Verifying Kottwitz' conjecture by computer, II

Meinolf Geck

Universität Stuttgart

Salt Lake City, July 2013

B. Casselman, "Verifying Kottwitz' conjecture by computer"; R. Kottwitz, "Involutions in Weyl groups".
(Both in Representation Theory 4, 2000.)
B. Casselman, "Verifying Kottwitz' conjecture by computer";
R. Kottwitz, "Involutions in Weyl groups".
(Both in Representation Theory 4, 2000.)
W finite Weyl group, S simple reflections, $\mathcal{I}=\left\{w \in W \mid w^{2}=1\right\}$.
$V \mathbb{Q}$-vector space with basis $\left\{a_{w} \mid w \in \mathcal{I}\right\}$.
B. Casselman, "Verifying Kottwitz' conjecture by computer";
R. Kottwitz, "Involutions in Weyl groups".
(Both in Representation Theory 4, 2000.)
W finite Weyl group, S simple reflections, $\mathcal{I}=\left\{w \in W \mid w^{2}=1\right\}$.
$V \mathbb{Q}$-vector space with basis $\left\{a_{w} \mid w \in \mathcal{I}\right\}$.
Kottwitz \leadsto linear action of W on V :

$$
s . a_{w}= \begin{cases}-a_{w} & \text { if } s w=w s \text { and } I(s w)<I(w) \\ a_{s w s} & \text { otherwise } .\end{cases}
$$

(Formulation of Lusztig-Vogan, 2011.)
B. Casselman, "Verifying Kottwitz' conjecture by computer";
R. Kottwitz, "Involutions in Weyl groups".
(Both in Representation Theory 4, 2000.)
W finite Weyl group, S simple reflections, $\mathcal{I}=\left\{w \in W \mid w^{2}=1\right\}$.
$V \mathbb{Q}$-vector space with basis $\left\{a_{w} \mid w \in \mathcal{I}\right\}$.
Kottwitz \leadsto linear action of W on V :

$$
s . a_{w}= \begin{cases}-a_{w} & \text { if } s w=w s \text { and } I(s w)<I(w) \\ a_{s w s} & \text { otherwise } .\end{cases}
$$

(Formulation of Lusztig-Vogan, 2011.)
$\mathrm{Cl}(\mathcal{I})$ conjugacy classes in \mathcal{I}. For $C \in \mathrm{Cl}(\mathcal{I})$ let $V_{C}=\left\langle a_{w} \mid w \in C\right\rangle$.
B. Casselman, "Verifying Kottwitz' conjecture by computer";
R. Kottwitz, "Involutions in Weyl groups".
(Both in Representation Theory 4, 2000.)
W finite Weyl group, S simple reflections, $\mathcal{I}=\left\{w \in W \mid w^{2}=1\right\}$.
$V \mathbb{Q}$-vector space with basis $\left\{a_{w} \mid w \in \mathcal{I}\right\}$.
Kottwitz \leadsto linear action of W on V :

$$
s . a_{w}= \begin{cases}-a_{w} & \text { if } s w=w s \text { and } I(s w)<I(w) \\ a_{s w s} & \text { otherwise }\end{cases}
$$

(Formulation of Lusztig-Vogan, 2011.)
$\mathrm{Cl}(\mathcal{I})$ conjugacy classes in \mathcal{I}. For $C \in \mathrm{Cl}(\mathcal{I})$ let $V_{C}=\left\langle a_{w} \mid w \in C\right\rangle$. Then $V=\bigoplus_{C \in \mathrm{CI}(\mathcal{I})} V_{C}$ and decomposition into irreducibles is known (Kottwitz: W classical; Casselman: W exceptional).

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_{q}.

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_{q}. For $w \in W$, let R_{w} be the virtual character of $G\left(\mathbb{F}_{q}\right)$ defined by Deligne-Lusztig.

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_{q}. For $w \in W$, let R_{w} be the virtual character of $G\left(\mathbb{F}_{q}\right)$ defined by Deligne-Lusztig. For $E \in \operatorname{lrr}(W)$ let

$$
R_{E}:=|W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_{w} .
$$

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_{q}. For $w \in W$, let R_{w} be the virtual character of $G\left(\mathbb{F}_{q}\right)$ defined by Deligne-Lusztig. For $E \in \operatorname{lrr}(W)$ let

$$
R_{E}:=|W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_{w} .
$$

Kottwitz (+ Casselman), Lusztig-Vogan (reformulation).

$$
\langle V, E\rangle_{w}=
$$

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_{q}. For $w \in W$, let R_{w} be the virtual character of $G\left(\mathbb{F}_{q}\right)$ defined by Deligne-Lusztig. For $E \in \operatorname{lrr}(W)$ let

$$
R_{E}:=|W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_{w} .
$$

Kottwitz (+ Casselman), Lusztig-Vogan (reformulation).

$$
\langle V, E\rangle_{W}=\sum_{\rho \in \operatorname{lrr}\left(G\left(\mathbb{F}_{q}\right)\right)} \underbrace{\nu(\rho)}_{\text {Frobenius-Schur indicator }} \cdot \underbrace{\left\langle\rho, R_{E}\right\rangle_{G\left(\mathbb{F}_{q}\right)}}_{\text {Lustig's orange book }}
$$

Since David Vogan briefly mentioned some remarkable properties of the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_{q}. For $w \in W$, let R_{w} be the virtual character of $G\left(\mathbb{F}_{q}\right)$ defined by Deligne-Lusztig. For $E \in \operatorname{lrr}(W)$ let

$$
R_{E}:=|W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_{w} .
$$

Kottwitz (+ Casselman), Lusztig-Vogan (reformulation).

$$
\langle V, E\rangle_{W}=\sum_{\rho \in \operatorname{lrr}\left(G\left(\mathbb{F}_{q}\right)\right)} \underbrace{\nu(\rho)}_{\text {Frobenius-Schur indicator }} \cdot \underbrace{\left\langle\rho, R_{E}\right\rangle_{G\left(\mathbb{F}_{q}\right)}}_{\text {Lustig's orange book }}
$$

G.-Malle, Represent. Theory 17 (2013):

Extension to "twisted" involution module and non-split groups.

Kottwitz' Conjecture.

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \mid n: w_{\lambda^{*}} \in C} E^{\lambda}$

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $\quad V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \quad \Rightarrow \quad V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.

Kottwitz’ Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{W}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.
(2) Left cells given by Robinson-Schensted correspondence: $\left\{\Gamma_{\mathbb{T}} \mid \mathbb{T}\right.$ standard λ-tableau for some $\left.\lambda \vdash n\right\}$.

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.
(2) Left cells given by Robinson-Schensted correspondence:
$\left\{\Gamma_{\mathbb{T}} \mid \mathbb{T}\right.$ standard λ-tableau for some $\left.\lambda \vdash n\right\}$.
(3) (1), (2) \Rightarrow Both sides are 0 or 1 .

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \quad \Rightarrow \quad V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.
(2) Left cells given by Robinson-Schensted correspondence: $\left\{\Gamma_{\mathbb{T}} \mid \mathbb{T}\right.$ standard λ-tableau for some $\left.\lambda \vdash n\right\}$.
(3) (1), (2) \Rightarrow Both sides are 0 or 1 . These match up since:

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then $\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.

Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \quad \Rightarrow \quad V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.
(2) Left cells given by Robinson-Schensted correspondence:
$\left\{\Gamma_{\mathbb{T}} \mid \mathbb{T}\right.$ standard λ-tableau for some $\left.\lambda \vdash n\right\}$.
(3) (1), (2) \Rightarrow Both sides are 0 or 1 . These match up since:

- \mathbb{T}, \mathbb{T}^{\prime} have shape $\lambda \quad \Rightarrow \quad\left[\Gamma_{\mathbb{T}}\right] \cong\left[\Gamma_{\mathbb{T}^{\prime}}\right] \cong E^{\lambda}$.

Kottwitz’ Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then
$\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.
Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \quad \Rightarrow \quad V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.
(2) Left cells given by Robinson-Schensted correspondence:
$\left\{\Gamma_{\mathbb{T}} \mid \mathbb{T}\right.$ standard λ-tableau for some $\left.\lambda \vdash n\right\}$.
(3) (1), (2) \Rightarrow Both sides are 0 or 1 . These match up since:

- \mathbb{T}, \mathbb{T}^{\prime} have shape $\lambda \quad \Rightarrow \quad\left[\Gamma_{\mathbb{T}}\right] \cong\left[\Gamma_{\mathbb{T}^{\prime}}\right] \cong E^{\lambda}$.
- All involutions in a given 2-sided cell are contained in one conjugacy class $C \in \mathrm{Cl}(\mathcal{I})$ (Schützenberger, 1976).

Kottwitz' Conjecture.

Let $C \in \mathrm{Cl}(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan-Lusztig left cell. Then
$\left\langle V_{C},[\Gamma]\right\rangle_{w}=|C \cap \Gamma|, \quad$ where $\quad[\Gamma]=W$-module carried by Γ.
Example: $W=\mathfrak{S}_{n}$.
(1) Kottwitz: $V_{C} \cong \bigoplus_{\lambda \vdash n: w_{\lambda^{*}} \in C} E^{\lambda} \quad \Rightarrow \quad V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}$.
(2) Left cells given by Robinson-Schensted correspondence:
$\left\{\Gamma_{\mathbb{T}} \mid \mathbb{T}\right.$ standard λ-tableau for some $\left.\lambda \vdash n\right\}$.
(3) (1), (2) \Rightarrow Both sides are 0 or 1 . These match up since:

- \mathbb{T}, \mathbb{T}^{\prime} have shape $\lambda \quad \Rightarrow \quad\left[\Gamma_{\mathbb{T}}\right] \cong\left[\Gamma_{\mathbb{T}^{\prime}}\right] \cong E^{\lambda}$.
- All involutions in a given 2-sided cell are contained in one conjugacy class $C \in \mathrm{Cl}(\mathcal{I})$ (Schützenberger, 1976).
- If \mathbb{T} has shape λ and $C \cap \Gamma_{\mathbb{T}} \neq \varnothing$, then $w_{\lambda^{*}} \in C$.

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}. (Explicit computation of all left cells possible in these cases.)

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}. (Explicit computation of all left cells possible in these cases.) Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}.
(Explicit computation of all left cells possible in these cases.)
Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.
Remaining case: type E_{8}.

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}.
(Explicit computation of all left cells possible in these cases.)
Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.
Remaining case: type E_{8}.

- $|\mathcal{I}|=199952$ involutions, in 10 conjugacy classes;
- V_{C} for each $C \in \mathrm{Cl}(\mathcal{I})$ known from Casselman's computations.

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}.
(Explicit computation of all left cells possible in these cases.) Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.
Remaining case: type E_{8}.

- $|\mathcal{I}|=199952$ involutions, in 10 conjugacy classes;
- V_{C} for each $C \in \mathrm{Cl}(\mathcal{I})$ known from Casselman's computations.
- 101796 left cells, 46 two-sided cells.
- The vectors $\left(\langle[\Gamma], E\rangle_{W}\right)_{E \in \operatorname{lr}(W)}$ are known (Lusztig 1986).

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}. (Explicit computation of all left cells possible in these cases.) Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.
Remaining case: type E_{8}.

- $|\mathcal{I}|=199952$ involutions, in 10 conjugacy classes;
- V_{C} for each $C \in \mathrm{Cl}(\mathcal{I})$ known from Casselman's computations.
- 101796 left cells, 46 two-sided cells.
- The vectors $\left(\langle[\Gamma], E\rangle_{W}\right)_{E \in \operatorname{lr}(W)}$ are known (Lusztig 1986).

Problem: We need to know partition of \mathcal{I} into left cells, but E_{8} is too big to compute systematically Kazhdan-Lusztig polynomials $P_{y, w}$.

Casselman: Checked conjecture for F_{4} and E_{6}; similar methods: E_{7}. (Explicit computation of all left cells possible in these cases.) Bonnafé and G. (hal-00698613, arXiv:1206.0443): B_{n}, D_{n}.
Remaining case: type E_{8}.

- $|\mathcal{I}|=199952$ involutions, in 10 conjugacy classes;
- V_{C} for each $C \in \mathrm{Cl}(\mathcal{I})$ known from Casselman's computations.
- 101796 left cells, 46 two-sided cells.
- The vectors $\left(\langle[\Gamma], E\rangle_{W}\right)_{E \in \operatorname{lr}(W)}$ are known (Lusztig 1986).

Problem: We need to know partition of \mathcal{I} into left cells, but E_{8} is too big to compute systematically Kazhdan-Lusztig polynomials $P_{y, w}$.
Main tool (both for handling B_{n}, D_{n} and E_{8}): Lusztig's theory of "Leading coefficients of character values of Hecke algebras" (1987).

H generic Iwahori-Hecke algebra of W over $\mathbb{Q}(v)$.
 Basis $\left\{T_{w} \mid w \in W\right\} ; \quad T_{s}^{2}=T_{1}+\left(v-v^{-1}\right) T_{s} \quad$ for $s \in S$.

\mathbf{H} generic Iwahori-Hecke algebra of W over $\mathbb{Q}(v)$.
Basis $\left\{T_{w} \mid w \in W\right\} ; \quad T_{s}^{2}=T_{1}+\left(v-v^{-1}\right) T_{s} \quad$ for $s \in S$.

- Tits' Deformation Theorem: $v \rightarrow 1$ induces bijection

$$
\operatorname{lrr}(W) \longleftrightarrow \operatorname{lrr}(\mathbf{H}), \quad E \leftrightarrow E_{V}
$$

\mathbf{H} generic Iwahori-Hecke algebra of W over $\mathbb{Q}(v)$.
Basis $\left\{T_{w} \mid w \in W\right\} ; \quad T_{s}^{2}=T_{1}+\left(v-v^{-1}\right) T_{s} \quad$ for $s \in S$.

- Tits' Deformation Theorem: $v \rightarrow 1$ induces bijection

$$
\operatorname{lrr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \quad E \leftrightarrow E_{v}
$$

such that $\operatorname{Trace}(w, E)=\left.\operatorname{Trace}\left(T_{w}, E_{v}\right)\right|_{v \rightarrow 1}$ for all $w \in W$.
\mathbf{H} generic Iwahori-Hecke algebra of W over $\mathbb{Q}(v)$.
Basis $\left\{T_{w} \mid w \in W\right\} ; \quad T_{s}^{2}=T_{1}+\left(v-v^{-1}\right) T_{s} \quad$ for $s \in S$.

- Tits' Deformation Theorem: $v \rightarrow 1$ induces bijection

$$
\operatorname{lrr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \quad E \leftrightarrow E_{v}
$$

such that $\operatorname{Trace}(w, E)=\left.\operatorname{Trace}\left(T_{w}, E_{v}\right)\right|_{v \rightarrow 1}$ for all $w \in W$.

- $E \in \operatorname{Irr}(W) \rightsquigarrow D_{E} \in \mathbb{Q}[u]$ "generic degree" (where $u=v^{2}$).
$\left(D_{E}(q)=\right.$ dimension of principal series representation of $G\left(\mathbb{F}_{q}\right)$ corresponding to E.)
\mathbf{H} generic Iwahori-Hecke algebra of W over $\mathbb{Q}(v)$.
Basis $\left\{T_{w} \mid w \in W\right\} ; \quad T_{s}^{2}=T_{1}+\left(v-v^{-1}\right) T_{s} \quad$ for $s \in S$.
- Tits' Deformation Theorem: $v \rightarrow 1$ induces bijection

$$
\operatorname{Irr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \quad E \leftrightarrow E_{v}
$$

such that $\operatorname{Trace}(w, E)=\left.\operatorname{Trace}\left(T_{w}, E_{v}\right)\right|_{v \rightarrow 1}$ for all $w \in W$.

- $E \in \operatorname{Irr}(W) \rightsquigarrow D_{E} \in \mathbb{Q}[u]$ "generic degree" (where $u=v^{2}$).
$\left(D_{E}(q)=\right.$ dimension of principal series representation of $G\left(\mathbb{F}_{q}\right)$ corresponding to E.)
Lusztig's a-invariant:

$$
D_{E}=f_{E}^{-1} u^{\mathbf{a}_{E}}+\text { higher powers of } u
$$

where $\mathbf{a}_{E} \geqslant 0$ and $f_{E}>0$ are integers.
\mathbf{H} generic Iwahori-Hecke algebra of W over $\mathbb{Q}(v)$.
Basis $\left\{T_{w} \mid w \in W\right\} ; \quad T_{s}^{2}=T_{1}+\left(v-v^{-1}\right) T_{s} \quad$ for $s \in S$.

- Tits' Deformation Theorem: $v \rightarrow 1$ induces bijection

$$
\operatorname{lrr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \quad E \leftrightarrow E_{v}
$$

such that $\operatorname{Trace}(w, E)=\left.\operatorname{Trace}\left(T_{w}, E_{v}\right)\right|_{v \rightarrow 1}$ for all $w \in W$.

- $E \in \operatorname{lrr}(W) \rightsquigarrow D_{E} \in \mathbb{Q}[u]$ "generic degree" (where $u=v^{2}$).
$\left(D_{E}(q)=\right.$ dimension of principal series representation of $G\left(\mathbb{F}_{q}\right)$ corresponding to E.)
Lusztig's a-invariant:

$$
D_{E}=f_{E}^{-1} u^{\mathbf{a}_{E}}+\text { higher powers of } u
$$

where $\mathbf{a}_{E} \geqslant 0$ and $f_{E}>0$ are integers.

- D_{E} and, hence, \mathbf{a}_{E} and f_{E} are explicitly known in all cases.

Now: $v^{\mathbf{a} E} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

Now: $v^{\mathbf{a} E} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

Now: $v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

Now: $v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

$$
\sum_{w \in W} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cl}
f_{E} \operatorname{dim} E & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Now: $v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

$$
\sum_{w \in W} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cl}
f_{E} \operatorname{dim} E & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

- There are not many $w \in W$ such that $c_{w, E} \neq 0$:

Now: $v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

$$
\sum_{w \in W} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cl}
f_{E} \operatorname{dim} E & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

- There are not many $w \in W$ such that $c_{w, E} \neq 0$:
- $c_{w, E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.

Now: $v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

$$
\sum_{w \in W} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cl}
f_{E} \operatorname{dim} E & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

- There are not many $w \in W$ such that $c_{w, E} \neq 0$:
- $c_{w, E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.
- In particular: $w \in \mathcal{I}$ involution $\quad \Rightarrow \quad c_{w, E} \neq 0$ for some E.

Now: $v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{1(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

$$
\sum_{w \in W} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cl}
f_{E} \operatorname{dim} E & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

- There are not many $w \in W$ such that $c_{w, E} \neq 0$:
- $c_{w, E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.
- In particular: $w \in \mathcal{I}$ involution $\quad \Rightarrow \quad c_{w, E} \neq 0$ for some E.
- Refined orthogonality relations:

Now: $v^{\mathbf{a} E} \operatorname{Trace}\left(T_{w}, E_{v}\right) \in \mathbb{Z}[v]$ for all $w \in W$.

$$
c_{w, E}:=\text { constant term of }(-1)^{\prime(w)} v^{\mathbf{a}_{E}} \operatorname{Trace}\left(T_{w}, E_{v}\right)
$$

The numbers $c_{w, E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

- They behave as if there were character values of an algebra:

$$
\sum_{w \in W} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cc}
f_{E} \operatorname{dim} E & \text { if } E \cong E^{\prime}, \\
0 & \text { otherwise } .
\end{array}\right.
$$

- There are not many $w \in W$ such that $c_{w, E} \neq 0$:
- $c_{w, E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.
- In particular: $w \in \mathcal{I}$ involution $\quad \Rightarrow \quad c_{w, E} \neq 0$ for some E.
- Refined orthogonality relations: Let Γ be a left cell.

$$
\sum_{w \in \Gamma} c_{w, E} c_{w, E^{\prime}}=\left\{\begin{array}{cc}
f_{E}\langle[\Gamma], E\rangle_{w} & \text { if } E \cong E^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Define graph with vertices \mathcal{I}.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{Irr}(W)$.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2 -sided Kazhdan-Lusztig cell.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.

$$
"(1) \Rightarrow(2) "
$$

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) $\Rightarrow(2)$ " Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) $\Rightarrow(2)$ " Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) $\Rightarrow(2)$ " Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.
Refined orthogonality relations:

$$
\sum_{y \in \Gamma}\left(c_{y, E}\right)^{2}=f_{E}\langle[\Gamma], E\rangle_{W}
$$

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) \Rightarrow (2)" Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.
Refined orthogonality relations:

$$
\sum_{y \in \Gamma}\left(c_{y, E}\right)^{2}=f_{E}\langle[\Gamma], E\rangle_{w} \quad \Rightarrow \quad\langle[\Gamma], E\rangle_{w} \neq 0 .
$$

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) $\Rightarrow(2)$ " Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.
Refined orthogonality relations:

$$
\begin{array}{lll}
\sum_{y \in \Gamma}\left(c_{y, E}\right)^{2}=f_{E}\langle[\Gamma], E\rangle_{w} & \Rightarrow & \langle[\Gamma], E\rangle_{w} \neq 0 . \\
\sum_{y \in \Gamma^{\prime}}\left(c_{y, E}\right)^{2}=f_{E}\left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} & \Rightarrow & \left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} \neq 0 .
\end{array}
$$

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) $\Rightarrow(2)$ " Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.
Refined orthogonality relations:

$$
\begin{array}{lll}
\sum_{y \in \Gamma}\left(c_{y, E}\right)^{2}=f_{E}\langle[\Gamma], E\rangle_{w} & \Rightarrow & \langle[\Gamma], E\rangle_{w} \neq 0 . \\
\sum_{y \in \Gamma^{\prime}}\left(c_{y, E}\right)^{2}=f_{E}\left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} & \Rightarrow & \left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} \neq 0 .
\end{array}
$$

So $\left\langle[\Gamma],\left[\Gamma^{\prime}\right]\right\rangle w \neq 0$,

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) \Rightarrow (2)" Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.
Refined orthogonality relations:

$$
\begin{array}{llll}
\sum_{y \in \Gamma}\left(c_{y, E}\right)^{2}=f_{E}\langle[\Gamma], E\rangle_{w} & \Rightarrow & \langle[\Gamma], E\rangle_{w} \neq 0 . \\
\sum_{y \in \Gamma^{\prime}}\left(c_{y, E}\right)^{2}=f_{E}\left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} & \Rightarrow & \left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} \neq 0 .
\end{array}
$$

So $\left\langle[\Gamma],\left[\Gamma^{\prime}\right]\right\rangle_{w} \neq 0$, hence Γ, Γ^{\prime} are contained in the same 2 -sided cell.

Define graph with vertices \mathcal{I}. Two vertices $w \neq w^{\prime}$ in \mathcal{I} are connected if $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some $E \in \operatorname{lrr}(W)$.

Lemma. Let $w, w^{\prime} \in \mathcal{I}$. The following are equivalent.
(1) w, w^{\prime} are in the same connected component of this graph.
(2) w, w^{\prime} are in the same 2-sided Kazhdan-Lusztig cell.
"(1) \Rightarrow (2)" Can assume $c_{w, E} \neq 0$ and $c_{w^{\prime}, E} \neq 0$ for some E. Let Γ, Γ^{\prime} be the left cells such that $w \in \Gamma, w^{\prime} \in \Gamma^{\prime}$.
Refined orthogonality relations:

$$
\begin{array}{llll}
\sum_{y \in \Gamma}\left(c_{y, E}\right)^{2}=f_{E}\langle[\Gamma], E\rangle_{w} & \Rightarrow & \langle[\Gamma], E\rangle_{w} \neq 0 . \\
\sum_{y \in \Gamma^{\prime}}\left(c_{y, E}\right)^{2}=f_{E}\left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} & \Rightarrow & \left\langle\left[\Gamma^{\prime}\right], E\right\rangle_{w} \neq 0 .
\end{array}
$$

So $\left\langle[\Gamma],\left[\Gamma^{\prime}\right]\right\rangle_{w} \neq 0$, hence Γ, Γ^{\prime} are contained in the same 2 -sided cell.
" 2) $\Rightarrow(1)$ " A bit more complicated but similar.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$,

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[\ulcorner$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".
Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".
Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.
Let Γ be the left cell such that $w \in \Gamma$.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".
Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.
Let Γ be the left cell such that $w \in \Gamma$.
Let $E \in \operatorname{lrr}(W)$ be such that $c_{w, E} \neq 0$. As before: $\langle[\Gamma], E\rangle_{w} \neq 0$.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".
Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.
Let Γ be the left cell such that $w \in \Gamma$.
Let $E \in \operatorname{Irr}(W)$ be such that $c_{w, E} \neq 0$. As before: $\langle[\Gamma], E\rangle_{w} \neq 0$.
Then Theorem shows $c_{d_{r}, E} \neq 0$.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".
Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.
Let Γ be the left cell such that $w \in \Gamma$.
Let $E \in \operatorname{lrr}(W)$ be such that $c_{w, E} \neq 0$. As before: $\langle[\Gamma], E\rangle_{W} \neq 0$.
Then Theorem shows $c_{d r, E} \neq 0$. So w, d_{r} are connected in the graph.

Theorem (Lusztig 1986). Let Γ be a left cell in W.

- The function $\Gamma \rightarrow \mathbb{Z}, \quad w \mapsto I(w)-2 \operatorname{deg} P_{1, w}$, reaches its minimum at exactly one element of Γ, denoted d_{Γ}.
- The element d_{Γ} is an involution.
- The decomposition of [$[$] into irreducibles is determined by:

$$
\langle[\Gamma], E\rangle_{W}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

We set $\mathcal{D}:=\left\{d_{\Gamma} \mid \Gamma\right.$ left cell of $\left.W\right\} \quad$ "distinguished involutions".
Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.
Let Γ be the left cell such that $w \in \Gamma$.
Let $E \in \operatorname{lrr}(W)$ be such that $c_{w, E} \neq 0$. As before: $\langle[\Gamma], E\rangle_{W} \neq 0$.
Then Theorem shows $c_{d_{r}, E} \neq 0$. So w, d_{r} are connected in the graph.
(Implication " $(2) \Rightarrow(1)$ " of Lemma follows easily from this.)

Summary. The leading coefficients $c_{W, E}$ determine:

Summary. The leading coefficients $c_{W, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.

Summary. The leading coefficients $c_{W, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

Summary. The leading coefficients $c_{W, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\}
$$

Summary. The leading coefficients $c_{W, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\}
$$

- Given a left cell Γ, the decomposition of [Γ] into irreducibles:

$$
\langle[\Gamma], E\rangle_{E}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

Summary. The leading coefficients $c_{w, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\}
$$

- Given a left cell Γ, the decomposition of [Γ] into irreducibles:

$$
\langle[\Gamma], E\rangle_{E}=c_{d_{r}, E} \quad \text { for all } E \in \operatorname{Irr}(W)
$$

Theorem (Bonnafé-G., 2012). Assume W is of classical type. Let $C \in \mathrm{Cl}(\mathcal{I})$.

Summary. The leading coefficients $c_{w, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\}
$$

- Given a left cell Γ, the decomposition of [Γ] into irreducibles:

$$
\langle[\Gamma], E\rangle_{E}=c_{d_{r}, E} \quad \text { for all } E \in \operatorname{lrr}(W)
$$

Theorem (Bonnafé-G., 2012). Assume W is of classical type. Let $C \in \operatorname{Cl}(\mathcal{I})$. Let \mathcal{F} be a 2 -sided cell and $E_{0} \in \operatorname{lrr}(W)$ be the unique "special" representation corresponding to \mathcal{F}. Then

Summary. The leading coefficients $c_{w, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\}
$$

- Given a left cell Γ, the decomposition of [Γ] into irreducibles:

$$
\langle[\Gamma], E\rangle_{E}=c_{d r}, E \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

Theorem (Bonnafé-G., 2012). Assume W is of classical type.
Let $C \in \operatorname{Cl}(\mathcal{I})$. Let \mathcal{F} be a 2 -sided cell and $E_{0} \in \operatorname{Irr}(W)$ be the unique "special" representation corresponding to \mathcal{F}. Then

$$
|C \cap \Gamma| \operatorname{dim} E_{0}=|C \cap \mathcal{F}| \quad \text { for every left cell } \Gamma \subseteq \mathcal{F},
$$

Summary. The leading coefficients $c_{w, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\} .
$$

- Given a left cell Γ, the decomposition of $[\Gamma]$ into irreducibles:

$$
\langle[\Gamma], E\rangle_{E}=c_{d r, E} \quad \text { for all } E \in \operatorname{Irr}(W) .
$$

Theorem (Bonnafé-G., 2012). Assume W is of classical type.

Let $C \in \operatorname{Cl}(\mathcal{I})$. Let \mathcal{F} be a 2 -sided cell and $E_{0} \in \operatorname{lrr}(W)$ be the unique "special" representation corresponding to \mathcal{F}. Then

$$
|C \cap \Gamma| \operatorname{dim} E_{0}=|C \cap \mathcal{F}| \quad \text { for every left cell } \Gamma \subseteq \mathcal{F},
$$

and this is the key to proving Kottwitz' conjecture for classical type.

Summary. The leading coefficients $c_{W, E}$ determine:

- The partition of the set of involutions \mathcal{I} into 2 -sided cells.
- The set of distinguished involutions:

$$
\mathcal{D}=\left\{w \in W \mid \sum_{E \in \operatorname{lrr}(W)} f_{E}^{-1} c_{w, E} \neq 0\right\} .
$$

- Given a left cell Γ, the decomposition of $[\Gamma]$ into irreducibles:

$$
\langle[\Gamma], E\rangle_{E}=c_{d r, E} \quad \text { for all } E \in \operatorname{lrr}(W) .
$$

Theorem (Bonnafé-G., 2012). Assume W is of classical type.
Let $C \in \mathrm{Cl}(\mathcal{I})$. Let \mathcal{F} be a 2 -sided cell and $E_{0} \in \operatorname{lrr}(W)$ be the unique "special" representation corresponding to \mathcal{F}. Then

$$
|C \cap \Gamma| \operatorname{dim} E_{0}=|C \cap \mathcal{F}| \quad \text { for every left cell } \Gamma \subseteq \mathcal{F},
$$

and this is the key to proving Kottwitz' conjecture for classical type. (Global identity $|\mathcal{I} \cap \Gamma| \operatorname{dim} E_{0}=|\mathcal{I} \cap \mathcal{F}|$ due to Lusztig, 1985.)

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime}
$$

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:
$w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}w, w^{\prime} \text { in same component of graph },\end{array}\right.$

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph, } \\
w, \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S
\end{array}\right.
$$

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w / \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w, E}$ for $w \in \mathcal{I}$.

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w, E}$ for $w \in \mathcal{I}$.
- $\mid\left\{w \in W \mid c_{w, E} \neq 0\right.$ for some $\left.E\right\} \mid$

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w / \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w, E}$ for $w \in \mathcal{I}$.
- $\mid\left\{w \in W \mid c_{w, E} \neq 0\right.$ for some $\left.E\right\} \mid=\sum_{\Gamma}\langle[\Gamma],[\Gamma]\rangle_{w}=208422$.

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w J \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w, E}$ for $w \in \mathcal{I}$.
- $\mid\left\{w \in W \mid c_{w, E} \neq 0\right.$ for some $\left.E\right\} \mid=\sum_{\Gamma}\langle[\Gamma],[\Gamma]\rangle_{w}=208422$.
- $|\operatorname{lrr}(W)|=112$. So aiming at 208422×112 matrix of integers.

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w / \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w, E}$ for $w \in \mathcal{I}$.
- $\mid\left\{w \in W \mid c_{w, E} \neq 0\right.$ for some $\left.E\right\} \mid=\sum_{\Gamma}\langle[\Gamma],[\Gamma]\rangle_{W}=208422$.
- $|\operatorname{lrr}(W)|=112$. So aiming at 208422×112 matrix of integers.
- Lusztig (1987): $\left|c_{w, E}\right| \leqslant 8$ for all w, E. (Determined above matrix but without identifying elements of W labelling the rows.)

Theorem (Abbie Halls, 2012). Let W be of type E_{8}.

(1) Let $w, w^{\prime} \in \mathcal{I}$ be involutions. Then:

$$
w \sim_{L} w^{\prime} \Leftrightarrow\left\{\begin{array}{l}
w, w^{\prime} \text { in same component of graph } \\
w \sim_{L} w_{J}^{\prime} \text { for every proper } J \subset S \\
w, w^{\prime} \text { have same generalized } \tau \text {-invariant. }
\end{array}\right.
$$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w, E}$ for $w \in \mathcal{I}$.
- $\mid\left\{w \in W \mid c_{w, E} \neq 0\right.$ for some $\left.E\right\} \mid=\sum_{\Gamma}\langle[\Gamma],[\Gamma]\rangle_{W}=208422$.
- $|\operatorname{lrr}(W)|=112$. So aiming at 208422×112 matrix of integers.
- Lusztig (1987): $\left|c_{w, E}\right| \leqslant 8$ for all w, E. (Determined above matrix but without identifying elements of W labelling the rows.)
- Computation of this 208422×112 matrix $\left(c_{w, E}\right)$ takes about 3 weeks and 24 GB of main memory.

Let $C \in \mathrm{Cl}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.

Let $C \in \mathrm{Cl}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
 Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).

Let $C \in \mathrm{CI}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:
" $y=s w s$ for some $s \in S$ where $I(y) \leqslant I(w) . "$

Let $C \in \mathrm{Cl}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:
" $y=$ sws for some $s \in S$ where $I(y) \leqslant I(w) . "$
Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.

Let $C \in \mathrm{Cl}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:
" $y=$ sws for some $s \in S$ where $I(y) \leqslant I(w) . "$
Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.
(1) Let $w, w^{\prime} \in C_{\text {min }}$. Then $T_{w}, T_{w^{\prime}} \in \mathbf{H}$ are conjugate in \mathbf{H}.

Let $C \in \mathrm{Cl}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:
" $y=$ sws for some $s \in S$ where $I(y) \leqslant I(w) . "$
Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.
(1) Let $w, w^{\prime} \in C_{\text {min }}$. Then $T_{w}, T_{w^{\prime}} \in \mathbf{H}$ are conjugate in \mathbf{H}.
(2) Let $w \in C$. Then there exists some $y \in C_{\text {min }}$ such that $w \rightarrow y$.

Let $C \in \mathrm{CI}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:
" $y=$ sws for some $s \in S$ where $I(y) \leqslant I(w) . "$
Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.
(1) Let $w, w^{\prime} \in C_{\text {min }}$. Then $T_{w}, T_{w^{\prime}} \in \mathbf{H}$ are conjugate in \mathbf{H}.
(2) Let $w \in C$. Then there exists some $y \in C_{\text {min }}$ such that $w \rightarrow y$.
(1) \rightsquigarrow Fix $w_{C} \in C_{\text {min }}$ for all $C \in \mathrm{Cl}(W)$.

Let $C \in \mathrm{CI}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:
" $y=$ sws for some $s \in S$ where $I(y) \leqslant I(w) . "$
Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.
(1) Let $w, w^{\prime} \in C_{\text {min }}$. Then $T_{w}, T_{w^{\prime}} \in \mathbf{H}$ are conjugate in \mathbf{H}.
(2) Let $w \in C$. Then there exists some $y \in C_{\text {min }}$ such that $w \rightarrow y$.
(1) \rightsquigarrow Fix $w_{C} \in C_{\text {min }}$ for all $C \in \mathrm{Cl}(W)$. Character table:

$$
X(\mathbf{H}):=\left(\operatorname{Trace}\left(T_{w_{C}}, E_{V}\right)\right)_{E \in \operatorname{lr}(W), C \in \mathrm{Cl}(W)} .
$$

Let $C \in \mathrm{CI}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:

$$
\text { " } y=\text { sws for some } s \in S \text { where } I(y) \leqslant I(w) . "
$$

Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.
(1) Let $w, w^{\prime} \in C_{\text {min }}$. Then $T_{w}, T_{w^{\prime}} \in \mathbf{H}$ are conjugate in \mathbf{H}.
(2) Let $w \in C$. Then there exists some $y \in C_{\text {min }}$ such that $w \rightarrow y$.
(1) \rightsquigarrow Fix $w_{C} \in C_{\text {min }}$ for all $C \in \mathrm{Cl}(W)$. Character table:

$$
X(\mathbf{H}):=\left(\operatorname{Trace}\left(T_{W C}, E_{V}\right)\right)_{E \in \operatorname{lr}(W), C \in \mathrm{CI}(W)} .
$$

(2) \rightsquigarrow For any $w \in W$,

Let $C \in \mathrm{CI}(W)$ and set $d_{C}:=\min \{I(w) \mid w \in C\}$.
Let $C_{\text {min }}:=\left\{w \in C \mid I(w)=d_{C}\right\}$ (elements of minimal length in C).
For $y, w \in W$ write $w \rightarrow y$ for transitive closure of:

$$
\text { " } y=\text { sws for some } s \in S \text { where } I(y) \leqslant I(w) . "
$$

Theorem (G.-Pfeiffer, 1993). Let $C \in \mathrm{Cl}(W)$.
(1) Let $w, w^{\prime} \in C_{\text {min }}$. Then $T_{w}, T_{w^{\prime}} \in \mathbf{H}$ are conjugate in \mathbf{H}.
(2) Let $w \in C$. Then there exists some $y \in C_{\text {min }}$ such that $w \rightarrow y$.
(1) \rightsquigarrow Fix $w_{C} \in C_{\text {min }}$ for all $C \in \mathrm{Cl}(W)$. Character table:

$$
X(\mathbf{H}):=\left(\operatorname{Trace}\left(T_{w C}, E_{V}\right)\right)_{E \in \operatorname{lr}(W), C \in \operatorname{CI}(W)} .
$$

(2) \rightsquigarrow For any $w \in W$, there are unique $f_{w, c} \in \mathbb{Z}\left[v, v^{-1}\right]$ such that

$$
T_{w} \equiv \sum_{C \in \mathrm{Cl}(W)} f_{w, C} T_{w c} \quad \bmod [\mathbf{H}, \mathbf{H}] .
$$

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

	T_{1}	$T_{s_{1}}$	$T_{s_{1} s_{2}}$
$E_{v}^{(3)}$	1	v	v^{2}
$E_{v}^{(21)}$	2	$v-v^{-1}$	-1
$E_{v}^{(111)}$	1	$-v^{-1}$	v^{-2}

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

	T_{1}	$T_{s_{1}}$	$T_{s_{1} s_{2}}$
$E_{v}^{(3)}$	1	v	v^{2}
$E_{v}^{(21)}$	2	$v-v^{-1}$	-1
$E_{v}^{(111)}$	1	$-v^{-1}$	v^{-2}

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/
Let $w=s_{1} s_{2} s_{1}$.

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/
Let $w=s_{1} s_{2} s_{1}$. Then $w \rightarrow s_{2}$ via conjugation with s_{1}; furthermore, s_{2} conjugate to s_{1}.

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/
Let $w=s_{1} s_{2} s_{1}$. Then $w \rightarrow s_{2}$ via conjugation with s_{1}; furthermore, s_{2} conjugate to s_{1}. So

$$
T_{s_{1} \Sigma_{2} s_{1}} \equiv T_{s_{1}}+\left(v-v^{-1}\right) T_{s_{1} s_{2}} \quad \bmod [\mathbf{H}, \mathbf{H}] .
$$

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/
Let $w=s_{1} s_{2} s_{1}$. Then $w \rightarrow s_{2}$ via conjugation with s_{1}; furthermore, s_{2} conjugate to s_{1}. So

$$
T_{s_{1} \Sigma_{2} s_{1}} \equiv T_{s_{1}}+\left(v-v^{-1}\right) T_{s_{1} s_{2}} \quad \bmod [\mathbf{H}, \mathbf{H}] .
$$

Hence:
$\operatorname{Trace}\left(T_{s_{1} S_{2} S_{1}}, E_{v}^{(21)}\right)=$

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/
Let $w=s_{1} s_{2} s_{1}$. Then $w \rightarrow s_{2}$ via conjugation with s_{1}; furthermore, s_{2} conjugate to s_{1}. So

$$
T_{s_{1} \Sigma_{2} s_{1}} \equiv T_{s_{1}}+\left(v-v^{-1}\right) T_{s_{1} s_{2}} \quad \bmod [\mathbf{H}, \mathbf{H}] .
$$

Hence:
$\operatorname{Trace}\left(T_{s_{1} \text { 2SI }_{1}}, E_{v}^{(21)}\right)=v-v^{-1}+\left(v-v^{-1}\right)(-1)=0$

Example. $W\left(A_{2}\right)=\left\langle s_{1}, s_{2}\right\rangle \cong \mathfrak{S}_{3}$. Character tables:

	\mathbf{a}_{E}	1	s_{1}	$s_{1} s_{2}$
$E^{(3)}$	0	1	1	1
$E^{(21)}$	1	2	0	-1
$E^{(111)}$	3	1	-1	1

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/
Let $w=s_{1} s_{2} s_{1}$. Then $w \rightarrow s_{2}$ via conjugation with s_{1}; furthermore, s_{2} conjugate to s_{1}. So

$$
T_{s_{1} \Sigma_{2} s_{1}} \equiv T_{s_{1}}+\left(v-v^{-1}\right) T_{s_{1} s_{2}} \quad \bmod [\mathbf{H}, \mathbf{H}] .
$$

Hence:
$\operatorname{Trace}\left(T_{s_{1} 2_{2} s_{1}}, E_{v}^{(21)}\right)=v-v^{-1}+\left(v-v^{-1}\right)(-1)=0 \rightsquigarrow c_{s_{1} s_{2} s_{1}, E^{(21)}}=0$.

Recursive computation of the polynomials $f_{w, c}$ (induction on $l(w)$).

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\}
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\}
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, c}
$$

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\}
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, c}=f_{s y s, C}+\left(v-v^{-1}\right) f_{s y, c} \quad \text { for all } C \in \mathrm{Cl}(W)
$$

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, C}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, c} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, C}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, c} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.
(3) $w \in C_{\min }^{\prime}$ for some $C^{\prime} \in \mathrm{Cl}(W)$.

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).
Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, C}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, C} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.
(2) $w \in C_{\min }^{\prime}$ for some $C^{\prime} \in \mathrm{CI}(W)$. Identify C^{\prime}; then $f_{w, c}=\delta_{C, C^{\prime}}$.

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).

Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, c}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, c} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.
(2) $w \in C_{\text {min }}^{\prime}$ for some $C^{\prime} \in \mathrm{CI}(W)$. Identify C^{\prime}; then $f_{w, c}=\delta_{C, c^{\prime}}$.

If $I(w)=m$, "only" need to know all f_{y}, c where $I(y)=m-1, m-2$.

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).

Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, C}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, C} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.
(2) $w \in C_{\text {min }}^{\prime}$ for some $C^{\prime} \in \mathrm{Cl}(W)$. Identify C^{\prime}; then $f_{w, c}=\delta_{C, c^{\prime}}$.

If $I(w)=m$, "only" need to know all $f_{y, c}$ where $I(y)=m-1, m-2$.
Worst case in E_{8} : 18210722 elements of length 60.

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).

Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I(s y s)<I(y)$. Then

$$
f_{w, c}=f_{y, C}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, C} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.
(2) $w \in C_{\text {min }}^{\prime}$ for some $C^{\prime} \in \mathrm{Cl}(W)$. Identify C^{\prime}; then $f_{w, c}=\delta_{C, c^{\prime}}$.

If $I(w)=m$, "only" need to know all f_{y}, c where $I(y)=m-1, m-2$.
Worst case in E_{8} : 18210722 elements of length 60.
A priori $\approx 112 \times 2 \times 18000000 \approx 4 \times 10^{9}$ polynomials required.

Recursive computation of the polynomials $f_{w, c}$ (induction on $I(w)$).

Given $w \in W$, compute the "cyclic shift orbit"

$$
\operatorname{Cyc}(w)=\{y \in W \mid w \rightarrow y \text { and } I(w)=I(y)\} .
$$

(1) For some $y \in \operatorname{Cyc}(w)$ and $s \in S$ we have $I($ sys $)<I(y)$. Then

$$
f_{w, c}=f_{y, c}=f_{s y s, c}+\left(v-v^{-1}\right) f_{s y, c} \quad \text { for all } C \in \mathrm{Cl}(W) .
$$

Note: $I($ sy $)=I(w)-1$ and $I($ sys $)=I(w)-2$. Apply induction.
(2) $w \in C_{\text {min }}^{\prime}$ for some $C^{\prime} \in \mathrm{Cl}(W)$. Identify C^{\prime}; then $f_{w, c}=\delta_{C, c^{\prime}}$.

If $I(w)=m$, "only" need to know all f_{y}, c where $I(y)=m-1, m-2$.
Worst case in E_{8} : 18210722 elements of length 60 .
A priori $\approx 112 \times 2 \times 18000000 \approx 4 \times 10^{9}$ polynomials required. Use: $f_{w, c}=f_{w^{\prime}, c}$ if $w^{\prime} \in \operatorname{Cyc}(w)$. Gain factor ≈ 100.
Python 2.7.4 (default, Apr 19 2013, 18:28:01)
[GCC 4.7.3] on linux2
\#
\#\# A PYTHON VERSION OF CHEVIE-GAP FOR (FINITE) COXETER GROUPS \#\#
\#\# (by Meinolf Geck, version 1r6p18, 20 Dec 2012) \#\#
\#\# \#\#
\#\# To get started type "help(coxeter)" or "allfunctions()"; \#\#
\#\# see also http://dx.doi.org/10.1112/S1461157012001064. \#\#
\#\# For notes about this version type "versioninfo(1.6)". \#\#
\#\# Check www.mathematik.uni-stuttgart.de/ ${ }^{\sim}$ geckmf for updates. \#\#
\#\# \#\#
\#\# Import into "sage" (4.7 or higher, www.sagemath.org) works. \#\#
\#\# \#\#
\#\# The proposed name for this module is "PyCox". \#\#
\#\# All comments welcome!\#

