On K-spherical flag varieties

—joint work with

Xuhua He, Hiroyuki Ochiai & Yoshiki Oshima

Kyo Nishiyama

Aoyama Gakuin University

Representations of Reductive Groups University of Utah (July 8-12, 2013)

① Motivation & Problems : multipleflag variety $G \curvearrowright G/P_1 \times G/P_2 \times \cdots \times G/P_k$

- **1** Motivation & Problems : multipleflag variety $G \curvearrowright G/P_1 \times G/P_2 \times \cdots \times G/P_k$
- ② Double flag variety for symmetric pair Introduce double flag variety for G/K: $K \stackrel{\frown}{\sim} G/P \times K/Q$

- **●** Motivation & Problems : multipleflag variety $G \curvearrowright G/P_1 \times G/P_2 \times \cdots \times G/P_k$
- ② Double flag variety for symmetric pair Introduce double flag variety for G/K:
 K → G/P × K/Q
- Finiteness criterion via Bruhat decomp &

- Motivation & Problems : multipleflag variety $G \curvearrowright G/P_1 \times G/P_2 \times \cdots \times G/P_k$
- ② Double flag variety for symmetric pair Introduce double flag variety for G/K:
 K → G/P × K/Q
- Finiteness criterion via Bruhat decomp & KGB reduction Give a criterion for finiteness of orbits

· · · · Complete, but difficult to calculate

- Motivation & Problems : multipleflag variety $G \curvearrowright G/P_1 \times G/P_2 \times \cdots \times G/P_k$
- ② Double flag variety for symmetric pair Introduce double flag variety for G/K: K → G/P × K/Q
- Finiteness criterion via Bruhat decomp & KGB reduction
 Give a criterion for finiteness of orbits
 Complete, but difficult to calculate
- Spherical actions on flag varieties and more Finiteness of orbits on double flag varieties → spherical flag varieties

- Motivation & Problems : multipleflag variety $G \curvearrowright G/P_1 \times G/P_2 \times \cdots \times G/P_k$
- ② Double flag variety for symmetric pair Introduce double flag variety for G/K: K → G/P × K/Q
- Finiteness criterion via Bruhat decomp & KGB reduction
 Give a criterion for finiteness of orbits
 Complete, but difficult to calculate
- Spherical actions on flag varieties and more Finiteness of orbits on double flag varieties → spherical flag varieties Relation to derived functor modules (by Yoshiki Oshima) Classifications of spherical action on flag varieties

40.40.45.45. 5 900

G: reductive algebraic group / \mathbb{C} $B \subset G$: Borel subgrp

 $\exists B \subset P : \mathsf{parabolic} \ \mathsf{subgrp} \ (\mathsf{psg}) \iff \mathsf{G}/P : \mathsf{smooth} \ \mathsf{proj} \ \mathsf{variety}$

G: reductive algebraic group / \mathbb{C} $B \subset G$: Borel subgrp

 $\exists B \subset P$: parabolic subgrp (psg) \iff G/P: smooth proj variety

Definition

 $\mathfrak{X}_P := G/P : (partial) flag variety (FV)$

G: reductive algebraic group $/ \mathbb{C}$ $B \subset G$: Borel subgrp

 $\exists B \subset P$: parabolic subgrp (psg) \iff G/P: smooth proj variety

Definition

 $\mathfrak{X}_P := G/P : (partial) flag variety (FV)$

• diag $G \cap X = G/B \times G/B$: double flag variety

 \hookrightarrow $G \setminus X \simeq B \setminus G/B = \coprod_{w \in W} BwB :$ Bruhat decomposition (Steinberg theory)

 $\leadsto G \backslash \mathfrak{X}_{P_1} imes \mathfrak{X}_{P_2} \simeq P_1 \backslash G/P_2 \simeq W_{P_1} \backslash W/W_{P_2}$: gen. Bruhat decomp

G: reductive algebraic group $/ \mathbb{C}$ $B \subset G$: Borel subgrp $\exists B \subset P$: parabolic subgrp (psg) $\iff G/P$: smooth proj variety

Definition

$$\mathfrak{X}_P := G/P$$
: (partial) flag variety (FV)

1 diag $G \cap X = G/B \times G/B$: double flag variety

$$\hookrightarrow$$
 $G \backslash X \simeq B \backslash G/B = \coprod_{w \in W} BwB$: Bruhat decomposition (Steinberg theory)

$$\rightsquigarrow \ G\backslash \mathfrak{X}_{P_1}\times \mathfrak{X}_{P_2}\simeq P_1\backslash G/P_2\simeq W_{P_1}\backslash W/W_{P_2} \ : \ \text{gen. Bruhat decomp}$$

② $G \curvearrowright X = \mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_{P_3}$: triple flag variety If $\#G \setminus X < \infty$, it is called finite type

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · から○

G: reductive algebraic group / \mathbb{C} $B \subset G$: Borel subgrp

 $\exists B \subset P$: parabolic subgrp (psg) \iff G/P: smooth proj variety

Definition

 $\mathfrak{X}_P := G/P$: (partial) flag variety (FV)

1 diag $G \cap X = G/B \times G/B$: double flag variety

 $ightarrow G ackslash X \simeq B ackslash G/B = \coprod_{w \in W} BwB$: Bruhat decomposition (Steinberg theory)

ightarrow $Gackslash \mathfrak{X}_{P_1} imes \mathfrak{X}_{P_2}\simeq P_1ackslash G/P_2\simeq W_{P_1}ackslash W/W_{P_2}$: gen. Bruhat decomp

If $\#G \setminus X < \infty$, it is called finite type

classical finite type \Leftarrow classification by Magyar-Weyman-Zelevinsky Recently also by Matsuki

 $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$ Nishiyama (AGU) K-spherical flag varieties 2013/07/08 3 / 27

Finitely many orbits of Borel subgroup \cdots spherical action $\iff \exists$ open dense B-orbit

Finitely many orbits of Borel subgroup \cdots spherical action $\iff \exists$ open dense B-orbit \rightsquigarrow multiplicity-free (no Branching Law)

Finitely many orbits of Borel subgroup \cdots spherical action $\iff \exists$ open dense B-orbit \rightsquigarrow multiplicity-free (no Branching Law)

Examples of spherical variety:

Highest Weight Variety:

 V_{λ} : fin dim *G*-module with hw $\lambda \quad v \in V_{\lambda}$: hw vector

Finitely many orbits of Borel subgroup \cdots spherical action $\iff \exists$ open dense B-orbit \rightsquigarrow multiplicity-free (no Branching Law)

Examples of spherical variety:

• Highest Weight Variety:

 V_{λ} : fin dim *G*-module with hw $\lambda \quad v \in V_{\lambda}$: hw vector

 $P_{\lambda}:=\{g\in G\mid gv\in\mathbb{C}v\}: \mathsf{psg}\; (\forall \;\mathsf{psg}\;\mathsf{can}\;\mathsf{be}\;\mathsf{realized}\;\mathsf{in}\;\mathsf{this}\;\mathsf{way})$

Finitely many orbits of Borel subgroup \cdots spherical action $\iff \exists$ open dense B-orbit \rightsquigarrow multiplicity-free (no Branching Law)

Examples of spherical variety:

• Highest Weight Variety:

 V_{λ} : fin dim *G*-module with hw $\lambda \quad v \in V_{\lambda}$: hw vector

 $P_{\lambda}:=\{g\in G\mid gv\in \mathbb{C}v\}: \mathsf{psg}\; (orall\; \mathsf{psg}\; \mathsf{can}\; \mathsf{be}\; \mathsf{realized}\; \mathsf{in}\; \mathsf{this}\; \mathsf{way})$

 $X_\lambda:=\overline{G\cdot v}: \mathsf{hw} \ \mathsf{variety} \quad \& \quad (X_\lambda\setminus\{0\})/\mathbb{C}^ imes\simeq \mathfrak{X}_{P_\lambda}: \mathsf{flag} \ \mathsf{variety}$

Finitely many orbits of Borel subgroup \cdots spherical action $\iff \exists$ open dense B-orbit \rightsquigarrow multiplicity-free (no Branching Law)

Examples of spherical variety:

• Highest Weight Variety:

 V_{λ} : fin dim *G*-module with hw $\lambda \quad v \in V_{\lambda}$: hw vector

 $P_{\lambda}:=\{g\in G\mid gv\in \mathbb{C}v\}$: psg $(orall\$ psg can be realized in this way)

 $X_\lambda:=\overline{G\cdot v}$: hw variety & $(X_\lambda\setminus\{0\})/\mathbb{C}^ imes\simeq\mathfrak{X}_{P_\lambda}$: flag variety

 $\mathfrak{X}_{P_{\lambda}}: G$ -spherical $\rightsquigarrow X_{\lambda}:$

```
Finitely many orbits of Borel subgroup \cdots spherical action \iff \exists open dense B-orbit \rightsquigarrow multiplicity-free (no Branching Law)
```

Examples of spherical variety:

• Highest Weight Variety:

```
V_{\lambda}: fin dim G-module with hw \lambda \quad v \in V_{\lambda}: hw vector P_{\lambda} := \{g \in G \mid gv \in \mathbb{C}v\} : \text{psg } (\forall \text{ psg can be realized in this way}) X_{\lambda} := \overline{G \cdot v} : \text{hw variety} \quad \& \quad (X_{\lambda} \setminus \{0\})/\mathbb{C}^{\times} \simeq \mathfrak{X}_{P_{\lambda}} : \text{flag variety} \mathfrak{X}_{P_{\lambda}} : G-spherical \rightsquigarrow X_{\lambda} : G \times \mathbb{C}^{\times}-spherical \therefore \quad \mathbb{C}[X_{\lambda}] \simeq \bigoplus_{k > 0} V_{k\lambda}^* : \text{mult-free decomp}
```

[Remark: actually X_{λ} is G-spherical]

4□ ト 4個 ト 4 重 ト 4 重 ト 9 Q @

 $\#B\backslash G/K<\infty \ \leadsto \ G/K$: spherical

2 Affine symmetric space G/K

$$\#B\backslash G/K<\infty \ \leadsto \ G/K$$
 : spherical

$$\mathbb{C}[G/K] \simeq \bigoplus_{\lambda} V_{\lambda}$$
: mult-free decomp $(V_{\lambda}^{K} \neq 0 \text{ only appears})$

2 Affine symmetric space G/K

$$\#B\backslash G/K<\infty \ \leadsto \ G/K$$
 : spherical

$$::$$
 $\mathbb{C}[G/K] \simeq \bigoplus_{\lambda} V_{\lambda}:$ mult-free decomp $(V_{\lambda}^{K} \neq 0 \text{ only appears})$

Interesting analytic result:

$$L^2(G_{\mathbb{R}}/K_{\mathbb{R}})$$
 is also mult-free (with continuous spectrum)

Harish-Chandra, van den Ban, Schrichtkrull, Oshima, ...

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

2 Affine symmetric space G/K

$$\#B\backslash G/K<\infty \ \leadsto \ G/K$$
 : spherical

$$:: \mathbb{C}[G/K] \simeq \bigoplus_{\lambda} V_{\lambda} : \text{mult-free decomp } (V_{\lambda}^{K} \neq 0 \text{ only appears})$$

Interesting analytic result:

 $L^2(G_{\mathbb{R}}/K_{\mathbb{R}})$ is also mult-free (with continuous spectrum) Harish-Chandra, van den Ban, Schrichtkrull, Oshima, ...

■ Extra feature (KGB-theory):

K-orbits on
$$\mathfrak{X}_B = G/B$$
 with local system

$$\longleftrightarrow$$
 K-equiv \mathscr{D} -module on \mathfrak{X}_B

$$\leftarrow$$
 localization Harish-Chandra (\mathfrak{g}, K) -modules

4 □ ▶ 4 ඕ ▶ 4 분 ▶ 로 9 Q @

$$G \overset{\curvearrowright}{\longrightarrow} X = \mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_B : \underline{ \text{triple flag variety} } \\ \rightsquigarrow G \backslash X \simeq B \backslash (\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2})$$

Nishiyama (AGU)

Nishiyama (AGU)

Recall highest weight variety
$$X_{\lambda} = \overline{G \cdot v_{\lambda}}$$
 $s.t.$ $\mathbb{P}(X_{\lambda}) = \mathfrak{X}_{P_1}$ $X_{\mu} = \overline{G \cdot v_{\mu}}$ $s.t.$ $\mathbb{P}(X_{\mu}) = \mathfrak{X}_{P_2}$ $\Longrightarrow X_{\lambda} \times X_{\mu} : \underline{G \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}}$ -spherical $\leadsto V_{k\lambda}^* \otimes V_{\ell\mu}^* \simeq \bigoplus_{\eta} V_{\eta} : \underline{\mathsf{mult-free decomp}} \ (\forall k, \ell \geq 0)$

◆ロト ◆部 → ◆注 > ◆注 > 注 のQで

Recall highest weight variety $X_{\lambda} = \overline{G \cdot v_{\lambda}}$ s.t. $\mathbb{P}(X_{\lambda}) = \mathfrak{X}_{P_1}$ $X_{\mu} = \overline{G \cdot v_{\mu}}$ s.t. $\mathbb{P}(X_{\mu}) = \mathfrak{X}_{P_2}$ $\Longrightarrow X_{\lambda} \times X_{\mu} : G \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}$ -spherical $\hookrightarrow V_{k\lambda}^* \otimes V_{\ell\mu}^* \simeq \bigoplus_{n} V_{\eta} : \text{mult-free decomp } (\forall k, \ell \geq 0)$

Classification:

Panyushev (1993), Littelman (1994) \cdots P_1, P_2 : max psg Stembridge (2003) $\forall P_1, P_2$

4□ > 4□ > 4 = > 4 = > = 90

Recall highest weight variety
$$X_{\lambda} = \overline{G \cdot v_{\lambda}}$$
 s.t. $\mathbb{P}(X_{\lambda}) = \mathfrak{X}_{P_1}$ $X_{\mu} = \overline{G \cdot v_{\mu}}$ s.t. $\mathbb{P}(X_{\mu}) = \mathfrak{X}_{P_2}$

$$\implies X_{\lambda} imes X_{\mu}: G imes \mathbb{C}^{ imes} imes \mathbb{C}^{ imes}$$
-spherical

$$ightarrow \ V_{k\lambda}^* \otimes V_{\ell\mu}^* \simeq igoplus_{\eta} V_{\eta}:$$
 mult-free decomp $(orall k, \ell \geq 0)$

Classification:

Nishiyama (AGU)

Panyushev (1993), Littelman (1994) \cdots P_1, P_2 : max psg $\cdots \forall P_1, P_2$ Stembridge (2003)

Interesting generalization:

Next to spherical (complexity 1) · · · Ponomareva (2012, arXiv) \exists Open orbit on mult flag var \cdots Popov (2007)

◆□ ト ◆□ ト ◆ 重 ト ◆ 重 ・ 夕 Q (*) 2013/07/08 6 / 27

For type A, ∃ special wonderful case called mirabolic

For type A, \exists special wonderful case called mirabolic $G = \operatorname{GL}_n \supset B$: Borel & $P = P_{(n-1,1)}$: max parabolic (mirabolic) P: psg with diag blocks $(n-1,1) \rightsquigarrow G/P \simeq \mathbb{P}(\mathbb{C}^n)$ $\mathfrak{X}_B \times \mathfrak{X}_B \times \mathfrak{X}_P \simeq \mathscr{F}\ell_n \times \mathscr{F}\ell_n \times \mathbb{P}(\mathbb{C}^n)$

Nishiyama (AGU)

For type A, \exists special wonderful case called mirabolic $G = \operatorname{GL}_n \supset B$: Borel & $P = P_{(n-1,1)}$: max parabolic (mirabolic) P: psg with diag blocks $(n-1,1) \rightsquigarrow G/P \simeq \mathbb{P}(\mathbb{C}^n)$ $\mathfrak{X}_B \times \mathfrak{X}_B \times \mathfrak{X}_P \simeq \mathscr{F}\ell_n \times \mathscr{F}\ell_n \times \mathbb{P}(\mathbb{C}^n)$

Many good properties are known due to Travkin, Finkelberg-Ginzburg-Travkin, Achar-Henderson

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q

For type A, \exists special wonderful case called mirabolic $G = \operatorname{GL}_n \supset B$: Borel & $P = P_{(n-1,1)}$: max parabolic (mirabolic) P: psg with diag blocks $(n-1,1) \rightsquigarrow G/P \simeq \mathbb{P}(\mathbb{C}^n)$ $\mathfrak{X}_B \times \mathfrak{X}_B \times \mathfrak{X}_P \simeq \mathscr{F}\ell_n \times \mathscr{F}\ell_n \times \mathbb{P}(\mathbb{C}^n)$

Many good properties are known due to Travkin, Finkelberg-Ginzburg-Travkin, Achar-Henderson

 Analogue of Robinson-Schensted-Knuth algorithm for Springer fiber micro-local cells and action of Hecke algebra, etc.

For type A, \exists special wonderful case called mirabolic $G = \operatorname{GL}_n \supset B$: Borel & $P = P_{(n-1,1)}$: max parabolic (mirabolic) P: psg with diag blocks $(n-1,1) \rightsquigarrow G/P \simeq \mathbb{P}(\mathbb{C}^n)$ $\mathfrak{X}_B \times \mathfrak{X}_B \times \mathfrak{X}_P \simeq \mathscr{F}\ell_n \times \mathscr{F}\ell_n \times \mathbb{P}(\mathbb{C}^n)$

Many good properties are known due to Travkin, Finkelberg-Ginzburg-Travkin, Achar-Henderson

- Analogue of Robinson-Schensted-Knuth algorithm for Springer fiber micro-local cells and action of Hecke algebra, etc.
- Enhanced nilpotent cone and orbits on $\mathcal{N}(\mathfrak{g}) \times \mathbb{C}^n$, local intersection theory on the closure of nilpotent orbits

For type A, \exists special wonderful case called mirabolic $G = \operatorname{GL}_n \supset B$: Borel & $P = P_{(n-1,1)}$: max parabolic (mirabolic) P: psg with diag blocks $(n-1,1) \rightsquigarrow G/P \simeq \mathbb{P}(\mathbb{C}^n)$ $\mathfrak{X}_B \times \mathfrak{X}_B \times \mathfrak{X}_P \simeq \mathscr{F}\ell_n \times \mathscr{F}\ell_n \times \mathbb{P}(\mathbb{C}^n)$

Many good properties are known due to Travkin, Finkelberg-Ginzburg-Travkin, Achar-Henderson

- Analogue of Robinson-Schensted-Knuth algorithm for Springer fiber micro-local cells and action of Hecke algebra, etc.
- Enhanced nilpotent cone and orbits on $\mathcal{N}(\mathfrak{g}) \times \mathbb{C}^n$, local intersection theory on the closure of nilpotent orbits

· · · · · want to extend it to a symmetric pair

◆ロト ◆母 ト ◆ 重 ト ◆ 重 ・ 釣 Q ②

Nishiyama (AGU)

Double flag variety — definition

$$(G,K)$$
: symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

Ex.
$$(G, K) = (GL_{p+q}, GL_p \times GL_q), (SL_n, O_n),$$

 $(SL_{2n}, Sp_{2n}), (Sp_{2n}, GL_n), \dots$

Nishiyama (AGU)

Double flag variety — definition

(G,K): symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

P: parabolic & P': θ -stable parabolic of G $\Leftrightarrow Q := P' \cap K$: parabolic of K

(G,K): symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

P: parabolic & P': θ -stable parabolic of G \rightsquigarrow $Q := P' \cap K$: parabolic of K

Fact

For $\forall Q \subset K$: psg in K, $\exists P' \subset G$: θ -stable psg s.t. $Q = P' \cap K$

(G,K) : symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

P: parabolic & P': θ -stable parabolic of G \rightsquigarrow $Q := P' \cap K$: parabolic of K

Fact

For $\forall Q \subset K$: psg in K, $\exists P' \subset G$: θ -stable psg s.t. $Q = P' \cap K$

Definition (Double flag variety)

 $\mathfrak{X}_P := G/P$: partial flag var of G & $\mathcal{Z}_Q := K/Q$: partial flag of K

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬで

(G,K): symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

P: parabolic & P': θ -stable parabolic of G \rightsquigarrow $Q := P' \cap K$: parabolic of K

Fact

For $\forall Q \subset K$: psg in K, $\exists P' \subset G$: θ -stable psg s.t. $Q = P' \cap K$

Definition (Double flag variety)

 $\mathfrak{X}_P := G/P$: partial flag var of G & $\mathcal{Z}_Q := K/Q$: partial flag of K

 $K \cap \mathfrak{X}_P \times \mathcal{Z}_Q$: double flag variety (K acts diagonally)

(G,K): symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

P: parabolic & P': θ -stable parabolic of G \rightsquigarrow $Q := P' \cap K$: parabolic of K

Fact

For $\forall Q \subset K$: psg in K, $\exists P' \subset G$: θ -stable psg s.t. $Q = P' \cap K$

Definition (Double flag variety)

 $\mathfrak{X}_P := G/P$: partial flag var of G & $\mathcal{Z}_Q := K/Q$: partial flag of K

 $K \stackrel{\curvearrowright}{\longrightarrow} \mathfrak{X}_P \times \mathcal{Z}_Q$: double flag variety (K acts diagonally)

 $K \cap \mathfrak{X}_P \times \mathcal{Z}_Q$ is of finite type $\iff \#K \setminus \mathfrak{X}_P \times \mathcal{Z}_Q < \infty$

4□ > 4□ > 4 = > 4 = > = 90

(G,K): symmetric pair $/\mathbb{C}$ $K \leftrightarrow \theta$: involution

P: parabolic & P': θ -stable parabolic of G \rightsquigarrow $Q := P' \cap K$: parabolic of K

Fact

For $\forall Q \subset K$: psg in K, $\exists P' \subset G$: θ -stable psg s.t. $Q = P' \cap K$

Definition (Double flag variety)

 $\mathfrak{X}_P := G/P$: partial flag var of G & $\mathcal{Z}_Q := K/Q$: partial flag of K

 $K \cap \mathfrak{X}_P \times \mathcal{Z}_Q$: double flag variety (K acts diagonally)

 $K \cap \mathfrak{X}_P \times \mathcal{Z}_Q$ is of finite type $\iff \#K \setminus \mathfrak{X}_P \times \mathcal{Z}_Q < \infty$

Hecke alg module structure: $\mathscr{H}(G,B) \cap H^*(\mathfrak{X}_P \times \mathcal{Z}_Q) \cap \mathscr{H}(K,B_K)$

(ACI) V. (ACI)

Double flag variety for symmetric pair Double flag variety

$$\mathfrak{X}_P = G/P$$
: PFV of G , $\mathcal{Z}_Q = K/Q$: PFV of K

Examples of $\mathfrak{X}_P \times \mathcal{Z}_Q$: double flag var (DFV) of finite type

Type AI :
$$G/K = SL_n/SO_n \ (n \ge 3)$$

Р	Q	\mathfrak{X}_{P}	\mathcal{Z}_Q	extra condition
maximal	any	$Grass_m(\mathbb{C}^n)$	\mathcal{Z}_Q	
$(\lambda_1,\lambda_2,\lambda_3)$	Siegel	\mathfrak{X}_{P}	$LGrass(\mathbb{C}^n)$	<i>n</i> is even

Nishiyama (AGU) K-spherical flag varieties 2013/07/08 9 / 27

$$\mathfrak{X}_P = G/P$$
: PFV of G , $\mathcal{Z}_Q = K/Q$: PFV of K

Examples of $\mathfrak{X}_P \times \mathcal{Z}_Q$: double flag var (DFV) of finite type

Type AI :
$$G/K = SL_n/SO_n \ (n \ge 3)$$

Р	Q	\mathfrak{X}_{P}	\mathcal{Z}_Q	extra condition
maximal	any	$Grass_m(\mathbb{C}^n)$	\mathcal{Z}_Q	
$(\lambda_1,\lambda_2,\lambda_3)$	Siegel	\mathfrak{X}_{P}	$LGrass(\mathbb{C}^n)$	<i>n</i> is even

Type AII :
$$G/K = SL_{2n}/Sp_{2n} \ (n \ge 2)$$

	/	211/ 1 211	<u> </u>
Р	Q	\mathfrak{X}_{P}	\mathcal{Z}_Q
maximal	any	$Grass_m(\mathbb{C}^n)$	\mathcal{Z}_Q
$(\lambda_1,\lambda_2,\lambda_3)$	Siegel	\mathfrak{X}_P	$LGrass_m(\mathbb{C}^{2n})$

Nishiyama (AGU) K-spherical flag varieties 2013/07/08 9 / 27

$$\mathfrak{X}_P = G/P$$
: PFV of G , $\mathcal{Z}_Q = K/Q$: PFV of K

Examples of $\mathfrak{X}_P \times \mathcal{Z}_Q$: double flag var (DFV) of finite type

Type AI :
$$G/K = SL_n/SO_n \ (n \ge 3)$$

P	Q	\mathfrak{X}_{P}	\mathcal{Z}_Q	extra condition
maximal	any	$Grass_m(\mathbb{C}^n)$	\mathcal{Z}_Q	
$(\lambda_1,\lambda_2,\lambda_3)$	Siegel	\mathfrak{X}_P	$LGrass(\mathbb{C}^n)$	<i>n</i> is even

Type AII :
$$G/K = SL_{2n}/Sp_{2n} \ (n \ge 2)$$

Р	Q	\mathfrak{X}_{P}	\mathcal{Z}_Q		
maximal	any	$Grass_m(\mathbb{C}^n)$	\mathcal{Z}_Q		
$(\lambda_1,\lambda_2,\lambda_3)$	Siegel	\mathfrak{X}_{P}	$LGrass_m(\mathbb{C}^{2n})$		

Type AIII :
$$G/K = GL_n/GL_p \times GL_q$$
 $(n = p + q)$

P	Q_1	Q_2	\mathfrak{X}_{P}	\mathcal{Z}_Q
any	mirabolic	GL_q	\mathfrak{X}_P	$\mathbb{P}(\mathbb{C}^p)$
any	GL_p	mirabolic	\mathfrak{X}_P	$\mathbb{P}(\mathbb{C}^q)$
maximal	any	any	$Grass_m(\mathbb{C}^n)$	\mathcal{Z}_Q
$(\lambda_1,\lambda_2,\lambda_3)$	maximal	maximal	\mathfrak{X}_{P}	$Grass_k(\mathbb{C}^p) imes Grass_\ell(\mathbb{C}^q)$

• Triple flag variety $\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_{P_3}$ with G-action \cdots special case of double flag variety $\mathfrak{X}_P \times \mathcal{Z}_Q$ with K-action

10 / 27

Nishiyama (AGU) K-spherical flag varieties 2013/07/08

1 Triple flag variety $\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_{P_3}$ with G-action \cdots special case of double flag variety $\mathfrak{X}_P \times \mathcal{Z}_Q$ with K-action

(:·) Take
$$\mathbb{G} = G \times G$$
 and $\mathbb{K} = \Delta G$ as usual
$$\mathbb{P} = P_1 \times P_2, \quad \mathbb{Q} = \Delta P_3$$

$$\rightsquigarrow \quad \mathbb{G}/\mathbb{P} \times \mathbb{K}/\mathbb{Q} = G/P_1 \times G/P_2 \times G/P_3$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < で

• Triple flag variety $\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_{P_3}$ with G-action \cdots special case of double flag variety $\mathfrak{X}_P \times \mathcal{Z}_Q$ with K-action

(:·) Take
$$\mathbb{G} = G \times G$$
 and $\mathbb{K} = \Delta G$ as usual
$$\mathbb{P} = P_1 \times P_2, \quad \mathbb{Q} = \Delta P_3$$
$$\rightsquigarrow \quad \mathbb{G}/\mathbb{P} \times \mathbb{K}/\mathbb{Q} = G/P_1 \times G/P_2 \times G/P_3 \qquad \qquad \Box$$

 $② \ \mathcal{Z}_Q \simeq K \cdot P'/P' \stackrel{\mathsf{colosed}}{\longrightarrow} \mathfrak{X}_{P'} \quad \text{i.e.} \ \mathcal{Z}_Q \text{ is a closed } K\text{-orbit in } K \backslash \mathfrak{X}_{P'}$

(4日) (個) (注) (注) (注) (200)

• Triple flag variety $\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_{P_3}$ with G-action \cdots special case of double flag variety $\mathfrak{X}_P \times \mathcal{Z}_Q$ with K-action

(:·) Take
$$\mathbb{G} = G \times G$$
 and $\mathbb{K} = \Delta G$ as usual
$$\mathbb{P} = P_1 \times P_2, \quad \mathbb{Q} = \Delta P_3$$
$$\rightsquigarrow \mathbb{G}/\mathbb{P} \times \mathbb{K}/\mathbb{Q} = G/P_1 \times G/P_2 \times G/P_3$$

② $\mathcal{Z}_Q \simeq K \cdot P'/P' \xrightarrow{\text{closed}} \mathfrak{X}_{P'}$ i.e. \mathcal{Z}_Q is a closed K-orbit in $K \setminus \mathfrak{X}_{P'}$ Thus we get a closed embedding:

$$\mathfrak{X}_P \times \mathcal{Z}_Q \stackrel{\text{closed}}{\longrightarrow} \mathfrak{X}_P \times \mathfrak{X}_{P'}$$
 with diag K-action

→□ → →□ → → = → → = → へ < ○</p>

Nishiyama (AGU)

• Triple flag variety $\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_{P_3}$ with G-action \cdots special case of double flag variety $\mathfrak{X}_P \times \mathcal{Z}_Q$ with K-action

(:·) Take
$$\mathbb{G} = G \times G$$
 and $\mathbb{K} = \Delta G$ as usual $\mathbb{P} = P_1 \times P_2$, $\mathbb{Q} = \Delta P_3$ $\longrightarrow \mathbb{G}/\mathbb{P} \times \mathbb{K}/\mathbb{Q} = G/P_1 \times G/P_2 \times G/P_3$

2 $\mathcal{Z}_O \simeq K \cdot P' / P' \stackrel{\text{closed}}{\longrightarrow} \mathfrak{X}_{P'}$ i.e. \mathcal{Z}_O is a closed K-orbit in $K \setminus \mathfrak{X}_{P'}$ Thus we get a closed embedding:

$$\begin{split} \mathfrak{X}_P \times \mathcal{Z}_Q & \xrightarrow{\mathsf{closed}} \mathfrak{X}_P \times \mathfrak{X}_{P'} \text{ with diag K-action} \\ \text{In general} & \# K \backslash (\mathfrak{X}_P \times \mathfrak{X}_{P'}) = \infty \\ & \text{however, } \# \text{ of closed K-orbits on } \mathfrak{X}_P \times \mathfrak{X}_{P'} < \infty \end{split}$$

4 D > 4 D > 4 E > 4 E > E 9 Q P 2013/07/08 10 / 27

K-spherical flag varieties

• Reduction to triple flag var:

$$\#G\setminus (\mathfrak{X}_P\times\mathfrak{X}_{\theta(P)}\times\mathfrak{X}_{P'})<\infty \implies \#K\setminus (\mathfrak{X}_P\times\mathcal{Z}_Q)<\infty$$

Unfortunately " \iff " does not hold

Reduction to triple flag var:

$$\#G\setminus (\mathfrak{X}_P\times\mathfrak{X}_{\theta(P)}\times\mathfrak{X}_{P'})<\infty \implies \#K\setminus (\mathfrak{X}_P\times\mathcal{Z}_Q)<\infty$$

Unfortunately " \iff " does not hold

Bruhat reduction:

$$G \setminus \mathfrak{X}_P \times \mathfrak{X}_{P'} \simeq P \setminus G/P' \simeq W_P \setminus W/W_{P'}$$

Reduction to triple flag var:

$$\# G \setminus (\mathfrak{X}_P \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'}) < \infty \implies \# K \setminus (\mathfrak{X}_P \times \mathcal{Z}_Q) < \infty$$
Unfortunately " \iff " does not hold

② Bruhat reduction:

$$G \setminus \mathfrak{X}_P \times \mathfrak{X}_{P'} \simeq P \setminus G/P' \simeq W_P \setminus W/W_{P'}$$

Reduction to smaller affine symm spaces (KGB reduction):

$$\#P\backslash G/K<\infty$$

 $\left\{ \begin{aligned} &\Delta_{\theta}: \mathfrak{X}_{P} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)}: \theta\text{-twisted embedding} \\ &\iota: \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P'}: \mathsf{closed embedding} \end{aligned} \right.$

12 / 27

Nishiyama (AGU) K-spherical flag varieties 2013/07/08

$$\Big\{ \begin{split} & \Delta_{\theta}: \mathfrak{X}_{P} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)}: \theta\text{-twisted embedding} \\ & \iota: \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P'}: \text{closed embedding} \end{split}$$

$$\overset{\leadsto}{\Delta_{\theta}} \times \iota : \mathfrak{X}_{P} \times \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'}$$
image $\overset{\checkmark}{X} = (\Delta_{\theta} \times \iota)(\mathfrak{X}_{P} \times \mathcal{Z}_{Q})$: closed subvariety of TFV

$$\Big\{ \begin{split} & \Delta_{\theta}: \mathfrak{X}_{P} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)}: \theta\text{-twisted embedding} \\ & \iota: \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P'}: \mathsf{closed embedding} \end{split}$$

 $\overset{\leadsto}{\Delta_{\theta}} \times \iota : \mathfrak{X}_{P} \times \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'}$ image $\overset{\checkmark}{X} = (\Delta_{\theta} \times \iota)(\mathfrak{X}_{P} \times \mathcal{Z}_{Q})$: closed subvariety of TFV

 $\mathcal{O} \in (\mathfrak{X}_P \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'})/G$: orbit for TFV

$$\Big\{ \begin{split} & \Delta_{\theta}: \mathfrak{X}_{P} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)}: \theta\text{-twisted embedding} \\ & \iota: \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P'}: \mathsf{closed embedding} \end{split}$$

$$\stackrel{\leadsto}{\Delta_{\theta}} \times \iota : \mathfrak{X}_{P} \times \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'}$$
image $\overset{\checkmark}{X} = (\Delta_{\theta} \times \iota)(\mathfrak{X}_{P} \times \mathcal{Z}_{Q}) : \text{closed subvariety of TFV}$

$$\left\{ \begin{aligned} &\Delta_{\theta}: \mathfrak{X}_{P} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)}: \theta\text{-twisted embedding} \\ &\iota: \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P'}: \mathsf{closed embedding} \end{aligned} \right.$$

$$\stackrel{\leadsto}{\Delta_{\theta}} \times \iota : \mathfrak{X}_{P} \times \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'}$$
image $\stackrel{\textbf{X}}{\textbf{X}} = (\Delta_{\theta} \times \iota)(\mathfrak{X}_{P} \times \mathcal{Z}_{Q}) : \text{closed subvariety of TFV}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

$$\Big\{ \begin{split} & \Delta_{\theta}: \mathfrak{X}_{P} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)}: \theta\text{-twisted embedding} \\ & \iota: \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P'}: \text{closed embedding} \end{split}$$

$$\stackrel{\leadsto}{\Delta_{\theta}} \times \iota : \mathfrak{X}_{P} \times \mathcal{Z}_{Q} \hookrightarrow \mathfrak{X}_{P} \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'}$$
image $\overset{\checkmark}{X} = (\Delta_{\theta} \times \iota)(\mathfrak{X}_{P} \times \mathcal{Z}_{Q}) : \text{closed subvariety of TFV}$

$$ightharpoonup$$
 parametrization of $(\mathfrak{X}_P \times \mathcal{Z}_Q)/K$ roughly by
$$((\mathfrak{X}_P \times \mathfrak{X}_{\theta(P)} \times \mathfrak{X}_{P'})/G) \times (W_P \backslash W/W_{P'}) \times (\text{conn comp})$$

Nishiyama (AGU) K-spherical flag varieties 2013/07/08 12 / 27

 $G \supset P$: psg of G

 $K \supset Q$: psg of $K = \exists P' \subset G$: θ -stable psg of G s.t. $Q = P' \cap K$

 $G \supset P$: psg of G

 $K \supset Q$: psg of $K = \exists P' \subset G$: θ -stable psg of G s.t. $Q = P' \cap K$

$$K \setminus \mathfrak{X}_P \times \mathcal{Z}_Q = K \setminus (G/P \times K/Q) \simeq P \setminus G/Q$$

 $G \supset P$: psg of G

 $K \supset Q$: psg of $K = \exists P' \subset G$: θ -stable psg of G s.t. $Q = P' \cap K$

$$K \setminus \mathfrak{X}_P \times \mathcal{Z}_Q = K \setminus (G/P \times K/Q) \simeq P \setminus G/Q$$

 $G \supset P$: psg of G

 $K \supset Q$: psg of $K = \exists P' \subset G$: θ -stable psg of G s.t. $Q = P' \cap K$

$$K \setminus \mathfrak{X}_P \times \mathcal{Z}_Q = K \setminus (G/P \times K/Q) \simeq P \setminus G/Q$$

Thus
$$K \backslash \mathfrak{X}_P \times \mathcal{Z}_Q \xrightarrow{\sim} P \backslash G/Q$$

$$\downarrow^{\text{proj}}$$

$$P \backslash G/P' = \coprod_{w \in J_W J'} PwP' : \text{Bruhat}$$

$$\downarrow^{\simeq}$$

$$JW^{J'} = W_P \backslash W/W_{P'}$$

Parametrization

Reduces to paramet'n of $P \setminus PwP'/Q$ for $w \in {}^{J}W^{J'}$

4 D > 4 A > 4 B > 4 B >

Assume $B \supset T$: θ -stable $B \leftrightarrow \Delta^+ \supset \Pi$: simple roots

 $P \leftrightarrow J \subset \Pi$ and $P' \leftrightarrow J' \subset \Pi$

P = LU, P' = L'U': Levi decomposition

Assume $B\supset T\colon \theta$ -stable $B\leftrightarrow \Delta^+\supset \Pi$: simple roots $P\leftrightarrow J\subset \Pi$ and $P'\leftrightarrow J'\subset \Pi$

P = LU, P' = L'U': Levi decomposition

 $w \in {}^J W^{J'}$: minimal representatives for $W_J \backslash W / W_{J'}$

Want to analyze the fiber $P \setminus PwP'/Q$ of Bruhat reduction

Assume $B\supset T\colon \theta$ -stable $B\leftrightarrow \Delta^+\supset \Pi$: simple roots $P\leftrightarrow J\subset \Pi$ and $P'\leftrightarrow J'\subset \Pi$

P = LU, P' = L'U': Levi decomposition $w \in {}^JW^{J'}$: minimal representatives for $W_J \backslash W/W_{J'}$

Want to analyze the fiber $P \backslash PwP'/Q$ of Bruhat reduction

Put $P_{L'}(w) := w^{-1}Pw \cap L'$: psg of L' $L'_K := L' \cap K$: symmetric subgrp of L'

Assume $B\supset T$: θ -stable $B\leftrightarrow \Delta^+\supset \Pi$: simple roots $P\leftrightarrow J\subset \Pi$ and $P'\leftrightarrow J'\subset \Pi$ $P=LU,\ P'=L'U'$: Levi decomposition $w\in {}^JW^{J'}$: minimal representatives for $W_J\backslash W/W_{J'}$ Want to analyze the fiber $P\backslash PwP'/Q$ of Bruhat reduction

Put
$$P_{L'}(w) := w^{-1}Pw \cap L'$$
: psg of L'
 $L'_K := L' \cap K$: symmetric subgrp of L'

$$\implies P_{L'}(w) \setminus L'/L'_{K} =: V(w) : \text{ finite set } (\because \text{ smaller } P \setminus G/K)$$

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣९○

Assume
$$B\supset T\colon \theta$$
-stable $B\leftrightarrow \Delta^+\supset \Pi$: simple roots $P\leftrightarrow J\subset \Pi$ and $P'\leftrightarrow J'\subset \Pi$

$$P = LU$$
, $P' = L'U'$: Levi decomposition

$$w \in {}^J W^{J'}$$
: minimal representatives for $W_J \backslash W / W_{J'}$

Want to analyze the fiber $P \setminus PwP'/Q$ of Bruhat reduction

Put
$$P_{L'}(w) := w^{-1}Pw \cap L'$$
: psg of L'
 $L'_K := L' \cap K$: symmetric subgrp of L'

$$\implies P_{L'}(w) \setminus L'/L'_{K} =: V(w) : \text{ finite set } (\because \text{ smaller } P \setminus G/K)$$

where $a = \ell_a u_a$ is Levi decomp along P' = L'U'

14 / 27

For
$$w \in {}^J W^{J'}, v \in V(w)$$
, put
$$\begin{cases} \mathscr{U}(w,v) := (U' \cap P(wv)) \backslash U' / (U' \cap K) & : \text{ variety of unipotent elts} \\ L'_K(w,v) := L' \cap K \cap P(wv) \subset L'_K \end{cases}$$
 Notation: $P(g) := g^{-1} Pg \in \mathfrak{X}_P$

For
$$w \in {}^J W^{J'}, v \in V(w)$$
, put
$$\begin{cases} \mathscr{U}(w,v) := (U' \cap P(wv)) \backslash U' / (U' \cap K) & : \text{ variety of unipotent elts} \\ L'_K(w,v) := L' \cap K \cap P(wv) \subset L'_K \end{cases}$$
 Notation: $P(g) := g^{-1}Pg \in \mathfrak{X}_P$
$$L'_K(w,v) \text{ acts on } \mathscr{U}(w,v) \text{ by conjugation} \\ \rightsquigarrow \mathscr{U}(w,v) / \operatorname{Ad}(L'_K(w,v)) : \text{ quotient sp} \end{cases}$$

For
$$w \in {}^J W^{J'}, v \in V(w)$$
, put

$$\begin{cases} \mathscr{U}(w,v) := (U' \cap P(wv)) \setminus U' / (U' \cap K) & : \text{ variety of unipotent elts} \\ \mathcal{L}'_K(w,v) := \mathcal{L}' \cap K \cap P(wv) \subset \mathcal{L}'_K \end{cases}$$

Notation:
$$P(g) := g^{-1}Pg \in \mathfrak{X}_P$$

$$L_K'(w,v)$$
 acts on $\mathscr{U}(w,v)$ by conjugation

$$\rightsquigarrow \mathscr{U}(w,v)/\operatorname{Ad}(L'_{K}(w,v))$$
 : quotient sp

Theorem (He-N-Ochiai-Y.Oshima)

Recall
$$^JW^{J'}=W_J\backslash W/W_{J'}$$
 and $V(w)=P_{L'}(w)\backslash L'/L'_K$

For $w \in {}^J W^{J'}, v \in V(w)$, put

$$\begin{cases} \mathscr{U}(w,v) := (U' \cap P(wv)) \setminus U' / (U' \cap K) & : \text{ variety of unipotent elts} \\ L'_K(w,v) := L' \cap K \cap P(wv) \subset L'_K \end{cases}$$

Notation: $P(g) := g^{-1}Pg \in \mathfrak{X}_P$

 $L_K'(w,v)$ acts on $\mathscr{U}(w,v)$ by conjugation

 $\rightsquigarrow \mathscr{U}(w,v)/\operatorname{Ad}(L'_{K}(w,v))$: quotient sp

Theorem (He-N-Ochiai-Y.Oshima)

Recall ${}^{J}W^{J'}=W_{J}\backslash W/W_{J'}$ and $V(w)=P_{L'}(w)\backslash L'/L'_{K}$ We have bijection of orbits (parametrization):

$$K ackslash \mathfrak{X}_P imes \mathcal{Z}_Q \simeq \coprod_{w \in {}^J W^{J'}} \coprod_{v \in V(w)} \mathscr{U}(w,v) / \operatorname{Ad}(L'_K(w,v))$$

Assume $Q = B_K \subset K$: Borel subgrp

Assume $Q = B_K \subset K$: Borel subgrp

 $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$: finite type $\iff \mathfrak{X}_P = G/P : \underline{K}$ -spherical

Assume $Q = B_K \subset K$: Borel subgrp

$$\mathfrak{X}_P \times \mathcal{Z}_{B_K}$$
: finite type $\iff \mathfrak{X}_P = G/P$: K-spherical

$$P'=B=TU_0\subset G: heta$$
-stable Borel subgrp s.t. $B_K=B\cap K$ ($T:$ max torus, U_0 max unip subgrp)

Assume $Q = B_K \subset K$: Borel subgrp

$$\mathfrak{X}_P \times \mathcal{Z}_{B_K}$$
: finite type $\iff \mathfrak{X}_P = G/P$: K-spherical

$$P' = B = TU_0 \subset G$$
: θ -stable Borel subgrp s.t. $B_K = B \cap K$
(T : max torus, U_0 max unip subgrp)

$$L' = T \implies V(w) = P_{L'}(w) \setminus L'/L'_K$$
 reduces to $\{e\}$ (1 pt)

Assume
$$Q = B_K \subset K$$
: Borel subgrp

$$\mathfrak{X}_P \times \mathcal{Z}_{B_K}$$
: finite type $\iff \mathfrak{X}_P = G/P$: K-spherical

$$P' = B = TU_0 \subset G$$
: θ -stable Borel subgrp s.t. $B_K = B \cap K$
(T : max torus, U_0 max unip subgrp)

$$L' = T \implies V(w) = P_{L'}(w) \setminus L'/L'_K$$
 reduces to $\{e\}$ (1 pt)

Corollary

$$K \setminus \mathfrak{X}_P \times \mathcal{Z}_{B_K} \simeq \coprod_{w \in JW} \Big((U_0 \cap P(w)) \setminus U_0 / (U_0 \cap K) \Big) \ \Big/ \ \mathsf{Ad} \ T$$

- **◆ロ → ◆** ● **→** ◆ き → **・ き ・ り へ** ○

Assume
$$Q = B_K \subset K$$
: Borel subgrp

$$\mathfrak{X}_P{ imes}\mathcal{Z}_{B_K}$$
: finite type $\iff \mathfrak{X}_P=G/P$: K-spherical

$$P' = B = TU_0 \subset G$$
: θ -stable Borel subgrp s.t. $B_K = B \cap K$
(T : max torus, U_0 max unip subgrp)

$$L' = T \implies V(w) = P_{L'}(w) \setminus L'/L'_K$$
 reduces to $\{e\}$ (1 pt)

Corollary

$$K \setminus \mathfrak{X}_P \times \mathcal{Z}_{B_K} \simeq \coprod_{w \in JW} \Big((U_0 \cap P(w)) \setminus U_0 / (U_0 \cap K) \Big) / AdT$$

In particular,
$$\mathfrak{X}_P \times \mathcal{Z}_{B_K}$$
 is of finite type

$$\iff \# \Big((U_0 \cap P(w)) \setminus U_0 / (U_0 \cap K) \Big) / \operatorname{Ad} T < \infty \text{ for } \forall w$$

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Want to know if $\mathfrak{X}_P = G/P$ is K-spherical

17 / 27

Nishiyama (AGU) K-spherical flag varieties 2013/07/08

Want to know if $\mathfrak{X}_P = G/P$ is K-spherical

<u>Idea</u>: Concentrate on open orbit $\widetilde{\mathcal{O}}$ & Ask \exists ? open B_K -orbit

 $\widetilde{\mathcal{O}} \leftrightarrow w_0 \in {}^J W$: longest element

Want to know if $\mathfrak{X}_P = G/P$ is K-spherical

Idea: Concentrate on open orbit $\widetilde{\mathcal{O}}$ & Ask \exists ? open B_K -orbit

$$\widetilde{\mathcal{O}} \leftrightarrow \textit{w}_0 \in {}^{\textit{J}}\textit{W}$$
 : longest element

We can linearize the double coset space to get

Theorem

$$\mathfrak{X}_P \times \mathcal{Z}_{B_K}$$
 is of finite type \iff
 $L_P^{\theta} := L_P \cap K : reductive \cap \mathfrak{u}_P^{-\theta}$ is mult-free (or spherical)

Want to know if $\mathfrak{X}_P = G/P$ is K-spherical

Idea: Concentrate on open orbit $\widetilde{\mathcal{O}}$ & Ask \exists ? open B_K -orbit

$$\widetilde{\mathcal{O}} \leftrightarrow \textit{w}_0 \in {}^{\textit{J}}\textit{W}$$
 : longest element

We can linearize the double coset space to get

Theorem

$$\mathfrak{X}_P \times \mathcal{Z}_{B_K}$$
 is of finite type \iff
 $L_P^{\theta} := L_P \cap K : reductive \cap \mathfrak{u}_P^{-\theta}$ is mult-free (or spherical)

Interesting connection to (co-)normal bundles:

$$T_{\mathcal{O}}^*\mathfrak{X}_P \simeq K \times_R \mathfrak{u}_P^{-\theta}$$
: conormal bundle over $\mathcal{O}(R := K \cap P)$

- **◆ロ → ◆** ● **→** ◆ き → **・ き ・ り へ** ○

Geometric & Representation Theoretic interpretation

We can deduce the former theorem from Panyushev's thm

Theorem (Panyushev)

- **1** \mathfrak{X}_P is K-spherical $(\iff \mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type)
- **2** conormal bundle $T_{\mathcal{O}}^*\mathfrak{X}_P$ is K-spherical (\mathcal{O} given above)
- **3** $T_{\mathcal{O}'}^* \mathfrak{X}_P$ is K-spherical for $\forall \mathcal{O}'$

Geometric & Representation Theoretic interpretation

We can deduce the former theorem from Panyushev's thm

Theorem (Panyushev)

TFAE

- **1** \mathfrak{X}_P is K-spherical $(\iff \mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type)
- **2** conormal bundle $T_{\mathcal{O}}^*\mathfrak{X}_P$ is K-spherical (\mathcal{O} given above)
- **3** $T_{\mathcal{O}'}^* \mathfrak{X}_P$ is K-spherical for $\forall \mathcal{O}'$
- Multiplicity free derived functor modules:

Theorem (Y.Oshima)

Assume P is θ -stable

 $\mathfrak{X}_P{ imes}\mathcal{Z}_{B_K}$ is of finite type

 \iff derived functor module $A_{\mathfrak{p}}(\lambda)$ has mult-free K-types for $\forall \lambda$: dom regular integral

18 / 27

Geometric & Representation Theoretic interpretation

We can deduce the former theorem from Panyushev's thm

Theorem (Panyushev)

TFAE

- **1** \mathfrak{X}_P is K-spherical $(\iff \mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type)
- **o** conormal bundle $T_{\mathcal{O}}^*\mathfrak{X}_P$ is K-spherical (\mathcal{O} given above)
- **3** $T_{\mathcal{O}'}^* \mathfrak{X}_P$ is K-spherical for $\forall \mathcal{O}'$
- Multiplicity free derived functor modules:

Theorem (Y.Oshima)

Assume P is θ -stable

 $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

 \iff derived functor module $A_{\mathfrak{p}}(\lambda)$ has <u>mult-free K-types</u> for $\forall \lambda$: dom regular integral

G: simply connected, connected simple group Possible to classify (G, K, P) for which $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

G: simply connected, connected simple group Possible to classify (G,K,P) for which $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ of finite type

(including exceptional type)

G: simply connected, connected simple group Possible to classify (G,K,P) for which $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ of finite type

(including exceptional type)

Howe, Wallach and Horvath classified them in 80's (unpublished note)

G: simply connected, connected simple group Possible to classify (G,K,P) for which $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ of finite type

(including exceptional type)

Howe, Wallach and Horvath classified them in 80's (unpublished note)
... we catch up them 30 years later!

G: simply connected, connected simple group Possible to classify (G,K,P) for which $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ of finite type

(including exceptional type)

Howe, Wallach and Horvath classified them in 80's (unpublished note)
... we catch up them 30 years later!

Strategy

1 Dimension restriction: $\dim \mathfrak{X}_P \times \mathcal{Z}_{B_K} \leq \dim K$

G: simply connected, connected simple group Possible to classify (G, K, P) for which $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ is of finite type

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_P \times \mathcal{Z}_{B_K}$ of finite type

(including exceptional type)

Howe, Wallach and Horvath classified them in 80's (unpublished note)
... we catch up them 30 years later!

Strategy

- **①** Dimension restriction: $\dim \mathfrak{X}_P \times \mathcal{Z}_{B_K} \leq \dim K$
- 2 Use criterion in Theorem (Existence of open orbit)

$$L_P^{\theta}:=L_P\cap K$$
: reductive $\stackrel{\frown}{}_{}$ $\mathfrak{u}_P^{-\theta}$ is mult-free (or spherical)

∃ classification of mult-free space by Benson-Ratcliff (2004)

g	ŧ	$\Pi \setminus J (P = P_J)$
\mathfrak{sl}_{n+1}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathfrak{sl}_{n+1}	so _{n+1}	$\{\alpha_i\}(\forall i)$
$ \mathfrak{sl}_{2m} \\ 2m = n + 1 $	sp _m	$\{\alpha_i\}(\forall i), \{\alpha_i, \alpha_{i+1}\}(\forall i),$ $\{\alpha_1, \alpha_i\}(\forall i), \{\alpha_i, \alpha_n\}(\forall i),$ $\{\alpha_1, \alpha_2, \alpha_3\}, \{\alpha_{n-2}, \alpha_{n-1}, \alpha_n\},$ $\{\alpha_1, \alpha_2, \alpha_n\}, \{\alpha_1, \alpha_{n-1}, \alpha_n\}$
p + q = n + 1	$\mathfrak{sl}_p \oplus \mathfrak{sl}_q \oplus \mathbb{C}$ $1 \le p \le q$	$\begin{cases} \alpha_i \}(\forall i), \ \{\alpha_i, \alpha_{i+1}\}(\forall i), \\ \{\alpha_1, \alpha_i\}(\forall i), \ \{\alpha_i, \alpha_n\}(\forall i), \\ \{\alpha_i, \alpha_j\}(\forall i, j) \text{ if } p = 2, \\ \text{any subset of } \Pi \text{ if } p = 1 \end{cases}$
\$0 _{2n+1}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
p + q = 2n + 1	$\begin{array}{c} \mathfrak{so}_p \oplus \mathfrak{so}_q \\ 1 \leq p \leq q \end{array}$	$\{\alpha_1\},\ \{\alpha_n\},\ \{\alpha_i\}(\forall i)\ \text{if }p=2,\ \text{any subset of }\Pi\ \text{if }p=1$
\$0 _{2n}		α_1 α_2 α_{n-2} α_{n-1}
$ \begin{array}{c} \mathfrak{so}_{p+q} \\ p+q=2n \\ n \ge 4 \end{array} $	$so_p \oplus so_q \\ 1 \le p \le q$	$ \begin{cases} \alpha_1 \}, \ \{\alpha_{n-1} \}, \ \{\alpha_n \}, \\ \{\alpha_i \}(\forall i) \ \text{if } p = 2, \\ \{\alpha_i, \alpha_{n-1} \}(\forall i) \ \text{if } p = 2, \\ \{\alpha_i, \alpha_n \}(\forall i) \ \text{if } p = 2, \\ \text{any subset of } \Pi \ \text{if } p = 1 \end{cases} $
$ so_{2n} $ $ n \ge 4 $	$\mathfrak{sl}_n\oplus\mathbb{C}$	$ \begin{cases} \{\alpha_1\}, \{\alpha_2\}, \{\alpha_3\}, \{\alpha_{n-1}\}, \{\alpha_n\}, \\ \{\alpha_1, \alpha_2\}, \{\alpha_1, \alpha_{n-1}\}, \{\alpha_1, \alpha_n\}, \{\alpha_{n-1}, \alpha_n\}, \\ \{\alpha_2, \alpha_3\} \text{ if } n = 4 \end{cases} $

\mathfrak{sp}_n		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathfrak{sp}_n	$\mathfrak{sl}_n\oplus\mathbb{C}$	$\{\alpha_1\}, \{\alpha_n\}$
$ \frac{\mathfrak{sp}_{p+q}}{p+q=n} $	$\mathfrak{sp}_p \oplus \mathfrak{sp}_q \\ 1 \le p \le q$	$\begin{aligned} \{\alpha_1\}, \ \{\alpha_2\}, \ \{\alpha_3\}, \ \{\alpha_n\}, \ \{\alpha_1, \alpha_2\}, \\ \{\alpha_i\}(\forall i) \ \text{if } p \leq 2, \\ \{\alpha_i, \alpha_j\}(\forall i, j) \ \text{if } p = 1 \end{aligned}$
f4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
f4	50 9	$\{\alpha_1\}, \{\alpha_2\}, \{\alpha_3\}, \{\alpha_4\}, \{\alpha_1, \alpha_4\}$
e ₆		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathfrak{e}_6	sp ₄	$\{\alpha_1\}, \{\alpha_6\}$
e ₆	$\mathfrak{sl}_6 \oplus \mathfrak{sl}_2$	$\{\alpha_1\}, \{\alpha_6\}$
e ₆	$\mathfrak{so}_{10}\oplus \mathbb{C}$	$\{\alpha_1\}, \{\alpha_2\}, \{\alpha_3\}, \{\alpha_5\}, \{\alpha_6\}, \{\alpha_1, \alpha_6\}$
€6	f4	$\{\alpha_1\}, \{\alpha_2\}, \{\alpha_3\}, \{\alpha_5\}, \{\alpha_6\}, \{\alpha_1, \alpha_2\}, \{\alpha_2, \alpha_6\}, \{\alpha_1, \alpha_3\}, \{\alpha_5, \alpha_6\}$
e ₇		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

\mathfrak{e}_7		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\mathfrak{e}_7	sl ₈	$\{\alpha_7\}$
e_7	$\mathfrak{so}_{12} \oplus \mathfrak{sl}_2$	$\{\alpha_7\}$
e ₇	$\mathfrak{e}_6\oplus\mathbb{C}$	$\{\alpha_1\}, \{\alpha_2\}, \{\alpha_7\}$

22 / 27

Nishiyama (AGU) K-spherical flag varieties 2013/07/08

WLOG assume
$$P=B=TU_0\subset G: \theta ext{-stable Borel subgrp}$$
 $(T: \max \text{torus},\ U_0 \text{ max unip subgrp})$

Nishiyama (AGU) K-spherical flag varieties 2013/07/08 22 / 27

WLOG assume
$$P=B=TU_0\subset G: \theta ext{-stable Borel subgrp} \ (T: \max \text{torus},\ U_0 \max \text{unip subgrp})$$
 $\mathfrak{X}_B imes \mathcal{Z}_Q: \text{finite type} \iff G/Q: \underline{G} ext{-spherical}$
$$G/Q \qquad \qquad \downarrow \text{fiber} = K/Q: \text{flag var}$$
 G/K

WLOG assume
$$P=B=TU_0\subset G: \theta ext{-stable Borel subgrp}$$
 $(T: \max \text{torus},\ U_0 \text{ max unip subgrp})$ $\mathfrak{X}_B imes \mathcal{Z}_Q: \text{finite type} \iff G/Q: G ext{-spherical}$
$$G/Q \qquad \qquad \downarrow_{\text{fiber}\ =K/Q: \text{flag var}} G/K$$

Recall θ -stable P' s.t. $Q=P'\cap K$ P'=L'U': Levi decomp $\iff Q=L'_KU'_K$: Levi decomp

TFAE

1 $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type

- **1** $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type
- \bigcirc G/Q is G-spherical

- \bullet $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type
- \bigcirc G/Q is G-spherical
- **3** U'/U'_{κ} has finitely many $(S \cap K)$ -orbits for any Borel subgrp S of L'

- **1** $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type
- G/Q is G-spherical
- **1** U'/U'_K has finitely many $(S \cap K)$ -orbits for any Borel subgrp S of L'

TFAE

- **1** $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type
- G/Q is G-spherical
- ullet U'/U'_K has finitely many $(S\cap K)$ -orbits for any Borel subgrp S of L'

Corollary

 $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type $\implies \mathfrak{X}_{P'} \times \mathcal{Z}_{B_K}$ is of finite type

TFAE

- **1** $\mathfrak{X}_B \times \mathcal{Z}_Q$ is of finite type
- G/Q is G-spherical
- **1** U'/U'_K has finitely many $(S \cap K)$ -orbits for any Borel subgrp S of L'
- P'_{\min} : minimal θ -split psg of L' $M' := P'_{\min} \cap K$ \Longrightarrow $(\mathfrak{u}')^{-\theta}$ is M'-mult-free space

Corollary

 $\mathfrak{X}_B{ imes}\mathcal{Z}_Q$ is of finite type $\implies \mathfrak{X}_{P'}{ imes}\mathcal{Z}_{B_K}$ is of finite type

$$\therefore$$
 (3) $\implies L'_{\kappa} \cap \mathfrak{u}'^{-\theta}$ is mult-free action

 ${\it G}$: simply connected, connected simple group

Nishiyama (AGU) K-spherical flag varieties 2013/07/08 24 / 27

G: simply connected, connected simple group

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_B \times \mathcal{Z}_Q$ of finite type

(including exceptional type)

G: simply connected, connected simple group

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_B \times \mathcal{Z}_Q$ of finite type

(including exceptional type)

Strategy

1 Dimension restriction: $\dim \mathfrak{X}_B \times \mathcal{Z}_Q \leq \dim G$

24 / 27

G: simply connected, connected simple group

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_B \times \mathcal{Z}_Q$ of finite type

(including exceptional type)

24 / 27

Strategy

- **1** Dimension restriction: $\dim \mathfrak{X}_B \times \mathcal{Z}_Q \leq \dim G$
- Use Corollary above:

$$\mathfrak{X}_B \times \mathcal{Z}_Q$$
: finite type $\implies \mathfrak{X}_{P'} \times \mathcal{Z}_{B_K}$: finite type

G: simply connected, connected simple group

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_B \times \mathcal{Z}_Q$ of finite type

(including exceptional type)

2013/07/08

24 / 27

Strategy

- **1** Dimension restriction: dim $\mathfrak{X}_B \times \mathcal{Z}_Q \leq \dim G$
- Use Corollary above:

$$\mathfrak{X}_B \times \mathcal{Z}_Q$$
: finite type $\implies \mathfrak{X}_{P'} \times \mathcal{Z}_{B_K}$: finite type

(G, K): Hermitian symmetric pair \iff $\exists P_1, P_2 \text{ s.t. } Q = P_1 \cap P_2 \& P_1 P_2 \subset G$: open dense

G: simply connected, connected simple group

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_B \times \mathcal{Z}_Q$ of finite type

(including exceptional type)

Strategy

- **1** Dimension restriction: $\dim \mathfrak{X}_B \times \mathcal{Z}_Q \leq \dim G$
- Use Corollary above:

$$\mathfrak{X}_B \times \mathcal{Z}_Q$$
 : finite type $\implies \mathfrak{X}_{P'} \times \mathcal{Z}_{B_K}$: finite type

- **③** (G, K): Hermitian symmetric pair \iff $\exists P_1, P_2$ s.t. $Q = P_1 \cap P_2 \& P_1P_2 \subset G$: open dense
 - \therefore $\mathfrak{X}_B \times \mathcal{Z}_Q$: finite type $\iff \mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_B$: finite type

G: simply connected, connected simple group

Theorem (HNOO)

Complete cassification of $\mathfrak{X}_B \times \mathcal{Z}_Q$ of finite type

(including exceptional type)

Strategy

- **1** Dimension restriction: $\dim \mathfrak{X}_B \times \mathcal{Z}_Q \leq \dim G$
- Use Corollary above:

$$\mathfrak{X}_B{ imes}\mathcal{Z}_Q$$
 : finite type $\implies \mathfrak{X}_{P'}{ imes}\mathcal{Z}_{B_K}$: finite type

- **③** (G, K): Hermitian symmetric pair \iff $\exists P_1, P_2 \text{ s.t. } Q = P_1 \cap P_2 \& P_1P_2 \subset G$: open dense
 - \therefore $\mathfrak{X}_B \times \mathcal{Z}_Q$: finite type $\iff \mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2} \times \mathfrak{X}_B$: finite type
 - \exists classification of spherical $\mathfrak{X}_{P_1} \times \mathfrak{X}_{P_2}$ by Stembridge (2003)

g	ŧ	$\Pi_K \setminus J_K \ (Q = Q_{J_K})$
\mathfrak{sl}_{2n} $n \geq 2$	sp _n	β_1 β_2 β_{n-1} β_n β_n β_n
		$\{\beta_3\}$ if $n=3$, any subset of Π_K if $n=2$
\mathfrak{sl}_{p+q+2}	$\mathfrak{sl}_{p+1}\oplus\mathfrak{sl}_{q+1}\oplus\mathbb{C}$	β_1 β_2 β_p
$p+q\geq 1$	$p \leq q$	β_{p+1} β_{p+2} β_{p+q}
		$\{\beta_1\}, \{\beta_p\}, \{\beta_{p+1}\}, \{\beta_{p+q}\},$
		$\{\beta_i\}(\forall i) \text{ if } p=1,$ any subset of Π_K if $p=0$
₅o _{2n+2}	$\mathfrak{so}_{2n}\oplus \mathbb{C}$	β_1 β_{n-2} β_n
$n \ge 3$		$\{\beta_{n-1}\}, \{\beta_n\}$
\$02 <i>n</i> +1	\$02n	β_1 β_{n-2} β_{n-1} β_n
<i>n</i> ≥ 3		any subset of Π_K
$ \mathfrak{so}_{2n+2} \\ n \ge 3 $	\mathfrak{so}_{2n+1}	$\beta_1 \qquad \beta_{n-1} \qquad \beta_n$ $0 \longrightarrow 0$ any subset of Π_K

g	ŧ	$\Pi_{\mathcal{K}}\setminus J_{\mathcal{K}}\;(Q=Q_{J_{\mathcal{K}}})$
\mathfrak{so}_{2n+2} $n \ge 3$	$\mathfrak{sl}_{n+1}\oplus \mathbb{C}$	$ \begin{array}{cccc} \beta_1 & \beta_2 & \beta_n \\ & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$
\mathfrak{sp}_{p+q}	$\mathfrak{sp}_p \oplus \mathfrak{sp}_q$	$\beta_1 \qquad \beta_{p-1} \beta_p \\ \circ \longleftarrow \circ$
	$\mathfrak{sp}_p \oplus \mathfrak{sp}_q$ $1 \leq p \leq q$	$\beta_{p+1} \xrightarrow{\beta_{p+q-1}\beta_{p+q}} $
		$\{\beta_1\},\ \{\beta_{p+1}\},$
		$\{\beta_p\}$ if $p \le 3$, $\{\beta_{p+q}\}$ if $p \le 2$, $\{\beta_{p+q}\}$ if $q \le 3$,
		$\{\beta_1, \beta_2\}$ if $p = 2$, $\{\beta_{p+1}, \beta_{p+2}\}$ if $q = 2$,
		$\{\beta_i\}(\forall i) \text{ if } p=1, \{\beta_i,\beta_j\}(\forall i,j) \text{ if } p=1$
f4	509	β_1 β_2 β_3 β_4
,		$\{\beta_i\}(\forall i), \{\beta_1, \beta_2\}$
¢ ₆	$\mathfrak{so}_{10}\oplus \mathbb{C}$	β_1 β_2 β_3 β_4 β_5
		$\{eta_1\}$
\mathfrak{e}_6	f4	$ \begin{array}{cccc} \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ & & \longrightarrow & & & \\ & & & & & \\ & & & & & \\ & & & &$

Thank you for your attention!!

