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1. Introduction

| connect an old result of mine on a Lie algebra
generalization of the Amitsur-Levitski Theorem with recent results

of Kostant-Wallach on the variety of singular elements in a
reductive Lie algebra.



Let R be an associative ring and for any k € Z and x;, ..., xk, in R
one defines an alternating sum of products

I, oxdl = D s8(0) X1y Xo(h)- (1)

o€ Symk

One says that R satisfies the standard identity of degree k if
[[x1,...xk]] = 0 for any choice of the x; € R. Of course R is
commutative if and only if it satisfies the standard identity of
degree 2.



Now for any n € Z and field F, let M(n, F) be the algebra of n x n
matrices over F.

The following is the famous Amitsur-Levitski theorem.
Theorem 1. M(n, F) satisfies the standard identity of degree 2n.

Remark 1. By restricting to matrix units for a proof it suffices to
take F = C.



Without any knowledge that it was a known theorem, we came
upon Theorem 1 a long time ago, from the point of view of Lie
algebra cohomology [1]. In fact, the result follows from the fact
that if g = M(n, C), then the restriction to g of the primitive
cohomology class of degree 2n+ 1 of M(n+ 1,C) to g vanishes.

Of course g1 C g where g1 = Lie SO(n, C). Assume n is even. One
proves that the restriction to g; of the primitive class of degree

2n —1 (highest primitive class) of g vanishes on g;. This leads to a
new standard identity, namely



Theorem 2.
[[X17 e ,Xgn_z]] = 0 (2)

for any choice of x; € g1. That is any choice of skew-symmetric
matrices.

Remark 2. Theorem 2 is immediately evident when n = 2.

Theorems 1 and 2 suggest that standard identities can be viewed
as a subject in Lie theory. Theorem 3 below offers support for this
idea.



Let v be a complex reductive Lie algebra and let
m:t— EndV (3)

be a finite-dimensional complex completely reducible
representation.

If w € tis nilpotent, then m(w)X = 0 for some k € Z. Let (7) be
the minimal integer k such that 7(w)* = 0 for all nilpotent w € «.
In case 7 is irreducible, one can easily give a formula for () in
terms of the highest weight. If g (resp. g1) is given as above and 7
(resp. 1)) is the defining representation, then ¢(7) = n and
g(m)=n—1.

Consequently, the following theorem generalizes Theorems 1 and 2.



Theorem 3. Let v be a complex reductive Lie algebra and let m be
as above. Then for any x; € v, i =1,...,2¢(n), one has

(%1, %eemll = 0 (4)

where X; = m(x;). See [4].



2. Henceforth g, until mentioned otherwise, will be an arbitrary
reductive complex finite-dimensional Lie algebra. Let T(g) be
the tensor algebra over g and let S(g) C T(g)(resp.

A(g) C T(g)) be the subspace of symmetric (resp. alternating)
tensors in T(g).

The natural grading on T(g) restricts to a grading on S(g) and
A(g). In particular, where multiplication is the tensor product
one notes the following.

Proposition 1. A/(g) is the span of [[x1,...,x;]] over all choices
of x;, i=1,...,j,ing.



Now let U(g) be the universal enveloping algebra of g. Then U(g)
is the quotient algebra of T(g) so that there is an algebra
epimorphism

7: T(g) — U(g).
Let Z = Cent U(g) and let E C U(g) be the graded subspace

spanned by all powers €/, j = 1,..., where e € g is nilpotent. In [2]
we proved (where the tensor product identifies with multiplication)

Ulg)=Z®E. (5)

In [4] we proved



Theorem 4. For any k € (Z) one has

7(A%(g)) c EX. (6)

Theorem 3 is then an immediate consequence of Theorem 4.

Indeed, using the notation of Theorem 3, let 7y : U(g) — End V
be the algebra extension of 7 to U(g), and one then has



Theorem 5. If EXK ¢ Kermy, then
[[X1,...,%x]] =0

for any x;,...,xok in g.



3. The Poincaré-Birkhoff-Witt theorem says that the restriction
7:5(g) — U(g) is a linear isomorphism. Consequently, given any
t € T(g) there exists a unique element t in S(g) such that

7(t) = 7(2)- (8)

Let A®®"(g) be the span of alternating tensors of even degree.
Restricting to A®“¢"(g) one has a g-module map

Fr: A%"(g) — S(o)

defined so that if a € A¥*"(g), then

7(a) = 7(I'r(a)). (9)



Now the (commutative) symmetric algebra P(g) over g and
exterior algebra Ag are quotient algebras of T(g). The restriction
of the quotient map clearly induces g-module isomorphisms

7s - 5(g) — P(g) (10)
TA : Aeven(g) N /\eveng
where A®"®7g is the commutative subalgebra of Ag spanned by
elements of even degree.
We may complete the commutative diagram defining
[ A®"g — P(g) (11)

so that on A¢"¢"(g), one has

Tsol =T orTa. (12)



By (6) one notes that for k € Z one has

M A%kg — PX(g). (13)

The Killing form extends to a nonsingular symmetric bilinear form

on P(g) and Ag. This enables us to identify P(g) with the algebra
of polynomial functions on g and to identify Ag with its dual space
Ag* where g* is the dual space to g.

Let R%(g) be the image of (13) so that R*(g) is a g-module of
homogeneous polynomial functions of degree k on g. The
significance of R¥(g) has to do with the dimensions of Ad g
adjoint (= coadjoint) orbits. Any such orbit is symplectic and
hence is even dimensional.

For j € Z let g¥) = {x € g | dim [g, x] = 2/}



We recall that a 2j g-sheet is an irreducible component of g(2/).
Let Var R¥(g) = {x € g | p(x) =0, ¥p € R*(g)}.

We prove the following.

Theorem 6. One has
Var R¥(g) = Ugjc ok 6@ (14)

or that Var R*(g) is the set of all 2j g-sheets for j < k.

Let v be the transpose of I'. Thus
v P(g) — A®"g (15)
and one has for p € P(g) and u € Ag,

(v(p), u) = (p, T (u)). (16)



One also notes that
v P¥(g) — A*g. (17)

The proof of Theorem 6 depends upon establishing some nice
algebraic properties of . Since we have, via the Killing form,
identified g with its dual, Ag is the underlying space for a standard
cochain complex (Ag, d) where d is the coboundary operator of
degree +1. In particular. if x € g, then dx € A%g. Identifying g
here with P1(g) one has a map

Pl(g) — A%g. (18)

Theorem 7. The map (15) is the homomorphism of commutative
algebras extending (18). In particular for any x € g,

7(x") = (dx). (19)



The connection with Theorem 6 follows from

Proposition 2. Let x € g. Then x € g\?%) if and only if k is
maximal such that (dx)* # 0, in which case there is a scalar
c € C* such that

(dX)k =cwi A AWy (20)

where w;, i =1,...,2k, is a basis of [x, g].



3. On the variety of singular elements — joint work with
Nolan Wallach

Let h be a Cartan sublgebra of g and let £ = dim ), so ¢ = rank g.
Let A be the set of roots of (h,g) and let A, C A be a choice of
positive roots. Let r = card A so that n = ¢ + 2r where we fix

n = dimg. We assume a well ordering is defined on A,..

For any ¢ € A, let e, be a corresponding root vector. The choices
will be normalized only insofar as (e,,e_,) =1 for all ¢ € A.
From Proposition 2 one has the well-known fact that g(2) = 0 for
k > r and g(2") is the set of all regular elements in g. One also
notes then that (16) implies Var R*(g) reduces to 0 if k > r,
whereas Theorem 6 implies

Var R'(g) is the set of all singular elements in g. (21)

The paper [5] is mainly devoted to a study of a special construction
of R"(g) and a determination of its remarkable g-module structure.



Let J = P(g)? so that J is the ring of Ad g polynomial invariants.
It is a classic theorem of C. Chevalley that J is a polynomial ring in
f-homogeneous generators p; so that we can write

J= C[pl, ,pg].

Let d; = deg p;. Then if we put m; = d; — 1, the m; are referred to
as the exponents of g, and one knows that

Z mj=r. (22)

Let Diff P(g) be the algebra of differential operators on P(g) with
constant coefficients. One then has an algebra isomorphism

P(g) — Diff P(g), q+ 0q
where for p, g, f € P(g) one has
(9qp. f) = (p, af ) (23)

and Oy, for x € g, is the partial derivative defined by x.



Let J; C J be the J-ideal of all p € J with zero constant term and
let

H={qec P(g) | 9pg=0Vpe Ji}.
H is a graded g-module whose elements are called harmonic
polynomials. Then one knows ([2]) that where tensor product is
realized by polynomial multiplication,
P(g) =J® H. (24)

It is immediate from (23) that H is the orthocomplement of the
ideal JyP(g) in P(g). However since + is an algebra
homomorphism. one has
J+P(g) C Kery (25)
since one easily has that J; C Ker~.
Indeed this is clear since
1(Jy) cd(Ag) N (Ag)*
=0.



But then (16) implies

Theorem 8. For any k € Z one has

R*(g) c H.

Henceforth assume g is simple so that the adjoint representation is
irreducible. Let y;, j = 1,...,n, be a basis of g. One defines a
¢x nmatrix Q= Qj, i=1,...,4,j=1,...,n by putting

Qij = 8yjpi- (26)
Let S;, i =1,...,¢, be the span of the entries of Q in the it" row.

The following is immediate.

Proposition 3. S; C P, (g). Furthermore S; is stable under the
action of g and as a g-module S; transforms according to the
adjoint representation.



If V is a g-module let V,4 be the set of all of vectors in V' which
transform according to the adjoint representation. The equality
(24) readily implies P(g)ag = J ® Hag.

| proved the following result some time ago.

Theorem 9. The multiplicity of the adjoint representation in H,y
is £. Furthermore the invariants p; can be chosen so that S; C H,y4
for all i and the S;,i = 1,...,/, are indeed the ¢ occurrences of the
adjoint representation in Hay.

Clearly there are (7)) ¢ x ¢ minors in the matrix Q. The
determinant of any of these minors is an element of P"(g) by (22).
In [5] we exhibit R"(g) by proving

Theorem 10. The determinant of any £ x £ minor of Q is an
element of R"(g) and indeed R'(g) is the span of the determinants
of all these minors.



4. The g-module structure of R"(g)

The adjoint action of g on Ag extends to U(g) so that Ag is a
U(g)-module. If s C g is any subpace and k = dims, let [s] = AKs
so that [s] is a 1-dimensional subspace of AXg.

Let M, C AKg be the span of all [s] where s is any k-dimensional
commutative Lie subalgebra of g. If no such subalgebra exists, put
M, = 0.

It is clear that My is a g-submodule of A¥g. Let Cas € Z be the
Casimir element corresponding to the Killing form. The following
theorem was proved in [3].



Theorem 11. For any k € Z let my be the maximal eigenvalue of
Cas on Ag. Then my < k. Moreover my = k if and only if

My # 0 in which case My is the eigenspace for the maximal
eigenvalue k.

Let ® be a subset of A. Let k = card ® and write, in increasing
order,

® = {p1,..., 0k} (27)

Let
€p = €py N+ A€y,

so that ep € A¥g is a (h) weight vector with weight

(@) = Z ©i-



Let n be the Lie algebra spanned by e, for o € A, and let b be
the Borel subalgebra of g defined by putting b = § + n.

Now a subset ® C A, will be called an ideal in Ay if the span,

nge, of e, for o € ®, is an ideal of b.

In such a case Ceg is stable under the action of b and hence if
Vo = U(g) - ep then, where k = card @,

Vo C /\kg
is an irreducible g-module of highest weight (®) having Ceg as the
highest weight space.
We will say that ® is abelian if ng is an abelian ideal of b.

Let

A(k) = {® | ® is an abelian ideal of cardinality k in A }.



The following theorem was established in [3].

Theorem 12. If &,V are distinct ideals in Ay, then Vg and Vy
are inequivalent (i.e., (®) # (V)). Furthermore if My # 0, then

Mi = Socam Vo (28)

so that, in particular, My is a multiplicity 1 g-module.
We now focus on the case where k = /.

Clearly My # 0 since g* is an abelian subalgebra of dimension ¢ for
any regular x € g. Let Z(¢) be the set of all ideals of cardinality ¢.

The following is one of the main results in [5].



Theorem 13. One has Z(¢) = A(¢) so that

My = ©ocz(e) Vo (29)

Moreover as g-modules, one has the equivalence

R"(g) = My, (30)

so that R"(g) is a multiplicity 1 g-module with card Z({)
irreducible components and Cas takes the value £ on each and
every one of the Z(¢) distinct components.

Example. If g is of type Ay, then then the elements of Z(¢) can
identified with Young diagrams of size £. In this case therefore the
number of irreducible components in R"(g) is P(¢) where P here is
the classical partition function.



5. Appendix: On an explicit construction for R*(g) for any k

We wish to explicitly describe this module. Let Sym(2k,2) be the
subgroup of the symmetric group Sym(2k), defined by

Sym(2k,2) =
{o € Sym(2k) | o permutes the set of unordered pairs

{(1,2),(3,4),...,(2k — 1),2k).}}

That is, if 0 € Sym(2k,2) and 1 < < k, there exists 1 <j < k
such that as unordered sets

(027 = 1),0(27)) = ((2/ = 1,2)))-



It is clear that Sym(2k,2) is a subgroup of order 2% - k!. Let M(k)
be a cross-section of the set of left cosets of Sym(2k, 2) in
Sym(2k) so that one has a disjoint union

Sym(2k) = Ur Sym(2k, 2) (31)

indexed by v € MN(k).

Remark 3. One notes that the cardinality of MN(k) is
(2k —1)(2k — 3) - - -1 and the correspondence

v— ((v(1),v(2)), (¥(3),v(4)),...,v((2k — 1),v(2k)))

sets up a bijection of M(k) with the set of all partitions of
(1,2,...,2k) into a union of subsets, each of which have two
elements.



We also observe that I(k) may be chosen — and will be chosen —
such that sgv =1 for all v € TN(k). This is clear since the sg
character is not trivial on Sym(2k,2) for k > 1.

Theorem 14 For any k € 7 there exists a nonzero scalar ¢, such
that for any x;i =1,...,2k, in g

F(xe A Axox) = ck Z[ L(1)s X  [Xuk—1), Xu(2i)] (32)
vel(k

Furthermore, Furthermore the homogeneous polynomial of degree
k on the right of (32) is harmonic and R*(g) is the span of all
such polynomials for an arbitrary choice of the x;.
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