On the singular elements of a semisimple Lie algebra and the generalized Amitsur-Levitski Theorem

Bertram Kostant, MIT

Conference on Representations of Reductive Groups Salt Lake City, Utah July 10, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. Introduction

I connect an old result of mine on a Lie algebra generalization of the Amitsur-Levitski Theorem with recent results of Kostant-Wallach on the variety of singular elements in a reductive Lie algebra.

Let *R* be an associative ring and for any $k \in \mathbb{Z}$ and x_i, \ldots, x_k , in *R* one defines an alternating sum of products

$$[[x_1,\ldots x_k]] = \sum_{\sigma \in \text{Sym } k} sg(\sigma) x_{\sigma(1)} \cdots x_{\sigma(k)}.$$
(1)

(日) (日) (日) (日) (日) (日) (日) (日)

One says that R satisfies the standard identity of degree k if $[[x_1, \ldots x_k]] = 0$ for any choice of the $x_i \in R$. Of course R is commutative if and only if it satisfies the standard identity of degree 2.

Now for any $n \in \mathbb{Z}$ and field F, let M(n, F) be the algebra of $n \times n$ matrices over F.

The following is the famous Amitsur-Levitski theorem.

Theorem 1. M(n, F) satisfies the standard identity of degree 2n.

Remark 1. By restricting to matrix units for a proof it suffices to take $F = \mathbb{C}$.

Without any knowledge that it was a known theorem, we came upon Theorem 1 a long time ago, from the point of view of Lie algebra cohomology [1]. In fact, the result follows from the fact that if $\mathfrak{g} = M(n, \mathbb{C})$, then the restriction to \mathfrak{g} of the primitive cohomology class of degree 2n + 1 of $M(n + 1, \mathbb{C})$ to \mathfrak{g} vanishes.

Of course $\mathfrak{g}_1 \subset \mathfrak{g}$ where $\mathfrak{g}_1 = \operatorname{Lie} \operatorname{SO}(n, \mathbb{C})$. Assume *n* is even. One proves that the restriction to \mathfrak{g}_1 of the primitive class of degree 2n-1 (highest primitive class) of \mathfrak{g} vanishes on \mathfrak{g}_1 . This leads to a new standard identity, namely

Theorem 2.

$$[[x_1, \ldots, x_{2n-2}]] = 0 \tag{2}$$

for any choice of $x_i \in g_1$. That is any choice of skew-symmetric matrices.

Remark 2. Theorem 2 is immediately evident when n = 2.

Theorems 1 and 2 suggest that standard identities can be viewed as a subject in Lie theory. Theorem 3 below offers support for this idea.

Let r be a complex reductive Lie algebra and let

$$\pi: \mathfrak{r} \to \operatorname{End} \mathcal{V}$$
 (3)

be a finite-dimensional complex completely reducible representation.

If $w \in \mathfrak{r}$ is nilpotent, then $\pi(w)^k = 0$ for some $k \in \mathbb{Z}$. Let $\varepsilon(\pi)$ be the minimal integer k such that $\pi(w)^k = 0$ for all nilpotent $w \in \mathfrak{r}$. In case π is irreducible, one can easily give a formula for $\varepsilon(\pi)$ in terms of the highest weight. If \mathfrak{g} (resp. \mathfrak{g}_1) is given as above and π (resp. π_1)) is the defining representation, then $\varepsilon(\pi) = n$ and $\varepsilon(\pi_1) = n - 1$.

Consequently, the following theorem generalizes Theorems 1 and 2.

Theorem 3. Let \mathfrak{r} be a complex reductive Lie algebra and let π be as above. Then for any $x_i \in \mathfrak{r}$, $i = 1, ..., 2\varepsilon(\pi)$, one has

$$[[\hat{x}_1,\ldots,\hat{x}_{2\varepsilon(\pi)}]] = 0 \tag{4}$$

where $\hat{x}_i = \pi(x_i)$. See [4].

2. Henceforth \mathfrak{g} , until mentioned otherwise, will be an arbitrary reductive complex finite-dimensional Lie algebra. Let $T(\mathfrak{g})$ be the tensor algebra over \mathfrak{g} and let $S(\mathfrak{g}) \subset T(\mathfrak{g})$ (resp. $A(\mathfrak{g}) \subset T(\mathfrak{g})$) be the subspace of symmetric (resp. alternating) tensors in $T(\mathfrak{g})$.

The natural grading on $T(\mathfrak{g})$ restricts to a grading on $S(\mathfrak{g})$ and $A(\mathfrak{g})$. In particular, where multiplication is the tensor product one notes the following.

Proposition 1. $A^{j}(\mathfrak{g})$ is the span of $[[x_1, \ldots, x_j]]$ over all choices of x_i , $i = 1, \ldots, j$, in \mathfrak{g} .

Now let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . Then $U(\mathfrak{g})$ is the quotient algebra of $\mathcal{T}(\mathfrak{g})$ so that there is an algebra epimorphism

$$au: T(\mathfrak{g}) \to U(\mathfrak{g}).$$

Let $Z = \text{Cent U}(\mathfrak{g})$ and let $E \subset U(g)$ be the graded subspace spanned by all powers $e^j, j = 1, \ldots$, where $e \in \mathfrak{g}$ is nilpotent. In [2] we proved (where the tensor product identifies with multiplication)

$$U(\mathfrak{g}) = Z \otimes E. \tag{5}$$

In [4] we proved

Theorem 4. For any $k \in (\mathbb{Z})$ one has

$$\tau(A^{2k}(\mathfrak{g})) \subset E^k.$$
(6)

Theorem 3 is then an immediate consequence of Theorem 4. Indeed, using the notation of Theorem 3, let $\pi_U : U(\mathfrak{g}) \to \operatorname{End} V$

be the algebra extension of π to $U(\mathfrak{g})$, and one then has

Theorem 5. *If* $E^k \subset \operatorname{Ker} \pi_U$ *, then*

$$[[\hat{x}_1, \dots, \hat{x}_{2k}]] = 0 \tag{7}$$

for any x_i, \ldots, x_{2k} in \mathfrak{g} .

3. The Poincaré-Birkhoff-Witt theorem says that the restriction $\tau : S(\mathfrak{g}) \to U(\mathfrak{g})$ is a linear isomorphism. Consequently, given any $t \in T(\mathfrak{g})$ there exists a unique element \overline{t} in $S(\mathfrak{g})$ such that

$$\tau(t) = \tau(\bar{t}). \tag{8}$$

Let $A^{even}(\mathfrak{g})$ be the span of alternating tensors of even degree. Restricting to $A^{even}(\mathfrak{g})$ one has a \mathfrak{g} -module map

$$\Gamma_T: A^{even}(\mathfrak{g}) \to S(\mathfrak{g})$$

defined so that if $\mathfrak{a} \in A^{even}(\mathfrak{g})$, then

$$\tau(a) = \tau(\Gamma_T(a)). \tag{9}$$

Now the (commutative) symmetric algebra $P(\mathfrak{g})$ over \mathfrak{g} and exterior algebra $\wedge \mathfrak{g}$ are quotient algebras of $T(\mathfrak{g})$. The restriction of the quotient map clearly induces \mathfrak{g} -module isomorphisms

$$\tau_{\mathsf{S}}: \mathsf{S}(\mathfrak{g}) \to \mathsf{P}(\mathfrak{g}) \tag{10}$$

$$au_{\mathcal{A}}: \mathcal{A}^{even}(\mathfrak{g}) \to \wedge^{even}\mathfrak{g}$$

where $\wedge^{even} \mathfrak{g}$ is the commutative subalgebra of $\wedge \mathfrak{g}$ spanned by elements of even degree.

We may complete the commutative diagram defining

$$\Gamma: \wedge^{even} \mathfrak{g} \to P(\mathfrak{g}) \tag{11}$$

so that on $A^{even}(\mathfrak{g})$, one has

$$\tau_{\mathcal{S}} \circ \Gamma_{\mathcal{T}} = \Gamma \circ \tau_{\mathcal{A}}. \tag{12}$$

By (6) one notes that for $k \in \mathbb{Z}$ one has

$$\Gamma: \wedge^{2k} \mathfrak{g} \to \mathcal{P}^{k}(\mathfrak{g}). \tag{13}$$

The Killing form extends to a nonsingular symmetric bilinear form on $P(\mathfrak{g})$ and $\wedge \mathfrak{g}$. This enables us to identify $P(\mathfrak{g})$ with the algebra of polynomial functions on \mathfrak{g} and to identify $\wedge \mathfrak{g}$ with its dual space $\wedge \mathfrak{g}^*$ where \mathfrak{g}^* is the dual space to \mathfrak{g} .

Let $R^k(\mathfrak{g})$ be the image of (13) so that $R^k(\mathfrak{g})$ is a \mathfrak{g} -module of homogeneous polynomial functions of degree k on \mathfrak{g} . The significance of $R^k(\mathfrak{g})$ has to do with the dimensions of $\operatorname{Ad} \mathfrak{g}$ adjoint (= coadjoint) orbits. Any such orbit is symplectic and hence is even dimensional.

For
$$j \in \mathbb{Z}$$
 let $\mathfrak{g}^{(2j)} = \{x \in \mathfrak{g} \mid \dim [\mathfrak{g}, x] = 2j\}.$

We recall that a 2j g-sheet is an irreducible component of $\mathfrak{g}^{(2j)}$. Let $Var R^k(\mathfrak{g}) = \{x \in \mathfrak{g} \mid p(x) = 0, \forall p \in R^k(\mathfrak{g})\}.$

We prove the following.

Theorem 6. One has

$$Var \ R^k(\mathfrak{g}) = \bigcup_{2j < 2k} \mathfrak{g}^{(2j)} \tag{14}$$

or that $\operatorname{Var} R^k(\mathfrak{g})$ is the set of all 2j \mathfrak{g} -sheets for j < k.

Let γ be the transpose of Γ . Thus

$$\gamma: P(\mathfrak{g}) \to \wedge^{even} \mathfrak{g} \tag{15}$$

and one has for $p \in P(\mathfrak{g})$ and $u \in \wedge \mathfrak{g}$,

$$(\gamma(p), u) = (p, \Gamma(u)). \tag{16}$$

One also notes that

$$\gamma: \mathcal{P}^{k}(\mathfrak{g}) \to \wedge^{2k} \mathfrak{g}.$$
(17)

The proof of Theorem 6 depends upon establishing some nice algebraic properties of γ . Since we have, via the Killing form, identified \mathfrak{g} with its dual, $\wedge \mathfrak{g}$ is the underlying space for a standard cochain complex ($\wedge \mathfrak{g}, d$) where d is the coboundary operator of degree +1. In particular. if $x \in \mathfrak{g}$, then $dx \in \wedge^2 \mathfrak{g}$. Identifying \mathfrak{g} here with $P^1(\mathfrak{g})$ one has a map

$$P^1(\mathfrak{g}) \to \wedge^2 \mathfrak{g}.$$
 (18)

Theorem 7. The map (15) is the homomorphism of commutative algebras extending (18). In particular for any $x \in \mathfrak{g}$,

$$\gamma(x^k) = (dx)^k. \tag{19}$$

The connection with Theorem 6 follows from

Proposition 2. Let $x \in \mathfrak{g}$. Then $x \in \mathfrak{g}^{(2k)}$ if and only if k is maximal such that $(dx)^k \neq 0$, in which case there is a scalar $c \in \mathbb{C}^{\times}$ such that

$$(dx)^k = c \ w_1 \wedge \cdots \wedge w_{2k} \tag{20}$$

where w_i , i = 1, ..., 2k, is a basis of [x, g].

3. On the variety of singular elements – joint work with Nolan Wallach

Let \mathfrak{h} be a Cartan sublgebra of \mathfrak{g} and let $\ell = \dim \mathfrak{h}$, so $\ell = \operatorname{rank} \mathfrak{g}$. Let Δ be the set of roots of $(\mathfrak{h}, \mathfrak{g})$ and let $\Delta_+ \subset \Delta$ be a choice of positive roots. Let $r = \operatorname{card} \Delta_+$ so that $n = \ell + 2r$ where we fix $n = \dim \mathfrak{g}$. We assume a well ordering is defined on Δ_+ .

For any $\varphi \in \Delta$, let e_{φ} be a corresponding root vector. The choices will be normalized only insofar as $(e_{\varphi}, e_{-\varphi}) = 1$ for all $\varphi \in \Delta$. From Proposition 2 one has the well-known fact that $\mathfrak{g}^{(2k)} = 0$ for k > r and $\mathfrak{g}^{(2r)}$ is the set of all regular elements in \mathfrak{g} . One also notes then that (16) implies $\operatorname{Var} R^k(\mathfrak{g})$ reduces to 0 if k > r, whereas Theorem 6 implies

Var $R^{r}(\mathfrak{g})$ is the set of all singular elements in \mathfrak{g} . (21)

The paper [5] is mainly devoted to a study of a special construction of $R^r(\mathfrak{g})$ and a determination of its remarkable \mathfrak{g} -module structure.

Let $J = P(\mathfrak{g})^{\mathfrak{g}}$ so that J is the ring of $\operatorname{Ad} \mathfrak{g}$ polynomial invariants. It is a classic theorem of C. Chevalley that J is a polynomial ring in ℓ -homogeneous generators p_i so that we can write

$$J = \mathbb{C}[\mathfrak{p}_1, \ldots, \mathfrak{p}_\ell].$$

Let $d_i = \deg p_i$. Then if we put $m_i = d_i - 1$, the m_i are referred to as the exponents of g, and one knows that

$$\sum_{i=1}^{\ell} m_i = r.$$
 (22)

Let Diff $P(\mathfrak{g})$ be the algebra of differential operators on $P(\mathfrak{g})$ with constant coefficients. One then has an algebra isomorphism

$$P(\mathfrak{g}) \to \operatorname{Diff} P(\mathfrak{g}), \ q \mapsto \partial_q$$

where for $p, q, f \in P(\mathfrak{g})$ one has

$$(\partial_q p, f) = (p, qf) \tag{23}$$

and ∂_x , for $x \in \mathfrak{g}$, is the partial derivative defined by $x \in \mathfrak{g}$, $x \in \mathfrak{g}$,

Let $J_+ \subset J$ be the J-ideal of all $p \in J$ with zero constant term and let

$$H = \{q \in P(\mathfrak{g}) \mid \partial_p q = 0 \, \forall p \in J_+\}.$$

H is a graded \mathfrak{g} -module whose elements are called harmonic polynomials. Then one knows ([2]) that where tensor product is realized by polynomial multiplication,

$$P(\mathfrak{g}) = J \otimes H. \tag{24}$$

It is immediate from (23) that H is the orthocomplement of the ideal $J_+P(\mathfrak{g})$ in $P(\mathfrak{g})$. However since γ is an algebra homomorphism. one has

$$J_+ P(\mathfrak{g}) \subset \operatorname{Ker} \gamma \tag{25}$$

since one easily has that $J_+ \subset \operatorname{Ker} \gamma$. Indeed this is clear since

$$egin{aligned} \gamma(J_+) \subset d(\wedge \mathfrak{g}) \cap (\wedge \mathfrak{g})^{\mathfrak{g}} \ &= 0. \end{aligned}$$

But then (16) implies

Theorem 8. For any $k \in \mathbb{Z}$ one has

$$R^k(\mathfrak{g}) \subset H.$$

Henceforth assume g is simple so that the adjoint representation is irreducible. Let y_j , j = 1, ..., n, be a basis of g. One defines a $\ell \times n$ matrix $Q = Q_{ij}$, $i = 1, ..., \ell$, j = 1, ..., n by putting

$$Q_{ij} = \partial_{y_j} p_i. \tag{26}$$

Let S_i , $i = 1, ..., \ell$, be the span of the entries of Q in the i^{th} row. The following is immediate.

Proposition 3. $S_i \subset P_{m_i}(\mathfrak{g})$. Furthermore S_i is stable under the action of \mathfrak{g} and as a \mathfrak{g} -module S_i transforms according to the adjoint representation.

If V is a g-module let V_{ad} be the set of all of vectors in V which transform according to the adjoint representation. The equality (24) readily implies $P(g)_{ad} = J \otimes H_{ad}$. I proved the following result some time ago.

Theorem 9. The multiplicity of the adjoint representation in H_{ad} is ℓ . Furthermore the invariants p_i can be chosen so that $S_i \subset H_{ad}$ for all i and the S_i , $i = 1, ..., \ell$, are indeed the ℓ occurrences of the adjoint representation in H_{ad} .

Clearly there are $\binom{n}{\ell}$ $\ell \times \ell$ minors in the matrix Q. The determinant of any of these minors is an element of $P^r(\mathfrak{g})$ by (22). In [5] we exhibit $R^r(\mathfrak{g})$ by proving

Theorem 10. The determinant of any $\ell \times \ell$ minor of Q is an element of $R^{r}(\mathfrak{g})$ and indeed $R^{r}(\mathfrak{g})$ is the span of the determinants of all these minors.

4. The g-module structure of $R^r(g)$

The adjoint action of \mathfrak{g} on $\wedge \mathfrak{g}$ extends to $U(\mathfrak{g})$ so that $\wedge \mathfrak{g}$ is a $U(\mathfrak{g})$ -module. If $\mathfrak{s} \subset \mathfrak{g}$ is any subpace and $k = \dim \mathfrak{s}$, let $[\mathfrak{s}] = \wedge^k \mathfrak{s}$ so that $[\mathfrak{s}]$ is a 1-dimensional subspace of $\wedge^k \mathfrak{g}$.

Let $M_k \subset \wedge^k \mathfrak{g}$ be the span of all $[\mathfrak{s}]$ where \mathfrak{s} is any *k*-dimensional commutative Lie subalgebra of \mathfrak{g} . If no such subalgebra exists, put $M_k = 0$.

It is clear that M_k is a g-submodule of $\wedge^k \mathfrak{g}$. Let $\operatorname{Cas} \in Z$ be the Casimir element corresponding to the Killing form. The following theorem was proved in [3].

Theorem 11. For any $k \in \mathbb{Z}$ let m_k be the maximal eigenvalue of Cas on $\wedge^k \mathfrak{g}$. Then $m_k \leq k$. Moreover $m_k = k$ if and only if $M_k \neq 0$ in which case M_k is the eigenspace for the maximal eigenvalue k.

Let Φ be a subset of Δ . Let $k = \operatorname{card} \Phi$ and write, in increasing order,

$$\Phi = \{\varphi_1, \dots, \varphi_k\}$$
(27)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let

$$e_{\Phi} = e_{\varphi_1} \wedge \cdots \wedge e_{\varphi_k}$$

so that $e_{\Phi} \in \wedge^k \mathfrak{g}$ is a (\mathfrak{h}) weight vector with weight

$$\langle \Phi
angle = \sum_{i=1}^k \varphi_i.$$

Let \mathfrak{n} be the Lie algebra spanned by e_{φ} for $\varphi \in \Delta_+$ and let \mathfrak{b} be the Borel subalgebra of \mathfrak{g} defined by putting $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}$.

Now a subset $\Phi \subset \Delta_+$ will be called an ideal in Δ_+ if the span, \mathfrak{n}_{Φ} , of e_{φ} , for $\varphi \in \Phi$, is an ideal of \mathfrak{b} .

In such a case $\mathbb{C}e_{\Phi}$ is stable under the action of \mathfrak{b} and hence if $V_{\Phi} = U(\mathfrak{g}) \cdot e_{\Phi}$ then, where $k = \operatorname{card} \Phi$,

$$V_{\Phi} \subset \wedge^k \mathfrak{g}$$

is an irreducible g-module of highest weight $\langle\Phi\rangle$ having $\mathbb{C}\textit{e}_\Phi$ as the highest weight space.

We will say that Φ is abelian if \mathfrak{n}_Φ is an abelian ideal of $\mathfrak{b}.$ Let

$$\mathcal{A}(k) = \{ \Phi \mid \Phi ext{ is an abelian ideal of cardinality } k ext{ in } \Delta_+ \}.$$

The following theorem was established in [3].

Theorem 12. If Φ, Ψ are distinct ideals in Δ_+ , then V_{Φ} and V_{Ψ} are inequivalent (i.e., $\langle \Phi \rangle \neq \langle \Psi \rangle$). Furthermore if $M_k \neq 0$, then

$$M_k = \oplus_{\Phi \in \mathcal{A}(k)} V_{\Phi} \tag{28}$$

so that, in particular, M_k is a multiplicity 1 g-module.

We now focus on the case where $k = \ell$.

Clearly $M_{\ell} \neq 0$ since \mathfrak{g}^{\times} is an abelian subalgebra of dimension ℓ for any regular $x \in \mathfrak{g}$. Let $\mathcal{I}(\ell)$ be the set of all ideals of cardinality ℓ .

The following is one of the main results in [5].

Theorem 13. One has $\mathcal{I}(\ell) = \mathcal{A}(\ell)$ so that

$$M_{\ell} = \oplus_{\Phi \in \mathcal{I}(\ell)} V_{\Phi}.$$
⁽²⁹⁾

Moreover as g-modules, one has the equivalence

$$R^{r}(\mathfrak{g}) \cong M_{\ell}, \tag{30}$$

so that $R^{r}(\mathfrak{g})$ is a multiplicity 1 \mathfrak{g} -module with $\operatorname{card} \mathcal{I}(\ell)$ irreducible components and Cas takes the value ℓ on each and every one of the $\mathcal{I}(\ell)$ distinct components.

Example. If \mathfrak{g} is of type A_{ℓ} , then then the elements of $\mathcal{I}(\ell)$ can identified with Young diagrams of size ℓ . In this case therefore the number of irreducible components in $R^r(\mathfrak{g})$ is $P(\ell)$ where P here is the classical partition function.

5. Appendix: On an explicit construction for $R^k(\mathfrak{g})$ for any k

We wish to explicitly describe this module. Let Sym(2k, 2) be the subgroup of the symmetric group Sym(2k), defined by

 $\begin{aligned} &\operatorname{Sym}(2k,2) = \\ &\{\sigma \in \operatorname{Sym}(2k) \mid \sigma \text{ permutes the set of unordered pairs} \\ &\{(1,2),(3,4),\ldots,(2k-1),2k).\} \end{aligned}$

That is, if $\sigma \in \text{Sym}(2k, 2)$ and $1 \le i \le k$, there exists $1 \le j \le k$ such that as unordered sets

$$(\sigma(2i-1), \sigma(2i)) = ((2j-1, 2j)).$$

It is clear that Sym(2k, 2) is a subgroup of order $2^k \cdot k!$. Let $\Pi(k)$ be a cross-section of the set of left cosets of Sym(2k, 2) in Sym(2k) so that one has a disjoint union

$$\operatorname{Sym}(2k) = \bigcup \nu \operatorname{Sym}(2k, 2) \tag{31}$$

indexed by $\nu \in \Pi(k)$.

Remark 3. One notes that the cardinality of $\Pi(k)$ is $(2k-1)(2k-3)\cdots 1$ and the correspondence

$$\nu \mapsto ((\nu(1), \nu(2)), (\nu(3), \nu(4)), \dots, \nu((2k-1), \nu(2k)))$$

sets up a bijection of $\Pi(k)$ with the set of all partitions of (1, 2, ..., 2k) into a union of subsets, each of which have two elements.

We also observe that $\Pi(k)$ may be chosen – and will be chosen – such that $sg \nu = 1$ for all $\nu \in \Pi(k)$. This is clear since the sgcharacter is not trivial on Sym(2k, 2) for $k \ge 1$.

Theorem 14 For any $k \in \mathbb{Z}$ there exists a nonzero scalar c_k such that for any x_i i = 1, ..., 2k, in \mathfrak{g}

$$\Gamma(x_1 \wedge \dots \wedge x_{2k}) = c_k \sum_{\nu \in \Pi(k)} [x_{\nu(1)}, x_{\nu(2)}] \cdots [x_{\nu(2k-1)}, x_{\nu(2k)}]$$
(32)

Furthermore, Furthermore the homogeneous polynomial of degree k on the right of (32) is harmonic and $R^{k}(\mathfrak{g})$ is the span of all such polynomials for an arbitrary choice of the x_{i} .

References

 B. Kostant, A Theorem of Frobenius, a Theorem of Amitsur-Levitski and Cohomology Theory, *J. Mech and Mech.*, 7 (1958): 2, Indiana University, 237-264.

[2] ", Lie Group Representations on Polynomial Rings, *American J. Math*, **85** (1963), No. 1, 327-404.

[3] ", Eigenvalues of a Laplacian and Commutative Lie Subalgebras, *Topology*, **13**, (1965), 147-159.

[4] ", A Lie Algebra Generalization of the Amitsur-Levitski Theorem, *Adv. In Math.*, **40** (1981):2, 155-175.

[5] " (joint with N. Wallach), On the algebraic set of singular elements in a cmplex simple Lie algebra, in: *Representation Theory and Mathematical Physics*, Conf. in honor of Gregg Zuckerman's 60th Birthday, Contemp. Math., **557**, Amer. Math. Soc., 2009, pp. 215-230.