Verifying Kottwitz' conjecture by computer, II

Meinolf Geck

Universität Stuttgart

Salt Lake City, July 2013

1

590

<ロト <回ト < 三ト < 三ト

 $R.\ KOTTWITZ,\ "Involutions in Weyl groups".$

(Both in Representation Theory 4, 2000.)

200

イロト イポト イヨト イヨト 三日

 $R.\ KOTTWITZ,\ "Involutions in Weyl groups".$

(Both in Representation Theory 4, 2000.)

W finite Weyl group, *S* simple reflections, $\mathcal{I} = \{ w \in W \mid w^2 = 1 \}$. *V* Q-vector space with basis $\{ a_w \mid w \in \mathcal{I} \}$.

 $R.\ KOTTWITZ,\ "Involutions in Weyl groups".$

(Both in Representation Theory 4, 2000.)

W finite Weyl group, *S* simple reflections, $\mathcal{I} = \{w \in W \mid w^2 = 1\}$. *V* Q-vector space with basis $\{a_w \mid w \in \mathcal{I}\}$. Kottwitz \rightsquigarrow linear action of *W* on *V*:

$$s.a_w = \left\{ egin{array}{ll} -a_w & ext{if } sw = ws ext{ and } l(sw) < l(w), \ a_{sws} & ext{otherwise.} \end{array}
ight.$$

(Formulation of Lusztig–Vogan, 2011.)

 $R.\ KOTTWITZ,\ "Involutions in Weyl groups".$

(Both in Representation Theory 4, 2000.)

W finite Weyl group, *S* simple reflections, $\mathcal{I} = \{w \in W \mid w^2 = 1\}$. *V* Q-vector space with basis $\{a_w \mid w \in \mathcal{I}\}$. Kottwitz \rightsquigarrow linear action of *W* on *V*:

$$s.a_w = \left\{ egin{array}{ll} -a_w & ext{if } sw = ws ext{ and } l(sw) < l(w), \ a_{sws} & ext{otherwise.} \end{array}
ight.$$

(Formulation of Lusztig-Vogan, 2011.)

 $Cl(\mathcal{I})$ conjugacy classes in \mathcal{I} . For $C \in Cl(\mathcal{I})$ let $V_C = \langle a_w \mid w \in C \rangle$.

 $R.\ KOTTWITZ,\ "Involutions in Weyl groups".$

(Both in Representation Theory 4, 2000.)

W finite Weyl group, *S* simple reflections, $\mathcal{I} = \{w \in W \mid w^2 = 1\}$. *V* Q-vector space with basis $\{a_w \mid w \in \mathcal{I}\}$. Kottwitz \rightsquigarrow linear action of *W* on *V*:

$$s.a_w = \left\{ egin{array}{ll} -a_w & ext{if } sw = ws ext{ and } l(sw) < l(w), \ a_{sws} & ext{otherwise.} \end{array}
ight.$$

(Formulation of Lusztig-Vogan, 2011.)

 $Cl(\mathcal{I})$ conjugacy classes in \mathcal{I} . For $C \in Cl(\mathcal{I})$ let $V_C = \langle a_w \mid w \in C \rangle$. Then $V = \bigoplus_{C \in Cl(\mathcal{I})} V_C$ and decomposition into irreducibles is known (Kottwitz: W classical; Casselman: W exceptional).

1

200

<ロト <回ト < 三ト < 三ト

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_q .

3

590

イロト イポト イヨト イヨト

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_q . For $w \in W$, let R_w be the virtual character of $G(\mathbb{F}_q)$ defined by Deligne-Lusztig.

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_q . For $w \in W$, let R_w be the virtual character of $G(\mathbb{F}_q)$ defined by Deligne-Lusztig. For $E \in Irr(W)$ let

$$R_E := |W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_w.$$

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_q . For $w \in W$, let R_w be the virtual character of $G(\mathbb{F}_q)$ defined by Deligne-Lusztig. For $E \in Irr(W)$ let

$$R_E := |W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_w.$$

Kottwitz (+ Casselman), Lusztig–Vogan (reformulation). $\langle V, E \rangle_W =$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_q . For $w \in W$, let R_w be the virtual character of $G(\mathbb{F}_q)$ defined by Deligne-Lusztig. For $E \in Irr(W)$ let

$$R_E := |W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_w.$$

Kottwitz (+ Casselman), Lusztig–Vogan (reformulation). $\langle V, E \rangle_W = \sum_{\rho \in Irr(G(\mathbb{F}_q))} \underbrace{\nu(\rho)}_{\text{Frobenius-Schur indicator}} \cdot \underbrace{\langle \rho, R_E \rangle_{G(\mathbb{F}_q)}}_{\text{Lusztig's orange book}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let G be a connected reductive algebraic group with Weyl group W, defined and split over \mathbb{F}_q . For $w \in W$, let R_w be the virtual character of $G(\mathbb{F}_q)$ defined by Deligne-Lusztig. For $E \in Irr(W)$ let

$$R_E := |W|^{-1} \sum_{w \in W} \operatorname{Trace}(w, E) R_w.$$

G.-Malle, Represent. Theory 17 (2013):

Extension to "twisted" involution module and non-split groups.

Meinolf Geck (Universität Stuttgart)

Kottwitz' conjecture

Salt Lake City, July 2013 3 / 15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

3

DQC

イロト イヨト イヨト

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then

- 12

590

イロト イヨト イヨト

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

• Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda}$

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

 $I Kottwitz: V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

- Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$
- Left cells given by Robinson–Schensted correspondence:
 ${Γ_T | T standard λ-tableau for some λ ⊢ n}.$

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

- Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$
- ② Left cells given by Robinson–Schensted correspondence: $\{\Gamma_{\mathbb{T}} \mid \mathbb{T} \text{ standard } \lambda\text{-tableau for some } \lambda \vdash n\}.$
- (1), (2) \Rightarrow Both sides are 0 or 1.

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

- Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$
- Left cells given by Robinson–Schensted correspondence: $\{\Gamma_{\mathbb{T}} \mid \mathbb{T} \text{ standard } \lambda\text{-tableau for some } \lambda \vdash n\}.$
- (1), (2) \Rightarrow Both sides are 0 or 1. These match up since:

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

- Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$
- Left cells given by Robinson–Schensted correspondence:
 ${Γ_T | T standard λ-tableau for some λ ⊢ n}.$
- (1), (2) \Rightarrow Both sides are 0 or 1. These match up since:
 - \mathbb{T}, \mathbb{T}' have shape $\lambda \implies [\Gamma_{\mathbb{T}}] \cong [\Gamma_{\mathbb{T}'}] \cong E^{\lambda}$.

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

- Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$
- **2** Left cells given by Robinson–Schensted correspondence: $\{\Gamma_{\mathbb{T}} \mid \mathbb{T} \text{ standard } \lambda\text{-tableau for some } \lambda \vdash n\}.$
- (1), (2) \Rightarrow Both sides are 0 or 1. These match up since:
 - $\blacktriangleright \ \mathbb{T}, \mathbb{T}' \text{ have shape } \lambda \quad \Rightarrow \quad [\Gamma_{\mathbb{T}}] \cong [\Gamma_{\mathbb{T}'}] \cong E^{\lambda}.$
 - All involutions in a given 2-sided cell are contained in one conjugacy class C ∈ Cl(I) (Schützenberger, 1976).

Let $C \in Cl(\mathcal{I})$ and $\Gamma \subseteq W$ be a Kazhdan–Lusztig left cell. Then $\langle V_C, [\Gamma] \rangle_W = |C \cap \Gamma|$, where $[\Gamma] = W$ -module carried by Γ .

Example: $W = \mathfrak{S}_n$.

- Kottwitz: $V_C \cong \bigoplus_{\lambda \vdash n : w_{\lambda^*} \in C} E^{\lambda} \Rightarrow V \cong \bigoplus_{\lambda \vdash n} E^{\lambda}.$
- **2** Left cells given by Robinson–Schensted correspondence: $\{\Gamma_{\mathbb{T}} \mid \mathbb{T} \text{ standard } \lambda\text{-tableau for some } \lambda \vdash n\}.$
- (1), (2) \Rightarrow Both sides are 0 or 1. These match up since:
 - \mathbb{T}, \mathbb{T}' have shape $\lambda \implies [\Gamma_{\mathbb{T}}] \cong [\Gamma_{\mathbb{T}'}] \cong E^{\lambda}$.
 - All involutions in a given 2-sided cell are contained in one conjugacy class C ∈ Cl(I) (Schützenberger, 1976).
 - If \mathbb{T} has shape λ and $C \cap \Gamma_{\mathbb{T}} \neq \emptyset$, then $w_{\lambda^*} \in C$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Casselman: Checked conjecture for F_4 and E_6 ; similar methods: E_7 . (Explicit computation of all left cells possible in these cases.)

1

590

<ロト <回ト < 三ト < 三ト

1

590

(日) (四) (三) (三)

Remaining case: type E_8 .

- 1

イロト イポト イヨト イヨト

DQA

Remaining case: type E_8 .

- $|\mathcal{I}| = 199~952$ involutions, in 10 conjugacy classes;
- V_C for each $C \in Cl(\mathcal{I})$ known from Casselman's computations.

1

イロト イポト イヨト イヨト

200

Remaining case: type E_8 .

- $|\mathcal{I}| = 199~952$ involutions, in 10 conjugacy classes;
- V_C for each $C \in Cl(\mathcal{I})$ known from Casselman's computations.
- 101 796 left cells, 46 two-sided cells.
- The vectors $(\langle [\Gamma], E \rangle_W)_{E \in Irr(W)}$ are known (Lusztig 1986).

Remaining case: type E_8 .

- $|\mathcal{I}| = 199~952$ involutions, in 10 conjugacy classes;
- V_C for each $C \in Cl(\mathcal{I})$ known from Casselman's computations.
- 101 796 left cells, 46 two-sided cells.
- The vectors $(\langle [\Gamma], E \rangle_W)_{E \in Irr(W)}$ are known (Lusztig 1986).

Problem: We need to know partition of \mathcal{I} into left cells, but E_8 is too big to compute systematically Kazhdan–Lusztig polynomials $P_{y,w}$.

590

Remaining case: type E_8 .

- $|\mathcal{I}| = 199~952$ involutions, in 10 conjugacy classes;
- V_C for each $C \in Cl(\mathcal{I})$ known from Casselman's computations.
- 101 796 left cells, 46 two-sided cells.
- The vectors $(\langle [\Gamma], E \rangle_W)_{E \in Irr(W)}$ are known (Lusztig 1986).

Problem: We need to know partition of \mathcal{I} into left cells, but E_8 is too big to compute systematically Kazhdan–Lusztig polynomials $P_{y,w}$.

Main tool (both for handling B_n , D_n and E_8): Lusztig's theory of "Leading coefficients of character values of Hecke algebras" (1987).

H generic lwahori–Hecke algebra of W over $\mathbb{Q}(v)$. Basis $\{T_w \mid w \in W\}$; $T_s^2 = T_1 + (v - v^{-1})T_s$ for $s \in S$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

H generic Iwahori–Hecke algebra of W over $\mathbb{Q}(v)$.

 $\text{Basis } \{T_w \mid w \in W\}; \qquad T_s^2 = T_1 + (v - v^{-1})T_s \quad \text{ for } s \in S.$

• Tits' Deformation Theorem: $v \rightarrow 1$ induces bijection

 $\operatorname{Irr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \qquad E \leftrightarrow E_v$

H generic Iwahori–Hecke algebra of W over $\mathbb{Q}(v)$.

 $\text{Basis } \{T_w \mid w \in W\}; \qquad T_s^2 = T_1 + (v - v^{-1})T_s \quad \text{ for } s \in S.$

ullet Tits' Deformation Theorem: $\nu \to 1$ induces bijection

 $\operatorname{Irr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \qquad E \leftrightarrow E_v$

such that $\operatorname{Trace}(w, E) = \operatorname{Trace}(T_w, E_v)|_{v \to 1}$ for all $w \in W$.

H generic Iwahori–Hecke algebra of W over $\mathbb{Q}(v)$.

 $\text{Basis } \{T_w \mid w \in W\}; \qquad T_s^2 = T_1 + (v - v^{-1})T_s \quad \text{ for } s \in S.$

ullet Tits' Deformation Theorem: $\nu \to 1$ induces bijection

 $\operatorname{Irr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \qquad E \leftrightarrow E_v$

such that $\operatorname{Trace}(w, E) = \operatorname{Trace}(T_w, E_v)|_{v \to 1}$ for all $w \in W$.

E ∈ Irr(W) → D_E ∈ Q[u] "generic degree" (where u = v²).
 (D_E(q) = dimension of principal series representation of G(𝔅_q) corresponding to E.)

H generic Iwahori–Hecke algebra of W over $\mathbb{Q}(v)$.

 $\text{Basis } \{T_w \mid w \in W\}; \qquad T_s^2 = T_1 + (v - v^{-1})T_s \quad \text{ for } s \in S.$

ullet Tits' Deformation Theorem: $\nu \to 1$ induces bijection

 $\operatorname{Irr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \qquad E \leftrightarrow E_v$

such that $\operatorname{Trace}(w, E) = \operatorname{Trace}(T_w, E_v)|_{v \to 1}$ for all $w \in W$.

• $E \in Irr(W) \rightsquigarrow D_E \in \mathbb{Q}[u]$ "generic degree" (where $u = v^2$). ($D_E(q)$ = dimension of principal series representation

of $G(\mathbb{F}_q)$ corresponding to E.)

Lusztig's a-invariant:

$$D_E = f_E^{-1} u^{\mathbf{a}_E} + \text{higher powers of } u$$

where $\mathbf{a}_E \ge 0$ and $f_E > 0$ are integers.

H generic Iwahori–Hecke algebra of W over $\mathbb{Q}(v)$.

 $\mathsf{Basis}\ \{T_w\mid w\in W\}; \qquad T_s^2=T_1+(v-v^{-1})T_s \quad \text{ for } s\in S.$

 $\bullet\,$ Tits' Deformation Theorem: $\nu \rightarrow 1$ induces bijection

 $\operatorname{Irr}(W) \longleftrightarrow \operatorname{Irr}(\mathbf{H}), \qquad E \leftrightarrow E_v$

such that $\operatorname{Trace}(w, E) = \operatorname{Trace}(T_w, E_v)|_{v \to 1}$ for all $w \in W$.

• $E \in Irr(W) \rightsquigarrow D_E \in \mathbb{Q}[u]$ "generic degree" (where $u = v^2$). ($D_E(q) =$ dimension of principal series representation

$$G_E(q) =$$
 dimension of principal series representation of $G(\mathbb{F}_q)$ corresponding to E .)

Lusztig's a-invariant:

$$D_E = f_E^{-1} u^{\mathbf{a}_E} + \text{higher powers of } u$$

where $\mathbf{a}_E \ge 0$ and $f_E > 0$ are integers.

• D_E and, hence, \mathbf{a}_E and f_E are explicitly known in all cases.

590

<ロト <回ト < 三ト < 三ト

590

 $c_{w,E} := \text{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

590

Now: $v^{\mathbf{a}_{\mathcal{E}}} \operatorname{Trace}(T_w, E_v) \in \mathbb{Z}[v]$ for all $w \in W$.

 $c_{w,E} := ext{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

590

イロト イポト イヨト イヨト 三日

$$c_{w,E} := \text{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

$$\sum_{w \in W} c_{w,E} c_{w,E'} = \begin{cases} f_E \dim E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

590

<ロ> (四) (四) (三) (三) (三)

$$c_{w,E} := \text{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

$$\sum_{w \in W} c_{w,E} c_{w,E'} = \begin{cases} f_E \dim E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

• There are not many $w \in W$ such that $c_{w,E} \neq 0$:

590

(日)(同)((三)((三)(-)))

 $c_{w,E}$:= constant term of $(-1)^{l(w)} v^{\mathbf{a}_E}$ Trace (T_w, E_v)

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

$$\sum_{w \in W} c_{w,E} c_{w,E'} = \begin{cases} f_E \dim E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

- There are not many $w \in W$ such that $c_{w,E} \neq 0$:
 - $c_{w,E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

 $c_{w,E} := \text{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

$$\sum_{w \in W} c_{w,E} c_{w,E'} = \begin{cases} f_E \dim E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

- There are not many $w \in W$ such that $c_{w,E} \neq 0$:
 - $c_{w,E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.
 - ▶ In particular: $w \in \mathcal{I}$ involution $\Rightarrow c_{w,E} \neq 0$ for some E.

 $c_{w,E} := \text{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

$$\sum_{w \in W} c_{w,E} c_{w,E'} = \begin{cases} f_E \dim E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

- There are not many $w \in W$ such that $c_{w,E} \neq 0$:
 - $c_{w,E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.
 - ▶ In particular: $w \in \mathcal{I}$ involution $\Rightarrow c_{w,E} \neq 0$ for some E.
- Refined orthogonality relations:

$$c_{w,E} := \text{constant term of } (-1)^{l(w)} v^{\mathbf{a}_E} \operatorname{Trace}(T_w, E_v)$$

The numbers $c_{w,E} \in \mathbb{Z}$ are Lusztig's "leading coefficients".

• They behave as if there were character values of an algebra:

$$\sum_{w \in W} c_{w,E} c_{w,E'} = \begin{cases} f_E \dim E & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

- There are not many $w \in W$ such that $c_{w,E} \neq 0$:
 - $c_{w,E} \neq 0$ for some $E \quad \Leftrightarrow \quad w, w^{-1}$ are in the same left cell.
 - ▶ In particular: $w \in \mathcal{I}$ involution $\Rightarrow c_{w,E} \neq 0$ for some E.
- Refined orthogonality relations: Let Γ be a left cell.

Meinolf Ge

$$\sum_{w \in \Gamma} c_{w,E} c_{w,E'} = \begin{cases} f_E \langle [\Gamma], E \rangle_W & \text{if } E \cong E', \\ 0 & \text{otherwise.} \end{cases}$$

Define graph with vertices \mathcal{I} .

1

5900

イロト イヨト イヨト イヨト

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

(w, w' are in the same connected component of this graph.

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

- W, w' are in the same connected component of this graph.
- @ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

W, w' are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

 $(1) \Rightarrow (2)$

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

• w, w' are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some E.

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

- **(**w, w' are in the same connected component of this graph.
- @ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some E. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$.

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

() w, w' are in the same connected component of this graph.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some *E*. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$. Refined orthogonality relations:

$$\sum_{y\in\Gamma}(c_{y,E})^2=f_E\,\langle[\Gamma],E
angle_W$$

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

• w, w' are in the same connected component of this graph.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some *E*. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$. Refined orthogonality relations:

$$\sum_{y\in\Gamma} (c_{y,E})^2 = f_E \langle [\Gamma], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma], E \rangle_W \neq 0.$$

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

- **(**) w, w' are in the same connected component of this graph.
- @ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some *E*. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$. Refined orthogonality relations:

$$\sum_{y\in\Gamma} (c_{y,E})^2 = f_E \langle [\Gamma], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma], E \rangle_W \neq 0.$$
$$\sum_{y\in\Gamma'} (c_{y,E})^2 = f_E \langle [\Gamma'], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma'], E \rangle_W \neq 0.$$

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

- w, w' are in the same connected component of this graph.
- @ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some *E*. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$. Refined orthogonality relations:

$$\begin{split} \sum_{y\in\Gamma} (c_{y,E})^2 &= f_E \langle [\Gamma], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma], E \rangle_W \neq 0. \\ \sum_{y\in\Gamma'} (c_{y,E})^2 &= f_E \langle [\Gamma'], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma'], E \rangle_W \neq 0. \\ \text{So } \langle [\Gamma], [\Gamma'] \rangle_W \neq 0, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

• w, w' are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some E. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$. Refined orthogonality relations:

$$\sum_{y \in \Gamma} (c_{y,E})^2 = f_E \langle [\Gamma], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma], E \rangle_W \neq 0.$$
$$\sum_{y \in \Gamma'} (c_{y,E})^2 = f_E \langle [\Gamma'], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma'], E \rangle_W \neq 0.$$

So $\langle [\Gamma], [\Gamma'] \rangle_W \neq 0$, hence Γ, Γ' are contained in the same 2-sided cell.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Lemma. Let $w, w' \in \mathcal{I}$. The following are equivalent.

• w, w' are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan–Lusztig cell.

"(1) \Rightarrow (2)" Can assume $c_{w,E} \neq 0$ and $c_{w',E} \neq 0$ for some E. Let Γ, Γ' be the left cells such that $w \in \Gamma, w' \in \Gamma'$. Refined orthogonality relations:

 $\sum_{y \in \Gamma} (c_{y,E})^2 = f_E \langle [\Gamma], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma], E \rangle_W \neq 0.$ $\sum_{y \in \Gamma'} (c_{y,E})^2 = f_E \langle [\Gamma'], E \rangle_W \qquad \Rightarrow \qquad \langle [\Gamma'], E \rangle_W \neq 0.$ So $\langle [\Gamma], [\Gamma'] \rangle_W \neq 0$, hence Γ, Γ' are contained in the same 2-sided cell. "(2) \Rightarrow (1)" A bit more complicated but similar.

Meinolf Geck (Universität Stuttgart)

1

590

・ロト ・回ト ・ヨト ・ヨト

• The function $\Gamma o \mathbb{Z}$, $w \mapsto I(w) - 2 \deg P_{1,w}$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• The function $\Gamma \to \mathbb{Z}$, $w \mapsto I(w) - 2 \deg P_{1,w}$,

reaches its minimum at exactly one element of Γ , denoted d_{Γ} .

200

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.

200

イロト イポト イヨト イヨト 三日

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.
- The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.

• The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.
- The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.
- The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

Let Γ be the left cell such that $w \in \Gamma$.

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.
- The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

Let Γ be the left cell such that $w \in \Gamma$. Let $E \in Irr(W)$ be such that $c_{w,E} \neq 0$. As before: $\langle [\Gamma], E \rangle_W \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.
- The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

Let Γ be the left cell such that $w \in \Gamma$. Let $E \in Irr(W)$ be such that $c_{w,E} \neq 0$. As before: $\langle [\Gamma], E \rangle_W \neq 0$. Then Theorem shows $c_{d_{\Gamma},E} \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

- The function Γ → Z, w ↦ l(w) 2 deg P_{1,w}, reaches its minimum at exactly one element of Γ, denoted d_Γ.
- The element d_{Γ} is an involution.
- The decomposition of $[\Gamma]$ into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

Let Γ be the left cell such that $w \in \Gamma$.

Let $E \in Irr(W)$ be such that $c_{w,E} \neq 0$. As before: $\langle [\Gamma], E \rangle_W \neq 0$.

Then Theorem shows $c_{d_{\Gamma},E} \neq 0$. So w, d_{Γ} are connected in the graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

- The function $\Gamma \to \mathbb{Z}$, $w \mapsto l(w) 2 \deg P_{1,w}$, reaches its minimum at exactly one element of Γ , denoted d_{Γ} .
- The element d_{Γ} is an involution.
- The decomposition of [Γ] into irreducibles is determined by: $\langle [\Gamma], E \rangle_W = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

We set $\mathcal{D} := \{ d_{\Gamma} \mid \Gamma \text{ left cell of } W \}$ "distinguished involutions".

Consequence: Each $w \in \mathcal{I}$ is directly connected to some $d \in \mathcal{D}$.

Let Γ be the left cell such that $w \in \Gamma$.

Let $E \in Irr(W)$ be such that $c_{w,E} \neq 0$. As before: $\langle [\Gamma], E \rangle_W \neq 0$.

Then Theorem shows $c_{d_{\Gamma},E} \neq 0$. So w, d_{Γ} are connected in the graph.

(Implication "(2) \Rightarrow (1)" of Lemma follows easily from this.) 三▶ ▲ 三▶ 三三 - - のへ(や

3

5900

・ロト ・回ト ・ヨト ・ヨト

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

3

590

<ロト <回ト < 三ト < 三ト

- The partition of the set of involutions $\mathcal I$ into 2-sided cells.
- The set of distinguished involutions:

3

590

(4) (E) (A) (E) (A)

< A

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

3

590

(4) (E) (A) (E) (A)

< A

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

• Given a left cell Γ, the decomposition of [Γ] into irreducibles:

$$\langle [\Gamma], E \rangle_E = c_{d_{\Gamma}, E}$$
 for all $E \in Irr(W)$.

3

San

A B K A B K

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

• Given a left cell Γ, the decomposition of [Γ] into irreducibles:

$$\langle [\Gamma], E \rangle_E = c_{d_{\Gamma}, E}$$
 for all $E \in Irr(W)$.

Theorem (Bonnafé–G., 2012). Assume W is of classical type. Let $C \in Cl(\mathcal{I})$.

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

• Given a left cell $\Gamma,$ the decomposition of $[\Gamma]$ into irreducibles:

$$\langle [\Gamma], E \rangle_E = c_{d_{\Gamma}, E}$$
 for all $E \in Irr(W)$.

Theorem (Bonnafé–G., 2012). Assume W is of classical type. Let $C \in Cl(\mathcal{I})$. Let \mathcal{F} be a 2-sided cell and $E_0 \in Irr(W)$ be the unique "special" representation corresponding to \mathcal{F} . Then

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

• Given a left cell Γ , the decomposition of $[\Gamma]$ into irreducibles:

$$\langle [\Gamma], E
angle_E = c_{d_{\Gamma}, E}$$
 for all $E \in Irr(W)$.

Theorem (Bonnafé–G., 2012). Assume W is of classical type. Let $C \in Cl(\mathcal{I})$. Let \mathcal{F} be a 2-sided cell and $E_0 \in Irr(W)$ be the unique "special" representation corresponding to \mathcal{F} . Then $|C \cap \Gamma| \dim E_0 = |C \cap \mathcal{F}|$ for every left cell $\Gamma \subseteq \mathcal{F}$,

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

• Given a left cell Γ , the decomposition of $[\Gamma]$ into irreducibles: $\langle [\Gamma], E \rangle_E = c_{d_{\Gamma}, E}$ for all $E \in Irr(W)$.

Theorem (Bonnafé–G., 2012). Assume W is of classical type. Let $C \in Cl(\mathcal{I})$. Let \mathcal{F} be a 2-sided cell and $E_0 \in Irr(W)$ be the unique "special" representation corresponding to \mathcal{F} . Then $|C \cap \Gamma| \dim E_0 = |C \cap \mathcal{F}|$ for every left cell $\Gamma \subseteq \mathcal{F}$, and this is the key to proving Kottwitz' conjecture for classical type.

• The partition of the set of involutions $\mathcal I$ into 2-sided cells.

• The set of distinguished involutions:

$$\mathcal{D} = \Big\{ w \in W \ \Big| \sum_{E \in \mathsf{Irr}(W)} f_E^{-1} c_{w,E} \neq 0 \Big\}.$$

• Given a left cell Γ , the decomposition of $[\Gamma]$ into irreducibles: $\langle [\Gamma], E \rangle_E = c_{d_{\Gamma},E}$ for all $E \in Irr(W)$.

Theorem (Bonnafé–G., 2012). Assume W is of classical type. Let $C \in Cl(\mathcal{I})$. Let \mathcal{F} be a 2-sided cell and $E_0 \in Irr(W)$ be the unique "special" representation corresponding to \mathcal{F} . Then $|C \cap \Gamma| \dim E_0 = |C \cap \mathcal{F}|$ for every left cell $\Gamma \subseteq \mathcal{F}$, and this is the key to proving Kottwitz' conjecture for classical type. (Global identity $|\mathcal{I} \cap \Gamma| \dim E_0 = |\mathcal{I} \cap \mathcal{F}|$ due to Lusztig, 1985.)

Meinolf Geck (Universität Stuttgart)

1

590

イロト イヨト イヨト

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w'$

200

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \left\{ \right.$

w, w' in same component of graph,

- 12

500

→ Ξ → < Ξ →</p>

Image: Image:

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

(w, w' in same component of graph,

$$w \sim_L w' \Leftrightarrow \{ w_J \sim_L w'_J \text{ for every proper } J \subset S, \}$$

590

イロト イポト イヨト イヨト 三日

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } au\text{-invariant.} \end{cases}$

イロト イポト イヨト イヨト 三日

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } \tau\text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

San

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } \tau\text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

• Need to know all leading coefficients $c_{w,E}$ for $w \in \mathcal{I}$.

DQA

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } au\text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

• Need to know all leading coefficients $c_{w,E}$ for $w \in \mathcal{I}$.

•
$$|\{w \in W \mid c_{w,E} \neq 0 \text{ for some } E\}|$$

DQA

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } \tau\text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w,E}$ for $w \in \mathcal{I}$.
- $|\{w \in W \mid c_{w,E} \neq 0 \text{ for some } E\}| = \sum_{\Gamma} \langle [\Gamma], [\Gamma] \rangle_W = 208 \ 422.$

San

<ロト < 同ト < 臣ト < 臣ト 三 臣 …

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } au\text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

- Need to know all leading coefficients $c_{w,E}$ for $w \in \mathcal{I}$.
- $|\{w \in W \mid c_{w,E} \neq 0 \text{ for some } E\}| = \sum_{\Gamma} \langle [\Gamma], [\Gamma] \rangle_W = 208 422.$
- |Irr(W)| = 112. So aiming at 208422×112 matrix of integers.

San

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } \tau \text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

• Need to know all leading coefficients $c_{w,E}$ for $w \in \mathcal{I}$.

• $|\{w \in W \mid c_{w,E} \neq 0 \text{ for some } E\}| = \sum_{\Gamma} \langle [\Gamma], [\Gamma] \rangle_W = 208 422.$

- |Irr(W)| = 112. So aiming at 208422×112 matrix of integers.
- Lusztig (1987): |c_{w,E}| ≤ 8 for all w, E. (Determined above matrix but without identifying elements of W labelling the rows.)

500

(1) Let $w, w' \in \mathcal{I}$ be involutions. Then:

 $w \sim_L w' \Leftrightarrow \begin{cases} w, w' \text{ in same component of graph,} \\ w_J \sim_L w'_J \text{ for every proper } J \subset S, \\ w, w' \text{ have same generalized } au\text{-invariant.} \end{cases}$

(2) Kottwitz's conjecture holds for W.

• Need to know all leading coefficients $c_{w,E}$ for $w \in \mathcal{I}$.

• $|\{w \in W \mid c_{w,E} \neq 0 \text{ for some } E\}| = \sum_{\Gamma} \langle [\Gamma], [\Gamma] \rangle_W = 208 422.$

- $|\operatorname{Irr}(W)| = 112$. So aiming at 208422×112 matrix of integers.
- Lusztig (1987): |c_{w,E}| ≤ 8 for all w, E. (Determined above matrix but without identifying elements of W labelling the rows.)
- Computation of this 208422 × 112 matrix (c_{w,E}) takes about
 3 weeks and 24 GB of main memory.

200

(日) (四) (王) (王) (王)

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

"
$$y = sws$$
 for some $s \in S$ where $l(y) \leqslant l(w)$."

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let $C_{\min} := \{w \in C \mid l(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $l(y) \leqslant l(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $l(y) \leqslant l(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

• Let $w, w' \in C_{\min}$. Then $T_w, T_{w'} \in \mathbf{H}$ are conjugate in \mathbf{H} .

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $l(y) \leqslant l(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

• Let $w, w' \in C_{\min}$. Then $T_w, T_{w'} \in \mathbf{H}$ are conjugate in \mathbf{H} .

2 Let $w \in C$. Then there exists some $y \in C_{\min}$ such that $w \to y$.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $l(y) \leqslant l(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

• Let $w, w' \in C_{\min}$. Then $T_w, T_{w'} \in \mathbf{H}$ are conjugate in \mathbf{H} .

2 Let $w \in C$. Then there exists some $y \in C_{\min}$ such that $w \to y$.

(1) \rightsquigarrow Fix $w_C \in C_{\min}$ for all $C \in Cl(W)$.

Sac

ヘロン 人間と 人間と 人間と

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $l(y) \leqslant l(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

• Let $w, w' \in C_{\min}$. Then $T_w, T_{w'} \in \mathbf{H}$ are conjugate in \mathbf{H} .

2 Let $w \in C$. Then there exists some $y \in C_{\min}$ such that $w \to y$.

(1) \rightsquigarrow Fix $w_C \in C_{\min}$ for all $C \in Cl(W)$. Character table: $X(\mathbf{H}) := (\operatorname{Trace}(T_{w_C}, E_v))_{E \in \operatorname{Irr}(W), C \in Cl(W)}$.

Meinolf Geck (Universität Stuttgart)

ヘロン 人間と 人間と 人間と

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $I(y) \leqslant I(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

• Let $w, w' \in C_{\min}$. Then $T_w, T_{w'} \in \mathbf{H}$ are conjugate in \mathbf{H} .

2 Let $w \in C$. Then there exists some $y \in C_{\min}$ such that $w \to y$.

(1)
$$\rightsquigarrow$$
 Fix $w_C \in C_{\min}$ for all $C \in Cl(W)$. Character table:

$$X(\mathbf{H}) := \left(\operatorname{Trace}(T_{w_C}, E_v) \right)_{E \in \operatorname{Irr}(W), C \in Cl(W)}.$$
(2) \rightsquigarrow For any $w \in W$,

Meinolf Geck (Universität Stuttgart)

ヘロン ヘヨン ヘヨン

Let $C_{\min} := \{w \in C \mid I(w) = d_C\}$ (elements of minimal length in C). For $y, w \in W$ write $w \to y$ for transitive closure of:

" y = sws for some $s \in S$ where $l(y) \leqslant l(w)$."

Theorem (G.–Pfeiffer, 1993). Let $C \in Cl(W)$.

• Let $w, w' \in C_{\min}$. Then $T_w, T_{w'} \in \mathbf{H}$ are conjugate in \mathbf{H} .

2 Let $w \in C$. Then there exists some $y \in C_{\min}$ such that $w \to y$.

(1)
$$\rightsquigarrow$$
 Fix $w_C \in C_{\min}$ for all $C \in Cl(W)$. Character table:

$$X(\mathbf{H}) := \left(\operatorname{Trace}(T_{w_C}, E_v) \right)_{E \in \operatorname{Irr}(W), C \in Cl(W)}.$$

(2) \rightsquigarrow For any $w \in W$, there are unique $f_{w,C} \in \mathbb{Z}[v, v^{-1}]$ such that

$$T_w \equiv \sum_{C \in \mathsf{Cl}(W)} f_{w,C} T_{w_C} \mod [\mathbf{H}, \mathbf{H}].$$

ヘロン 人間と 人間と 人間と

Example. $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:

Meinolf Geck (Universität Stuttgart)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Example. $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:

	a _E	1	s_1	<i>s</i> ₁ <i>s</i> ₂
E ⁽³⁾	0	1	1	1
E ⁽²¹⁾	1	2	0	-1
$E^{(111)}$	3	1	$^{-1}$	1

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Character values of Hecke algebras

Example . $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:												
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂				T_1	T_{s_1}	$T_{s_1 s_2}$	
-	E ⁽³⁾	0	1	1	1		-	$E_{v}^{(3)}$	1	V	v^2	
	E ⁽²¹⁾	1	2	0	-1			$E_{v}^{(21)}$	2	$v - v^{-1}$	-1	
	E ⁽¹¹¹⁾	3	1	-1	1			$E_{v}^{(111)}$	1	$-v^{-1}$	v^{-2}	
-												

Example . $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:											
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂			T_1	<i>T</i> _{<i>s</i>1}	$T_{s_1 s_2}$	
-	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²	
	E ⁽²¹⁾	1	2	0	$^{-1}$		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1	
	E ⁽¹¹¹⁾	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	v^{-2}	
A	ll these	tables	in:	ht	http://www.math.rwth-aachen.de/~CHEVIE/						,

Example . $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:											
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂			T_1	T_{s_1}	$T_{s_1s_2}$	
	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²	
	E ⁽²¹⁾	1	2	0	-1		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1	
	E ⁽¹¹¹⁾	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	<i>v</i> ⁻²	
A	All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/										

Let $w = s_1 s_2 s_1$.

999

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example . $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:											
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂			T_1	T_{s_1}	$T_{s_1 s_2}$	
-	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²	
	E ⁽²¹⁾	1	2	0	-1		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1	
	E ⁽¹¹¹⁾	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	v^{-2}	
A	All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/										

- 1

200

Example . $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:										
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂			T_1	T_{s_1}	$T_{s_1s_2}$
-	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²
	E ⁽²¹⁾	1	2	0	-1		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1
	E ⁽¹¹¹⁾	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	v^{-2}
A	ll these	tables	in:	ht	tp://	www.math	.rwth-a	ache	en.de/~(CHEVIE/

$$T_{s_1s_2s_1} \equiv T_{s_1} + (\nu - \nu^{-1})T_{s_1s_2} \mod [\mathbf{H}, \mathbf{H}].$$

- 1

200

Ex	Example. $W(A_2) =$				$ s_2\rangle \cong$	\mathfrak{S}_3 . Chara	acter ta	bles:		
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂			T_1	T_{s_1}	$T_{s_1s_2}$
	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²
	E ⁽²¹⁾	1	2	0	-1		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1
_	$E^{(111)}$	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	<i>v</i> ⁻²
A	All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/									

$$T_{s_1s_2s_1} \equiv T_{s_1} + (v - v^{-1})T_{s_1s_2} \mod [\mathbf{H}, \mathbf{H}].$$

Hence:

 $\mathsf{Trace}(\, T_{s_1s_2s_1},\, E_v^{(21)}) =$

Ex	Example. $W(A_2) =$				$ s_2\rangle \cong$	\mathfrak{S}_3 . Chara	acter ta	bles:		
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂			T_1	T_{s_1}	$T_{s_1 s_2}$
	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²
	E ⁽²¹⁾	1	2	0	-1		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1
	E ⁽¹¹¹⁾	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	<i>v</i> ⁻²
All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/										

$$T_{s_1s_2s_1} \equiv T_{s_1} + (\nu - \nu^{-1})T_{s_1s_2} \mod [\mathbf{H}, \mathbf{H}].$$

Hence:

Trace($T_{s_1s_2s_1}, E_v^{(21)}$) = $v - v^{-1} + (v - v^{-1})(-1) = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Example . $W(A_2) = \langle s_1, s_2 \rangle \cong \mathfrak{S}_3$. Character tables:										
-		a _E	1	<i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂	-		T_1	T_{s_1}	$T_{s_1s_2}$
-	E ⁽³⁾	0	1	1	1		$E_{v}^{(3)}$	1	V	<i>v</i> ²
	E ⁽²¹⁾	1	2	0	-1		$E_{v}^{(21)}$	2	$v - v^{-1}$	-1
	E ⁽¹¹¹⁾	3	1	-1	1		$E_{v}^{(111)}$	1	$-v^{-1}$	<i>v</i> ⁻²
А	All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/									

$$T_{s_1s_2s_1} \equiv T_{s_1} + (\nu - \nu^{-1})T_{s_1s_2} \mod [\mathbf{H}, \mathbf{H}].$$

Hence:

 $\mathsf{Trace}(T_{s_1s_2s_1}, E_v^{(21)}) = v - v^{-1} + (v - v^{-1})(-1) = 0 \iff c_{s_1s_2s_1, E^{(21)}} = 0.$

- 12

200

Given $w \in W$, compute the "cyclic shift orbit"

$$\mathsf{Cyc}(w) = \{y \in W \mid w o y ext{ and } \mathit{l}(w) = \mathit{l}(y)\}.$$

- 12

990

Given $w \in W$, compute the "cyclic shift orbit"

$${
m Cyc}(w)=\{y\in W\mid w
ightarrow y ext{ and } \mathit{l}(w)=\mathit{l}(y)\}.$$

• For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then

- 12

San

イロト イポト イヨト イヨト

Given $w \in W$, compute the "cyclic shift orbit"

$$\mathsf{Cyc}(w) = \{y \in W \mid w o y ext{ and } \mathit{l}(w) = \mathit{l}(y)\}.$$

• For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then $f_{w,C} = f_{y,C}$

イロト イポト イヨト イヨト 三日

Given $w \in W$, compute the "cyclic shift orbit"

$$\mathsf{Cyc}(w) = \{y \in W \mid w o y ext{ and } \mathit{l}(w) = \mathit{l}(y)\}.$$

• For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then

$$f_{w,C} = f_{y,C} = f_{sys,C} + (v - v^{-1})f_{sy,C} \quad \text{ for all } C \in \mathsf{Cl}(W).$$

- 12

San

イロト イポト イヨト イヨト

Given $w \in W$, compute the "cyclic shift orbit"

$$\mathsf{Cyc}(w) = \{y \in W \mid w o y ext{ and } \mathit{l}(w) = \mathit{l}(y)\}.$$

• For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then

$$f_{w,C}=f_{y,C}=f_{sys,C}+(v-v^{-1})f_{sy,C}\quad \text{ for all } C\in \mathsf{Cl}(W).$$

Note: l(sy) = l(w) - 1 and l(sys) = l(w) - 2. Apply induction.

na C

Given $w \in W$, compute the "cyclic shift orbit"

$$Cyc(w) = \{y \in W \mid w \to y \text{ and } l(w) = l(y)\}.$$

For some y ∈ Cyc(w) and s ∈ S we have l(sys) < l(y). Then
 f_{w,C} = f_{y,C} = f_{sys,C} + (v − v⁻¹)f_{sy,C} for all C ∈ Cl(W).
 Note: l(sy) = l(w) − 1 and l(sys) = l(w) − 2. Apply induction.

$$w \in C'_{\min} \text{ for some } C' \in Cl(W).$$

200

イロト イポト イヨト イヨト 二日

Given $w \in W$, compute the "cyclic shift orbit"

$$Cyc(w) = \{y \in W \mid w \to y \text{ and } l(w) = l(y)\}.$$

For some y ∈ Cyc(w) and s ∈ S we have l(sys) < l(y). Then
 f_{w,C} = f_{y,C} = f_{sys,C} + (v − v⁻¹)f_{sy,C} for all C ∈ Cl(W).
 Note: l(sy) = l(w) − 1 and l(sys) = l(w) − 2. Apply induction.

3 $w \in C'_{\min}$ for some $C' \in Cl(W)$. Identify C'; then $f_{w,C} = \delta_{C,C'}$.

200

Given $w \in W$, compute the "cyclic shift orbit" $Cyc(w) = \{y \in W \mid w \to y \text{ and } l(w) = l(y)\}.$ • For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then $f_{w,C} = f_{v,C} = f_{svs,C} + (v - v^{-1})f_{sv,C}$ for all $C \in Cl(W)$. Note: l(sy) = l(w) - 1 and l(sys) = l(w) - 2. Apply induction. • $w \in C'_{\min}$ for some $C' \in Cl(W)$. Identify C'; then $f_{w,C} = \delta_{C,C'}$. If l(w) = m, "only" need to know all $f_{y,C}$ where l(y) = m-1, m-2.

Given $w \in W$, compute the "cyclic shift orbit" $Cyc(w) = \{y \in W \mid w \to y \text{ and } l(w) = l(y)\}.$ • For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then $f_{w,C} = f_{v,C} = f_{svs,C} + (v - v^{-1})f_{sv,C}$ for all $C \in Cl(W)$. Note: l(sy) = l(w) - 1 and l(sys) = l(w) - 2. Apply induction. • $w \in C'_{\min}$ for some $C' \in Cl(W)$. Identify C'; then $f_{w,C} = \delta_{C,C'}$. If l(w) = m, "only" need to know all $f_{v,C}$ where l(y) = m-1, m-2. Worst case in E_8 : 18 210 722 elements of length 60.

Given $w \in W$, compute the "cyclic shift orbit" $Cyc(w) = \{y \in W \mid w \to y \text{ and } l(w) = l(y)\}.$ • For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then $f_{w,C} = f_{v,C} = f_{svs,C} + (v - v^{-1})f_{sv,C}$ for all $C \in Cl(W)$. Note: l(sy) = l(w) - 1 and l(sys) = l(w) - 2. Apply induction. • $w \in C'_{\min}$ for some $C' \in Cl(W)$. Identify C'; then $f_{w,C} = \delta_{C,C'}$. If l(w) = m, "only" need to know all $f_{y,C}$ where l(y) = m-1, m-2. Worst case in E_8 : 18 210 722 elements of length 60. A priori $\approx 112 \times 2 \times 18\ 000\ 000 \approx 4 \times 10^9$ polynomials required.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Given $w \in W$, compute the "cyclic shift orbit" $Cyc(w) = \{y \in W \mid w \to y \text{ and } l(w) = l(y)\}.$ • For some $y \in Cyc(w)$ and $s \in S$ we have l(sys) < l(y). Then $f_{w,C} = f_{v,C} = f_{svs,C} + (v - v^{-1})f_{sv,C}$ for all $C \in Cl(W)$. Note: l(sy) = l(w) - 1 and l(sys) = l(w) - 2. Apply induction. • $w \in C'_{\min}$ for some $C' \in Cl(W)$. Identify C'; then $f_{w,C} = \delta_{C,C'}$. If l(w) = m, "only" need to know all $f_{y,C}$ where l(y) = m-1, m-2. Worst case in E_8 : 18 210 722 elements of length 60. A priori $\approx 112 \times 2 \times 18\ 000\ 000 \approx 4 \times 10^9$ polynomials required. Use: $f_{w,C} = f_{w',C}$ if $w' \in Cyc(w)$. Gain factor ≈ 100 .

Python 2.7.4 (default, Apr 19 2013, 18:28:01) [GCC 4.7.3] on linux2

A PYTHON VERSION OF CHEVIE-GAP FOR (FINITE) COXETER GROUPS ## ## (by Meinolf Geck, version 1r6p18, 20 Dec 2012) ## ## ## ## To get started type "help(coxeter)" or "allfunctions()"; ## ## see also http://dx.doi.org/10.1112/S1461157012001064. ## ## For notes about this version type "versioninfo(1.6)". ## ## Check www.mathematik.uni-stuttgart.de/~geckmf for updates. ## ## ## ## Import into "sage" (4.7 or higher, www.sagemath.org) works. ## ## ## ## The proposed name for this module is "PyCox". ## ## All comments welcome! ##

(日) (四) (王) (王) (王)