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Involution modules

B. Casselman, “Verifying Kottwitz’ conjecture by computer”;

R. Kottwitz, “Involutions in Weyl groups”.

(Both in Representation Theory 4, 2000.)

W finite Weyl group, S simple reflections, I = fw 2 W j w 2 = 1g.

V Q-vector space with basis faw j w 2 Ig.

Kottwitz  linear action of W on V :

s:aw =

8<
:
�aw if sw = ws and l(sw) < l(w);

asws otherwise:

(Formulation of Lusztig–Vogan, 2011.)

Cl(I) conjugacy classes in I. For C 2 Cl(I) let VC = haw j w 2 C i.

Then V =
L

C2Cl(I) VC and decomposition into irreducibles is known

(Kottwitz: W classical; Casselman: W exceptional).
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Involution modules

Since David Vogan briefly mentioned some remarkable properties of

the decomposition of V into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W ,

defined and split over Fq. For w 2 W , let Rw be the virtual character

of G (Fq) defined by Deligne–Lusztig. For E 2 Irr(W ) let

RE := jW j�1
X

w2W
Trace(w ;E )Rw .

Kottwitz (+ Casselman), Lusztig–Vogan (reformulation).

hV ;E iW =
X

�2Irr(G(Fq))

�(�)| {z }
Frobenius–Schur indicator

� h�;RE iG(Fq)| {z }
Lusztig’s orange book

G.–Malle, Represent. Theory 17 (2013):

Extension to ”twisted” involution module and non-split groups.
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Involution modules

Kottwitz’ Conjecture.

Let C 2 Cl(I) and Γ � W be a Kazhdan–Lusztig left cell. Then

hVC ; [Γ]iW = jC \ Γj; where [Γ] = W -module carried by Γ.

Example: W = Sn.

1 Kottwitz: VC
�=

M
�`n :w��2C

E� ) V �=
M
�`n

E�.

2 Left cells given by Robinson–Schensted correspondence:

fΓT j T standard �-tableau for some � ` ng.

3 (1), (2) ) Both sides are 0 or 1. These match up since:

I T;T0 have shape � ) [ΓT] �= [ΓT0 ] �= E�.

I All involutions in a given 2-sided cell are contained in one

conjugacy class C 2 Cl(I) (Schützenberger, 1976).

I If T has shape � and C \ ΓT 6= ?, then w�� 2 C .
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Involution modules

Casselman: Checked conjecture for F4 and E6; similar methods: E7.

(Explicit computation of all left cells possible in these cases.)

Bonnafé and G. (hal-00698613, arXiv:1206.0443): Bn, Dn.

Remaining case: type E8.

jIj = 199 952 involutions, in 10 conjugacy classes;

VC for each C 2 Cl(I) known from Casselman’s computations.

101 796 left cells, 46 two-sided cells.

The vectors
�
h[Γ];E iW

�
E2Irr(W )

are known (Lusztig 1986).

Problem: We need to know partition of I into left cells, but E8 is too

big to compute systematically Kazhdan–Lusztig polynomials Py ;w .

Main tool (both for handling Bn;Dn and E8): Lusztig’s theory of

“Leading coefficients of character values of Hecke algebras” (1987).
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Bonnafé and G. (hal-00698613, arXiv:1206.0443): Bn, Dn.

Remaining case: type E8.

jIj = 199 952 involutions, in 10 conjugacy classes;

VC for each C 2 Cl(I) known from Casselman’s computations.

101 796 left cells, 46 two-sided cells.

The vectors
�
h[Γ];E iW

�
E2Irr(W )

are known (Lusztig 1986).

Problem: We need to know partition of I into left cells, but E8 is too

big to compute systematically Kazhdan–Lusztig polynomials Py ;w .

Main tool (both for handling Bn;Dn and E8): Lusztig’s theory of

“Leading coefficients of character values of Hecke algebras” (1987).

Meinolf Geck (Universität Stuttgart) Kottwitz’ conjecture Salt Lake City, July 2013 5 / 15



Involution modules

Casselman: Checked conjecture for F4 and E6; similar methods: E7.

(Explicit computation of all left cells possible in these cases.)

Bonnafé and G. (hal-00698613, arXiv:1206.0443): Bn, Dn.

Remaining case: type E8.

jIj = 199 952 involutions, in 10 conjugacy classes;

VC for each C 2 Cl(I) known from Casselman’s computations.

101 796 left cells, 46 two-sided cells.

The vectors
�
h[Γ];E iW

�
E2Irr(W )

are known (Lusztig 1986).

Problem: We need to know partition of I into left cells, but E8 is too

big to compute systematically Kazhdan–Lusztig polynomials Py ;w .

Main tool (both for handling Bn;Dn and E8): Lusztig’s theory of

“Leading coefficients of character values of Hecke algebras” (1987).
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Leading coefficients

H generic Iwahori–Hecke algebra of W over Q(v).

Basis fTw j w 2 W g; T 2
s = T1 + (v � v�1)Ts for s 2 S .

Tits’ Deformation Theorem: v ! 1 induces bijection

Irr(W ) ! Irr(H); E $ Ev

such that Trace(w ;E ) = Trace(Tw ;Ev )jv!1 for all w 2 W .

E 2 Irr(W )  DE 2 Q[u] “generic degree” (where u = v 2).

(DE (q) = dimension of principal series representation

of G (Fq) corresponding to E .)

Lusztig’s a-invariant:

DE = f �1
E u aE + higher powers of u

where aE > 0 and fE > 0 are integers.

DE and, hence, aE and fE are explicitly known in all cases.
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Leading coefficients

Now: v aE Trace(Tw ;Ev ) 2 Z[v ] for all w 2 W .

cw ;E := constant term of (�1)l(w) v aE Trace(Tw ;Ev )

The numbers cw ;E 2 Z are Lusztig’s “leading coefficients”.

They behave as if there were character values of an algebra:

X
w2W

cw ;Ecw ;E 0 =

8<
:

fE dimE if E �= E 0;

0 otherwise:

There are not many w 2 W such that cw ;E 6= 0:

I cw ;E 6= 0 for some E , w ;w�1 are in the same left cell.

I In particular: w 2 I involution ) cw ;E 6= 0 for some E .

Refined orthogonality relations: Let Γ be a left cell.

X
w2Γ

cw ;Ecw ;E 0 =

8<
:

fE h[Γ];E iW if E �= E 0;

0 otherwise:
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Leading coefficients

Define graph with vertices I.

Two vertices w 6= w 0 in I are

connected if cw ;E 6= 0 and cw 0;E 6= 0 for some E 2 Irr(W ).

Lemma. Let w ;w 0 2 I. The following are equivalent.

1 w ;w 0 are in the same connected component of this graph.

2 w ;w 0 are in the same 2-sided Kazhdan–Lusztig cell.

“(1) ) (2)” Can assume cw ;E 6= 0 and cw 0;E 6= 0 for some E .

Let Γ; Γ0 be the left cells such that w 2 Γ, w 0 2 Γ0.

Refined orthogonality relations:X
y2Γ

(cy ;E )2 = fE h[Γ];E iW ) h[Γ];E iW 6= 0.X
y2Γ0

(cy ;E )2 = fE h[Γ
0];E iW ) h[Γ0];E iW 6= 0.

So h[Γ]; [Γ0]iW 6= 0, hence Γ; Γ0 are contained in the same 2-sided cell.

“(2) ) (1)” A bit more complicated but similar.
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Leading coefficients

Theorem (Lusztig 1986). Let Γ be a left cell in W .

The function Γ! Z; w 7! l(w)� 2 degP1;w ,

reaches its minimum at exactly one element of Γ, denoted dΓ.

The element dΓ is an involution.

The decomposition of [Γ] into irreducibles is determined by:

h[Γ];E iW = cdΓ;E for all E 2 Irr(W ).

We set D := fdΓ j Γ left cell of W g “distinguished involutions”.

Consequence: Each w 2 I is directly connected to some d 2 D.

Let Γ be the left cell such that w 2 Γ.

Let E 2 Irr(W ) be such that cw ;E 6= 0. As before: h[Γ];E iW 6= 0.

Then Theorem shows cdΓ;E 6= 0. So w ; dΓ are connected in the graph.

(Implication “(2) ) (1)” of Lemma follows easily from this.)
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Leading coefficients

Summary. The leading coefficients cw ;E determine:

The partition of the set of involutions I into 2-sided cells.

The set of distinguished involutions:

D =
�
w 2 W

��� X
E2Irr(W )

f �1
E cw ;E 6= 0

�
.

Given a left cell Γ, the decomposition of [Γ] into irreducibles:

h[Γ];E iE = cdΓ;E for all E 2 Irr(W ).

Theorem (Bonnafé–G., 2012). Assume W is of classical type.

Let C 2 Cl(I). Let F be a 2-sided cell and E0 2 Irr(W ) be the

unique “special” representation corresponding to F . Then

jC \ Γj dimE0 = jC \ Fj for every left cell Γ � F ,

and this is the key to proving Kottwitz’ conjecture for classical type.

(Global identity jI \ Γj dimE0 = jI \ Fj due to Lusztig, 1985.)
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(Global identity jI \ Γj dimE0 = jI \ Fj due to Lusztig, 1985.)
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Back to Kottwitz’ conjecture

Theorem (Abbie Halls, 2012). Let W be of type E8.

(1) Let w ;w 0 2 I be involutions. Then:

w �L w
0 ,

8>><
>>:

w ;w 0 in same component of graph;

wJ �L w
0
J for every proper J � S ;

w ;w 0 have same generalized � -invariant:

(2) Kottwitz’s conjecture holds for W .

Need to know all leading coefficients cw ;E for w 2 I.

jfw 2 W j cw ;E 6= 0 for some Egj =
X

Γ
h[Γ]; [Γ]iW = 208 422.

j Irr(W )j = 112. So aiming at 208422� 112 matrix of integers.

Lusztig (1987): jcw ;E j 6 8 for all w ;E . (Determined above

matrix but without identifying elements of W labelling the rows.)

Computation of this 208422� 112 matrix (cw ;E ) takes about

3 weeks and 24 GB of main memory.
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Character values of Hecke algebras

Let C 2 Cl(W ) and set dC := minfl(w) j w 2 Cg.

Let Cmin := fw 2 C j l(w) = dCg (elements of minimal length in C ).

For y ;w 2 W write w ! y for transitive closure of:

“ y = sws for some s 2 S where l(y) 6 l(w): ”

Theorem (G.–Pfeiffer, 1993). Let C 2 Cl(W ).

1 Let w ;w 0 2 Cmin. Then Tw ;Tw 0 2 H are conjugate in H.

2 Let w 2 C . Then there exists some y 2 Cmin such that w ! y .

(1)  Fix wC 2 Cmin for all C 2 Cl(W ). Character table:

X (H) :=
�

Trace(TwC
;Ev )

�
E2Irr(W );C2Cl(W )

.

(2)  For any w 2 W , there are unique fw ;C 2 Z[v ; v�1] such that

Tw �
X

C2Cl(W )
fw ;C TwC

mod [H;H].
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Character values of Hecke algebras

Example. W (A2) = hs1; s2i �= S3. Character tables:

aE 1 s1 s1s2

E (3) 0 1 1 1

E (21) 1 2 0 �1

E (111) 3 1 �1 1

T1 Ts1 Ts1s2

E (3)
v 1 v v 2

E (21)
v 2 v�v�1 �1

E (111)
v 1 �v�1 v�2

All these tables in: http://www.math.rwth-aachen.de/�CHEVIE/

Let w = s1s2s1. Then w ! s2 via conjugation with s1; furthermore,

s2 conjugate to s1. So

Ts1s2s1 � Ts1 + (v � v�1)Ts1s2 mod [H;H].

Hence:

Trace(Ts1s2s1;E
(21)
v ) = v�v�1+(v�v�1)(�1) = 0  cs1s2s1;E (21) = 0.
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All these tables in: http://www.math.rwth-aachen.de/�CHEVIE/

Let w = s1s2s1. Then w ! s2 via conjugation with s1; furthermore,

s2 conjugate to s1. So

Ts1s2s1 � Ts1 + (v � v�1)Ts1s2 mod [H;H].

Hence:

Trace(Ts1s2s1;E
(21)
v ) = v�v�1+(v�v�1)(�1) = 0  cs1s2s1;E (21) = 0.
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Character values of Hecke algebras

Recursive computation of the polynomials fw ;C (induction on l(w)).

Given w 2 W , compute the “cyclic shift orbit”

Cyc(w) = fy 2 W j w ! y and l(w) = l(y)g.

1 For some y 2 Cyc(w) and s 2 S we have l(sys) < l(y). Then

fw ;C = fy ;C = fsys;C + (v � v�1)fsy ;C for all C 2 Cl(W ).

Note: l(sy) = l(w)� 1 and l(sys) = l(w)� 2. Apply induction.

2 w 2 C 0
min for some C 0 2 Cl(W ). Identify C 0; then fw ;C = �C ;C 0 .

If l(w) = m, “only” need to know all fy ;C where l(y) = m�1;m�2.

Worst case in E8: 18 210 722 elements of length 60.

A priori � 112� 2� 18 000 000 � 4� 109 polynomials required.

Use: fw ;C = fw 0;C if w 0 2 Cyc(w). Gain factor � 100.
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Character values of Hecke algebras

Python 2.7.4 (default, Apr 19 2013, 18:28:01)

[GCC 4.7.3] on linux2

##################################################################

## A PYTHON VERSION OF CHEVIE-GAP FOR (FINITE) COXETER GROUPS ##

## (by Meinolf Geck, version 1r6p18, 20 Dec 2012) ##

## ##

## To get started type "help(coxeter)" or "allfunctions()"; ##

## see also http://dx.doi.org/10.1112/S1461157012001064. ##

## For notes about this version type "versioninfo(1.6)". ##

## Check www.mathematik.uni-stuttgart.de/~geckmf for updates. ##

## ##

## Import into "sage" (4.7 or higher, www.sagemath.org) works. ##

## ##

## The proposed name for this module is "PyCox". ##

## All comments welcome! ##

##################################################################

Meinolf Geck (Universität Stuttgart) Kottwitz’ conjecture Salt Lake City, July 2013 15 / 15


	Involution modules
	Leading coefficients
	Back to Kottwitz' conjecture
	Character values of Hecke algebras

