\tau$ -herm dual is Galois for  $\mathbb{R}$ -struc on alg var  $G(\mathbb{R})$ .

Reason: conj transpose is real Galois action on  $GL(N, \mathbb{C})$ .

A  $\tau$ -invt sesq form on  $(\mathfrak{g}, K)$ -module V is pairing  $\langle , \rangle^{\tau}$  with

$$\langle Z \cdot v, w \rangle = \langle v, -\tau(\sigma_0(Z)) \cdot w \rangle, \quad \langle k \cdot v, w \rangle = \langle v, \tau(k^{-1}) \cdot w \rangle$$

$$(Z \in \mathfrak{g}; k \in K; v, w \in V).$$

Prop.  $\tau$ -invt sesq form on  $V \longleftrightarrow (\mathfrak{q}, K)$ -map  $T: V \to V^{h,\tau}$ :

$$\langle v, w \rangle_T = (Tv)(w).$$

Form is Hermitian  $\iff T^h = T$ .

Assume from now on V is irreducible.

 $V \simeq V^{h,\tau} \iff \exists \tau$ -invt sesq  $\iff \exists \tau$ -invt Herm  $\tau$ -invt Herm form on V unique up to real scalar mult.

 $T \to T^h \iff$  real form of cplx line  $\operatorname{Hom}_{\mathfrak{a},K}(V,V^{h,\tau})$ .

Deciding existence of  $\tau$ -invt Hermitian form amounts to computing the involution  $V \mapsto V^{h,\tau}$  on  $\widehat{G}$ : easy.