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1. Introduction

I connect an old result of mine on a Lie algebra
generalization of the Amitsur-Levitski Theorem with recent results
of Kostant-Wallach on the variety of singular elements in a
reductive Lie algebra.



Let R be an associative ring and for any k ∈ Z and xi , . . . , xk , in R
one defines an alternating sum of products

[[x1, . . . xk ]] =
∑

σ∈ Sym k

sg(σ) xσ(1) · · · xσ(k). (1)

One says that R satisfies the standard identity of degree k if
[[x1, . . . xk ]] = 0 for any choice of the xi ∈ R. Of course R is
commutative if and only if it satisfies the standard identity of
degree 2.



Now for any n ∈ Z and field F , let M(n,F ) be the algebra of n× n
matrices over F .

The following is the famous Amitsur-Levitski theorem.

Theorem 1. M(n,F ) satisfies the standard identity of degree 2n.

Remark 1. By restricting to matrix units for a proof it suffices to
take F = C.



Without any knowledge that it was a known theorem, we came
upon Theorem 1 a long time ago, from the point of view of Lie
algebra cohomology [1]. In fact, the result follows from the fact
that if g = M(n, C), then the restriction to g of the primitive
cohomology class of degree 2n + 1 of M(n + 1, C) to g vanishes.

Of course g1 ⊂ g where g1 = Lie SO(n, C). Assume n is even. One
proves that the restriction to g1 of the primitive class of degree
2n− 1 (highest primitive class) of g vanishes on g1. This leads to a
new standard identity, namely



Theorem 2.
[[x1, . . . , x2n−2]] = 0 (2)

for any choice of xi ∈ g1. That is any choice of skew-symmetric
matrices.

Remark 2. Theorem 2 is immediately evident when n = 2.

Theorems 1 and 2 suggest that standard identities can be viewed
as a subject in Lie theory. Theorem 3 below offers support for this
idea.



Let r be a complex reductive Lie algebra and let

π : r → EndV (3)

be a finite-dimensional complex completely reducible
representation.

If w ∈ r is nilpotent, then π(w)k = 0 for some k ∈ Z. Let ε(π) be
the minimal integer k such that π(w)k = 0 for all nilpotent w ∈ r.
In case π is irreducible, one can easily give a formula for ε(π) in
terms of the highest weight. If g (resp. g1) is given as above and π
(resp. π1)) is the defining representation, then ε(π) = n and
ε(π1) = n − 1.

Consequently, the following theorem generalizes Theorems 1 and 2.



Theorem 3. Let r be a complex reductive Lie algebra and let π be
as above. Then for any xi ∈ r, i = 1, . . . , 2ε(π), one has

[[x̂1, . . . , x̂2 ε(π)]] = 0 (4)

where x̂i = π(xi ). See [4].



2. Henceforth g, until mentioned otherwise, will be an arbitrary
reductive complex finite-dimensional Lie algebra. Let T (g) be
the tensor algebra over g and let S(g) ⊂ T (g)(resp.
A(g) ⊂ T (g)) be the subspace of symmetric (resp. alternating)
tensors in T (g).

The natural grading on T (g) restricts to a grading on S(g) and
A(g). In particular, where multiplication is the tensor product
one notes the following.

Proposition 1. Aj(g) is the span of [[x1, . . . , xj ]] over all choices
of xi , i = 1, . . . , j , in g.



Now let U(g) be the universal enveloping algebra of g. Then U(g)
is the quotient algebra of T (g) so that there is an algebra
epimorphism

τ : T (g) → U(g).

Let Z = Cent U(g) and let E ⊂ U(g) be the graded subspace
spanned by all powers e j , j = 1, . . . , where e ∈ g is nilpotent. In [2]
we proved (where the tensor product identifies with multiplication)

U(g) = Z ⊗ E . (5)

In [4] we proved



Theorem 4. For any k ∈ (Z) one has

τ(A2k(g)) ⊂ E k . (6)

Theorem 3 is then an immediate consequence of Theorem 4.

Indeed, using the notation of Theorem 3, let πU : U(g) → EndV
be the algebra extension of π to U(g), and one then has



Theorem 5. If E k ⊂ Ker πU, then

[[x̂1, . . . , x̂2k ]] = 0 (7)

for any xi , . . . , x2k in g.



3. The Poincaré-Birkhoff-Witt theorem says that the restriction
τ : S(g) → U(g) is a linear isomorphism. Consequently, given any
t ∈ T (g) there exists a unique element t̄ in S(g) such that

τ(t) = τ(t̄). (8)

Let Aeven(g) be the span of alternating tensors of even degree.
Restricting to Aeven(g) one has a g-module map

ΓT : Aeven(g) → S(g)

defined so that if a ∈ Aeven(g), then

τ(a) = τ(ΓT (a)). (9)



Now the (commutative) symmetric algebra P(g) over g and
exterior algebra ∧g are quotient algebras of T (g). The restriction
of the quotient map clearly induces g-module isomorphisms

τS : S(g) → P(g) (10)

τA : Aeven(g) → ∧eveng

where ∧eveng is the commutative subalgebra of ∧g spanned by
elements of even degree.
We may complete the commutative diagram defining

Γ : ∧eveng → P(g) (11)

so that on Aeven(g), one has

τS ◦ ΓT = Γ ◦ τA. (12)



By (6) one notes that for k ∈ Z one has

Γ : ∧2kg → Pk(g). (13)

The Killing form extends to a nonsingular symmetric bilinear form
on P(g) and ∧g. This enables us to identify P(g) with the algebra
of polynomial functions on g and to identify ∧g with its dual space
∧g∗ where g∗ is the dual space to g.

Let Rk(g) be the image of (13) so that Rk(g) is a g-module of
homogeneous polynomial functions of degree k on g. The
significance of Rk(g) has to do with the dimensions of Ad g

adjoint (= coadjoint) orbits. Any such orbit is symplectic and
hence is even dimensional.

For j ∈ Z let g(2j) = {x ∈ g | dim [g, x ] = 2j}.



We recall that a 2j g-sheet is an irreducible component of g(2j).
Let Var Rk(g) = {x ∈ g | p(x) = 0, ∀p ∈ Rk(g)}.

We prove the following.

Theorem 6. One has

Var Rk(g) = ∪2j<2k g(2j) (14)

or that VarRk(g) is the set of all 2j g-sheets for j < k.

Let γ be the transpose of Γ. Thus

γ : P(g) → ∧eveng (15)

and one has for p ∈ P(g) and u ∈ ∧g,

(γ(p), u) = (p, Γ(u)). (16)



One also notes that

γ : Pk(g) → ∧2kg. (17)

The proof of Theorem 6 depends upon establishing some nice
algebraic properties of γ. Since we have, via the Killing form,
identified g with its dual, ∧g is the underlying space for a standard
cochain complex (∧g, d) where d is the coboundary operator of
degree +1. In particular. if x ∈ g, then dx ∈ ∧2g. Identifying g

here with P1(g) one has a map

P1(g) → ∧2g. (18)

Theorem 7. The map (15) is the homomorphism of commutative
algebras extending (18). In particular for any x ∈ g,

γ(xk) = (dx)k . (19)



The connection with Theorem 6 follows from

Proposition 2. Let x ∈ g. Then x ∈ g(2k) if and only if k is
maximal such that (dx)k 6= 0, in which case there is a scalar
c ∈ C× such that

(dx)k = c w1 ∧ · · · ∧ w2k (20)

where wi , i = 1, . . . , 2k, is a basis of [x , g].



3. On the variety of singular elements – joint work with
Nolan Wallach

Let h be a Cartan sublgebra of g and let ` = dim h, so ` = rank g.
Let ∆ be the set of roots of (h, g) and let ∆+ ⊂ ∆ be a choice of
positive roots. Let r = card∆+ so that n = ` + 2r where we fix
n = dim g. We assume a well ordering is defined on ∆+.

For any ϕ ∈ ∆, let eϕ be a corresponding root vector. The choices
will be normalized only insofar as (eϕ, e−ϕ) = 1 for all ϕ ∈ ∆.
From Proposition 2 one has the well-known fact that g(2k) = 0 for
k > r and g(2r) is the set of all regular elements in g. One also
notes then that (16) implies VarRk(g) reduces to 0 if k > r ,
whereas Theorem 6 implies

Var Rr(g) is the set of all singular elements in g. (21)

The paper [5] is mainly devoted to a study of a special construction
of R r (g) and a determination of its remarkable g-module structure.



Let J = P(g)g so that J is the ring of Ad g polynomial invariants.
It is a classic theorem of C. Chevalley that J is a polynomial ring in
`-homogeneous generators pi so that we can write

J = C[p1, . . . , p`].

Let di = deg pi . Then if we put mi = di − 1, the mi are referred to
as the exponents of g, and one knows that

∑̀
i=1

mi = r . (22)

Let Diff P(g) be the algebra of differential operators on P(g) with
constant coefficients. One then has an algebra isomorphism

P(g) → Diff P(g), q 7→ ∂q

where for p, q, f ∈ P(g) one has

(∂qp, f ) = (p, qf ) (23)

and ∂x , for x ∈ g, is the partial derivative defined by x .



Let J+ ⊂ J be the J-ideal of all p ∈ J with zero constant term and
let

H = {q ∈ P(g) | ∂pq = 0 ∀p ∈ J+}.
H is a graded g-module whose elements are called harmonic
polynomials. Then one knows ([2]) that where tensor product is
realized by polynomial multiplication,

P(g) = J ⊗ H. (24)

It is immediate from (23) that H is the orthocomplement of the
ideal J+P(g) in P(g). However since γ is an algebra
homomorphism. one has

J+P(g) ⊂ Ker γ (25)

since one easily has that J+ ⊂ Ker γ.
Indeed this is clear since

γ(J+) ⊂ d(∧ g) ∩ (∧ g)g

= 0.



But then (16) implies

Theorem 8. For any k ∈ Z one has

Rk(g) ⊂ H.

Henceforth assume g is simple so that the adjoint representation is
irreducible. Let yj , j = 1, . . . , n, be a basis of g. One defines a
`× n matrix Q = Qij , i = 1, . . . , `, j = 1, . . . , n by putting

Qij = ∂yj pi . (26)

Let Si , i = 1, . . . , `, be the span of the entries of Q in the i th row.
The following is immediate.

Proposition 3. Si ⊂ Pmi (g). Furthermore Si is stable under the
action of g and as a g-module Si transforms according to the
adjoint representation.



If V is a g-module let Vad be the set of all of vectors in V which
transform according to the adjoint representation. The equality
(24) readily implies P(g)ad = J ⊗ Had .
I proved the following result some time ago.

Theorem 9. The multiplicity of the adjoint representation in Had

is `. Furthermore the invariants pi can be chosen so that Si ⊂ Had

for all i and the Si , i = 1, . . . , `, are indeed the ` occurrences of the
adjoint representation in Had .

Clearly there are
(n

`

)
`× ` minors in the matrix Q. The

determinant of any of these minors is an element of P r (g) by (22).
In [5] we exhibit R r (g) by proving

Theorem 10. The determinant of any `× ` minor of Q is an
element of R r (g) and indeed R r (g) is the span of the determinants
of all these minors.



4. The g-module structure of R r (g)

The adjoint action of g on ∧g extends to U(g) so that ∧g is a
U(g)-module. If s ⊂ g is any subpace and k = dim s, let [s] = ∧ks

so that [s] is a 1-dimensional subspace of ∧kg.

Let Mk ⊂ ∧kg be the span of all [s] where s is any k-dimensional
commutative Lie subalgebra of g. If no such subalgebra exists, put
Mk = 0.

It is clear that Mk is a g-submodule of ∧kg. Let Cas ∈ Z be the
Casimir element corresponding to the Killing form. The following
theorem was proved in [3].



Theorem 11. For any k ∈ Z let mk be the maximal eigenvalue of
Cas on ∧kg. Then mk ≤ k. Moreover mk = k if and only if
Mk 6= 0 in which case Mk is the eigenspace for the maximal
eigenvalue k.

Let Φ be a subset of ∆. Let k = cardΦ and write, in increasing
order,

Φ = {ϕ1, . . . , ϕk} (27)

Let

eΦ = eϕ1 ∧ · · · ∧ eϕk

so that eΦ ∈ ∧kg is a (h) weight vector with weight

〈Φ〉 =
k∑

i=1

ϕi .



Let n be the Lie algebra spanned by eϕ for ϕ ∈ ∆+ and let b be
the Borel subalgebra of g defined by putting b = h + n.

Now a subset Φ ⊂ ∆+ will be called an ideal in ∆+ if the span,
nΦ, of eϕ, for ϕ ∈ Φ, is an ideal of b.

In such a case CeΦ is stable under the action of b and hence if
VΦ = U(g) · eΦ then, where k = cardΦ,

VΦ ⊂ ∧kg

is an irreducible g-module of highest weight 〈Φ〉 having CeΦ as the
highest weight space.

We will say that Φ is abelian if nΦ is an abelian ideal of b.
Let

A(k) = {Φ | Φ is an abelian ideal of cardinality k in ∆+}.



The following theorem was established in [3].

Theorem 12. If Φ,Ψ are distinct ideals in ∆+, then VΦ and VΨ

are inequivalent (i.e., 〈Φ〉 6= 〈Ψ〉). Furthermore if Mk 6= 0, then

Mk = ⊕Φ∈A(k)VΦ (28)

so that, in particular, Mk is a multiplicity 1 g-module.

We now focus on the case where k = `.

Clearly M` 6= 0 since gx is an abelian subalgebra of dimension ` for
any regular x ∈ g. Let I(`) be the set of all ideals of cardinality `.

The following is one of the main results in [5].



Theorem 13. One has I(`) = A(`) so that

M` = ⊕Φ∈I(`)VΦ. (29)

Moreover as g-modules, one has the equivalence

R r (g) ∼= M`, (30)

so that R r (g) is a multiplicity 1 g-module with card I(`)
irreducible components and Cas takes the value ` on each and
every one of the I(`) distinct components.

Example. If g is of type A`, then then the elements of I(`) can
identified with Young diagrams of size `. In this case therefore the
number of irreducible components in R r (g) is P(`) where P here is
the classical partition function.



5. Appendix: On an explicit construction for Rk(g) for any k

We wish to explicitly describe this module. Let Sym(2k, 2) be the
subgroup of the symmetric group Sym(2k), defined by

Sym(2k, 2) =

{σ ∈ Sym(2k) | σ permutes the set of unordered pairs
{(1, 2), (3, 4), . . . , (2k − 1), 2k).}}

That is, if σ ∈ Sym(2k, 2) and 1 ≤ i ≤ k, there exists 1 ≤ j ≤ k
such that as unordered sets

(σ(2i − 1), σ(2i)) = ((2j − 1, 2j)).



It is clear that Sym(2k, 2) is a subgroup of order 2k · k!. Let Π(k)
be a cross-section of the set of left cosets of Sym(2k, 2) in
Sym(2k) so that one has a disjoint union

Sym(2k) = ∪ ν Sym(2k, 2) (31)

indexed by ν ∈ Π(k).

Remark 3. One notes that the cardinality of Π(k) is
(2k − 1)(2k − 3) · · · 1 and the correspondence

ν 7→ ((ν(1), ν(2)), (ν(3), ν(4)), . . . , ν((2k − 1), ν(2k)))

sets up a bijection of Π(k) with the set of all partitions of
(1, 2, . . . , 2k) into a union of subsets, each of which have two
elements.



We also observe that Π(k) may be chosen – and will be chosen –
such that sg ν = 1 for all ν ∈ Π(k). This is clear since the sg
character is not trivial on Sym(2k, 2) for k ≥ 1.

Theorem 14 For any k ∈ Z there exists a nonzero scalar ck such
that for any xi i = 1, . . . , 2k, in g

Γ(x1 ∧ · · · ∧ x2k) = ck

∑
ν∈Π(k)

[xν(1), xν(2)] · · · [xν(2k−1), xν(2k)] (32)

Furthermore, Furthermore the homogeneous polynomial of degree
k on the right of (32) is harmonic and Rk(g) is the span of all
such polynomials for an arbitrary choice of the xi .
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