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(Both in Representation Theory 4, 2000.)

W finite Weyl group, S simple reflections, Z = {w € W | w? = 1}.
V' Q-vector space with basis {a,, | w € Z}.

Kottwitz ~» linear action of W on V:

—a, if sw=ws and I(sw) < I(w),

s.a, = .
Aows otherwise.

(Formulation of Lusztig—Vogan, 2011.)
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Kottwitz ~» linear action of W on V:
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B Aows otherwise.

(Formulation of Lusztig—Vogan, 2011.)

CI(Z) conjugacy classes in Z. For C € CI(Z) let Vc = (a,, | w € C).
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Involution modules

B. CASSELMAN, “Verifying Kottwitz' conjecture by computer”;
R. KorTwiITZ, “Involutions in Weyl groups”.
(Both in Representation Theory 4, 2000.)

W finite Weyl group, S simple reflections, Z = {w € W | w? = 1}.
V' Q-vector space with basis {a,, | w € Z}.

Kottwitz ~» linear action of W on V:

ca =) T if sw = ws and /(sw) < I(w),
B Aows otherwise.

(Formulation of Lusztig—Vogan, 2011.)

CI(Z) conjugacy classes in Z. For C € CI(Z) let Vc = (a,, | w € C).
Then V = @ccciz) Ve and decomposition into irreducibles is known
(Kottwitz: W classical; Casselman: W exceptional).
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Involution modules

Since David Vogan briefly mentioned some remarkable properties of

the decomposition of V' into irreducibles, here are some details.
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defined and split over F,. For w € W, let R, be the virtual character
of G(IF,) defined by Deligne-Lusztig.
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the decomposition of V' into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W,
defined and split over F,. For w € W, let R,, be the virtual character
of G(IF,) defined by Deligne-Lusztig. For E € Irr(W) let

Re := |W|_IZW€WTrace(W, E)R,.
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defined and split over F,. For w € W, let R,, be the virtual character
of G(IF,) defined by Deligne—Lusztig. For E € Irr(W) let

=|W|~ IZ o Trace(w, E) R,,.
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the decomposition of V' into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W,

defined and split over F,. For w € W, let R,, be the virtual character

of G(IF,) defined by Deligne-Lusztig. For E € Irr(W) let
W1
Re == |W| ZWQWTrace(W, EYR,.

Kottwitz (+ Casselman), Lusztig—Vogan (reformulation).

(V.E)w= > v(p) - {p, Re)6(ry)

~——
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Since David Vogan briefly mentioned some remarkable properties of

the decomposition of V' into irreducibles, here are some details.

Let G be a connected reductive algebraic group with Weyl group W,

defined and split over F,. For w € W, let R,, be the virtual character

of G(IF,) defined by Deligne-Lusztig. For E € Irr(W) let
W1
Re == |W| ZWQWTrace(W, EYR,.

Kottwitz (+ Casselman), Lusztig—Vogan (reformulation).

(V.E)w= > v(p) - {p, Re)6(ry)

~——
pe€lrr(G(Fq)) Frobenius—Schur indicator  Lusztig’s orange book

G.—Malle, Represent. Theory 17 (2013):

Extension to "twisted” involution module and non-split groups.
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Let C € CI(Z) and ' C W be a Kazhdan-Lusztig left cell. Then




Ve, [Mw =[CnTY,

where

Let C € CI(Z) and ' C W be a Kazhdan-Lusztig left cell. Then

[l = W-module carried by T




Ve, [Mw =[CnTY,

Let C € CI(Z) and ' C W be a Kazhdan-Lusztig left cell. Then
where
Example: W = &,,.

[l = W-module carried by T




Involution modules

Kottwitz' Conjecture.
Let C € CI(Z) and ' C W be a Kazhdan—Lusztig left cell. Then

(Vo,Mw =1CNT|, where [[]= W-module carried by I".

Example: W =G,
Q@ Kottwitz: V¢ = @ E>

AniwyaxeC
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@ Left cells given by Robinson—Schensted correspondence:

{T'r | T standard A-tableau for some A I n}.
@ (1), (2) = Both sides are 0 or 1. These match up since:
» T,T' have shape A = [I'p] =[] = EX.

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013

4/15



Involution modules

Kottwitz' Conjecture.
Let C € CI(Z) and ' C W be a Kazhdan—Lusztig left cell. Then

(Vo,Mw =1CNT|, where [[]= W-module carried by I".

Example: W =G,
Q Kottwitzz Ve~ H E = V~PpE

AniwyaxeC Abn
@ Left cells given by Robinson—Schensted correspondence:

{T'r | T standard A-tableau for some A I n}.
@ (1), (2) = Both sides are 0 or 1. These match up since:
» T,T' have shape A = [I'p] =[] = EX.
» All involutions in a given 2-sided cell are contained in one
conjugacy class C € CI(Z) (Schiitzenberger, 1976).
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Kottwitz' Conjecture.
Let C € CI(Z) and ' C W be a Kazhdan—Lusztig left cell. Then

(Vo,Mw =1CNT|, where [[]= W-module carried by I".

Example: W =G,
Q Kottwitzz Ve~ H E = V~PpE

AniwyaxeC Abn
@ Left cells given by Robinson—Schensted correspondence:

{T'r | T standard A-tableau for some A I n}.
@ (1), (2) = Both sides are 0 or 1. These match up since:
» T, T' have shape A =[] =[] = EX.
» All involutions in a given 2-sided cell are contained in one

conjugacy class C € CI(Z) (Schiitzenberger, 1976).
» If T has shape A and C NIt # &, then wy« € C.

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013
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Involution modules

Casselman: Checked conjecture for F, and Eg; similar methods: E;.

(Explicit computation of all left cells possible in these cases.)
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(Explicit computation of all left cells possible in these cases.)
Bonnafé and G. (hal—00698613, arXiV:1206.0443): B., D,.

Remaining case: type Eg. ]

@ |Z| = 199 952 involutions, in 10 conjugacy classes;

@ V¢ for each C € CI(Z) known from Casselman’s computations.
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(Explicit computation of all left cells possible in these cases.)
Bonnafé and G. (hal—00698613, arXiV:1206.0443): B., D,.

Remaining case: type Eg. ]

@ |Z| = 199 952 involutions, in 10 conjugacy classes;
@ V¢ for each C € CI(Z) known from Casselman’s computations.
@ 101 796 left cells, 46 two-sided cells.

@ The vectors (([['], E)w are known (Lusztig 1986).
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Casselman: Checked conjecture for F, and Eg; similar methods: E;.
(Explicit computation of all left cells possible in these cases.)
Bonnafé and G. (hal—00698613, arXiV:1206.0443): B., D,.

Remaining case: type Eg. ]

@ |Z| = 199 952 involutions, in 10 conjugacy classes;
@ V¢ for each C € CI(Z) known from Casselman’s computations.
@ 101 796 left cells, 46 two-sided cells.

@ The vectors (([F], E>W) E€lrr(W)

Problem: We need to know partition of Z into left cells, but Eg is too

are known (Lusztig 1986).

big to compute systematically Kazhdan-Lusztig polynomials P, ,
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Casselman: Checked conjecture for F, and Eg; similar methods: E;.
(Explicit computation of all left cells possible in these cases.)
Bonnafé and G. (hal—OO698613, arXiV:1206.0443): B., D,.

Remaining case: type Eg. |

@ |Z| = 199 952 involutions, in 10 conjugacy classes;
@ V¢ for each C € CI(Z) known from Casselman’s computations.
@ 101 796 left cells, 46 two-sided cells.

@ The vectors (([F], E>W) Eelrr(W)

Problem: We need to know partition of Z into left cells, but Eg is too

are known (Lusztig 1986).

big to compute systematically Kazhdan-Lusztig polynomials P, ,

Main tool (both for handling B,,, D, and Eg): Lusztig's theory of

“Leading coefficients of character values of Hecke algebras” (1987).
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Leading coefficients

H generic Iwahori-Hecke algebra of W over Q(v).
Basis {T,, | w € W}; T2=T,+(v—v )T, forseS.
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Basis {T,, | w € W}; T2=T,+(v—v )T, forseS.

o Tits' Deformation Theorem: v — 1 induces bijection
lrr(W) «— Irr(H), E < E,
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H generic Iwahori-Hecke algebra of W over Q(v).
Basis {T,, | w € W}; T2=Ti+(v—v )T, forsesS.

o Tits' Deformation Theorem: v — 1 induces bijection
lrr(W) «— Irr(H), E < E,
such that Trace(w, E) = Trace(T,, E,)|,—1 forall w € W.

e Eclrr(W) ~ Dg € Qu] “generic degree” (where u = v?).

(De(q) = dimension of principal series representation
of G(F,) corresponding to E.)
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Leading coefficients

H generic Iwahori-Hecke algebra of W over Q(v).

Basis {T,, | w € W}; T2=Ti+(v—v )T, forsesS.
o Tits' Deformation Theorem: v — 1 induces bijection

lrr(W) «— Irr(H), E < E,
such that Trace(w, E) = Trace(T,, E,)|,—1 forall w € W.

e Eclrr(W) ~ Dg € Qu] “generic degree” (where u = v?).

(De(q) = dimension of principal series representation
of G(F,) corresponding to E.)

Lusztig's a-invariant:

De = fz' u® + higher powers of u

where ag > 0 and fg > 0 are integers.
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H generic Iwahori-Hecke algebra of W over Q(v).
Basis {T,, | w € W}; T2=Ti+(v—v )T, forsesS.

o Tits' Deformation Theorem: v — 1 induces bijection
lrr(W) «— Irr(H), E < E,
such that Trace(w, E) = Trace(T,, E,)|,—1 forall w € W.

e Eclrr(W) ~ Dg € Qu] “generic degree” (where u = v?).

(De(q) = dimension of principal series representation

of G(F,) corresponding to E.)

Lusztig's a-invariant:

De = fz' u® + higher powers of u

where ag > 0 and fg > 0 are integers.

Dg and, hence, ag and fg are explicitly known in all cases.
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Leading coefficients

Now: v®Trace( Ty, E,) € Z[v] for all w € W.

Cw,£ = constant term of (—1)"") v Trace(T,, E,)

The numbers ¢, g € Z are Lusztig's “leading coefficients”.
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Cw,£ = constant term of (—1)"") v Trace(T,, E,)

The numbers ¢, g € Z are Lusztig's “leading coefficients”.

@ They behave as if there were character values of an algebra:

fedmE  if E= E,
Z Cw,ECw,E! = .
e 0 otherwise.
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The numbers ¢, g € Z are Lusztig's “leading coefficients”.

@ They behave as if there were character values of an algebra:

fedmE  if E= E,
Z Cw,ECw,E! = .
e 0 otherwise.

@ There are not many w € W such that ¢,  # O:

1

» cwe#0forsome E & w,w * arein the same left cell.
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Leading coefficients

Now: v®Trace( Ty, E,) € Z[v] for all w € W.

Cw,£ = constant term of (—1)"") v Trace(T,, E,)

The numbers ¢, g € Z are Lusztig's “leading coefficients”.
@ They behave as if there were character values of an algebra:

fedim E if EX E',
Z Cw,ECw,E! =
weWw 0
@ There are not many w € W such that ¢,  # O:
1

otherwise.

» cwe#0forsome E & w,w * arein the same left cell.

» In particular: w € Z involution = ¢, g # 0 for some E.

@ Refined orthogonality relations:
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Now: v®Trace( Ty, E,) € Z[v] for all w € W.

Cw,£ = constant term of (—1)"") v Trace(T,, E,)

The numbers ¢, g € Z are Lusztig's “leading coefficients”.

@ They behave as if there were character values of an algebra:

fedmE  if E= E,
Z Cw,ECw,E! = .
e 0 otherwise.

@ There are not many w € W such that ¢,  # O:

1

» cwe#0forsome E & w,w * arein the same left cell.

» In particular: w € Z involution = ¢, g # 0 for some E.

@ Refined orthogonality relations: Let [ be a left cell.

fe ([, E)w if E= E',
Z Cw,ECw,E! = .
wel 0 otherwise.
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Leading coefficients

Define graph with vertices Z. Two vertices w # w' in Z are
connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).
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Leading coefficients

Define graph with vertices Z. Two vertices w # w' in Z are
connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).

Lemma. Let w, w’ € Z. The following are equivalent.

Q@ w, v’ are in the same connected component of this graph.
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Define graph with vertices Z. Two vertices w # w' in Z are
connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).

Lemma. Let w, w’ € Z. The following are equivalent.

Q@ w, v’ are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan—Lusztig cell.
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connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).

Lemma. Let w, w’ € Z. The following are equivalent.

Q@ w, v’ are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan—Lusztig cell.

“(1) = (2)" Can assume ¢, g # 0 and ¢, g # 0 for some E.
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connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).

Lemma. Let w, w’ € Z. The following are equivalent.

Q@ w, v’ are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan—Lusztig cell.

“(1) = (2)" Can assume ¢, g # 0 and ¢, g # 0 for some E.
Let I, T’ be the left cells such that w € T, w' € .
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connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).

Lemma. Let w, w’ € Z. The following are equivalent.

Q@ w, v’ are in the same connected component of this graph.
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“(1) = (2)" Can assume ¢, g # 0 and ¢, g # 0 for some E.
Let I, T’ be the left cells such that w € T, w' € .

Refined orthogonality relations:

> ,er(6e)? = fe ([T, E)w
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Define graph with vertices Z. Two vertices w # w' in Z are
connected if ¢, g # 0 and ¢, g # 0 for some E € lrr(W).

Lemma. Let w, w’ € Z. The following are equivalent.

Q@ w, v’ are in the same connected component of this graph.

@ w, w' are in the same 2-sided Kazhdan—Lusztig cell.

“(1) = (2)" Can assume ¢, g # 0 and ¢, g # 0 for some E.
Let I, T’ be the left cells such that w € T, w' € .

Refined orthogonality relations:
> ,er(6e)? = fe ([T, E)w = (M, E)w #0.

> ele e =fe(MEw = (",E)w#0.
So ([, [")w # 0, hence I', T are contained in the same 2-sided cell.
“(2) = (1)" A bit more complicated but similar.
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Theorem (Lusztig 1986). Let I be a left cell in W.
@ The function T — Z, w i— I(w) — 2deg Py,

reaches its minimum at exactly one element of I, denoted df.
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Theorem (Lusztig 1986). Let I be a left cell in W.
@ The function T — Z, w i— I(w) — 2deg Py,

reaches its minimum at exactly one element of I, denoted df.
@ The element df is an involution.
@ The decomposition of [I] into irreducibles is determined by:

(I, E)w = cgp.e forall E € lrr(W).
We set D := {dr | I left cell of W}  “distinguished involutions” .

Consequence: Each w € T is directly connected to some d € D. |

Let I be the left cell such that w € T.
Let E € Irr(W) be such that ¢, g # 0. As before: ([l], E)w # 0.
Then Theorem shows c4 £ # 0. So w, dr are connected in the graph.

(Implication “(2) = (1)" of Lemma follows easily from this.)
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Leading coefficients

Summary. The leading coefficients ¢, ¢ determine:

@ The partition of the set of involutions Z into 2-sided cells.

@ The set of distinguished involutions:

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013 10 /15



Leading coefficients

Summary. The leading coefficients ¢, ¢ determine:

@ The partition of the set of involutions Z into 2-sided cells.

@ The set of distinguished involutions:

D= {w EW | Y pornw T Cwe # o}.

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013

10/15



Leading coefficients

Summary. The leading coefficients ¢, ¢ determine:

@ The partition of the set of involutions Z into 2-sided cells.

@ The set of distinguished involutions:

D= {w EW | Y pornw T Cwe # o}.

o Given a left cell I', the decomposition of [[] into irreducibles:

([T, E)e = ca4.e forall E € lrr(W).

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013

10/ 15



Leading coefficients

Summary. The leading coefficients ¢, ¢ determine:

@ The partition of the set of involutions Z into 2-sided cells.

@ The set of distinguished involutions:

D= {w EW | Y pornw T Cwe # o}.

@ Given a left cell ', the decomposition of [[] into irreducibles:

([T, E)e = ca4.e forall E € lrr(W).

Theorem (Bonnafé-G., 2012). Assume W is of classical type.
Let C € CI(Z).
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o Given a left cell I', the decomposition of [[] into irreducibles:
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o Given a left cell I', the decomposition of [[] into irreducibles:

([, E)e = cg,e forall E € lrr(W).

Theorem (Bonnafé-G., 2012). Assume W is of classical type.

Let C € CI(Z). Let F be a 2-sided cell and Eq € Irr(W) be the

unique “special” representation corresponding to F. Then
|CNT|dimEy = |CNF| forevery left cell T C F,

and this is the key to proving Kottwitz' conjecture for classical type.
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Leading coefficients
Summary. The leading coefficients ¢, ¢ determine:
@ The partition of the set of involutions Z into 2-sided cells.
@ The set of distinguished involutions:
_ -1
D— {W EW | Y pornw T Cwe # o}.
o Given a left cell I', the decomposition of [[] into irreducibles:

([, E)e = cg,e forall E € lrr(W).

Theorem (Bonnafé-G., 2012). Assume W is of classical type.
Let C € CI(Z). Let F be a 2-sided cell and Eq € Irr(W) be the

unique “special” representation corresponding to F. Then

|CNT|dimEy = |CNF| forevery left cell T C F,
and this is the key to proving Kottwitz' conjecture for classical type.
(Global identity |Z N T| dim Ey = |Z N F| due to Lusztig, 1985.)
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(1) Let w,w' € T be involutions. Then:
W~ w
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o
(1) Let w,w' € T be involutions. Then:

w, w' in same component of graph,
w~w s
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Back to Kottwitz' conjecture

Theorem (Abbie Halls, 2012). Let W be of type Es.
(1) Let w,w' € T be involutions. Then:
w, w' in same component of graph,

w~pw s wy ~ w/ for every proper J C S,
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Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013 11 /15



Back to Kottwitz' conjecture

Theorem (Abbie Halls, 2012). Let W be of type Es.
(1) Let w,w' € T be involutions. Then:
w, w' in same component of graph,
we~w s wy ~ w/ for every proper J C S,
w, w' have same generalized T-invariant.

(2) Kottwitz's conjecture holds for W.

@ Need to know all leading coefficients c,, ¢ for w € Z.
o |[{we W|cyre #0 for some E}|

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013 11 /15



Back to Kottwitz' conjecture

Theorem (Abbie Halls, 2012). Let W be of type Es.
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w, w' have same generalized T-invariant.

(2) Kottwitz's conjecture holds for W.

@ Need to know all leading coefficients c,, ¢ for w € Z.
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Back to Kottwitz' conjecture

Theorem (Abbie Halls, 2012). Let W be of type Es.
(1) Let w,w' € T be involutions. Then:
w, w' in same component of graph,
we~w s wy ~ w/ for every proper J C S,
w, w' have same generalized T-invariant.

(2) Kottwitz's conjecture holds for W.

@ Need to know all leading coefficients c,, ¢ for w € Z.

o [{we W |cye#0 for some E} = ([T, [[])w = 208 422.

o |Irr(W)| = 112. So aiming at 208422 x 112 matrix of integers.

o Lusztig (1987): |cu,e| < 8 for all w, E. (Determined above
matrix but without identifying elements of W labelling the rows.)

e Computation of this 208422 x 112 matrix (¢, g) takes about

3 weeks and 24 GB of main memory.
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Let C € CI(W) and set d¢c := min{/(w) | w € C}.
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Character values of Hecke algebras

Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).
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Character values of Hecke algebras

Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).

For y,w € W write w — y for transitive closure of:

y = sws for some s € S where /(y) < I(w).
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Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).

For y,w € W write w — y for transitive closure of:

y = sws for some s € S where /(y) < I(w).
Theorem (G.—Pfeiffer, 1993). Let C € CI(W).
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Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).

For y,w € W write w — y for transitive closure of:

“ ”

y = sws for some s € S where /(y) < I(w).
Theorem (G.—Pfeiffer, 1993). Let C € CI(W).

Q Let w,w' € Cpin. Then T, T, € H are conjugate in H.

©Q Let w € C. Then there exists some y € Cyi, such that w — y.
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Character values of Hecke algebras

Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).

For y,w € W write w — y for transitive closure of:

“ ”

y = sws for some s € S where /(y) < I(w).
Theorem (G.—Pfeiffer, 1993). Let C € CI(W).

Q Let w,w' € Cpin. Then T, T, € H are conjugate in H.

©Q Let w € C. Then there exists some y € Cyi, such that w — y.

(1) ~» Fix we € Guin for all C € CI(W).

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013 12 /15



Character values of Hecke algebras

Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).
For y,w € W write w — y for transitive closure of:
*y = sws for some s € S where /(y) < /(w).”
Theorem (G.—Pfeiffer, 1993). Let C € CI(W).
Q Let w,w' € Cuin. Then T, T,,» € H are conjugate in H.

©Q Let w € C. Then there exists some y € Cyi, such that w — y.

(1) ~ Fix we € Gy for all C € CI(W). Character table:

X(H) := (Trace(TWC, Ev))Eem(W)’CEQ(W)'
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Character values of Hecke algebras

Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).
For y,w € W write w — y for transitive closure of:
*y = sws for some s € S where /(y) < /(w).”
Theorem (G.—Pfeiffer, 1993). Let C € CI(W).
Q Let w,w' € Cyin. Then T, T, € H are conjugate in H.

©Q Let w € C. Then there exists some y € Cyi, such that w — y.

(1) ~ Fix we € Gy for all C € CI(W). Character table:

X(H) := (Trace(TWC, Ev)>E€|”(W)’CEC|(W)'

(2) ~» For any w € W,

v
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Character values of Hecke algebras

Let C € CI(W) and set d¢c := min{/(w) | w € C}.
Let Gnin :={w € C | I(w) = dc} (elements of minimal length in C).
For y,w € W write w — y for transitive closure of:
*y = sws for some s € S where /(y) < /(w).”
Theorem (G.—Pfeiffer, 1993). Let C € CI(W).
Q Let w,w' € Cyin. Then T, T,» € H are conjugate in H.

@ Let w € C. Then there exists some y € Cy;, such that w — y.

(1) ~ Fix we € Gy for all C € CI(W). Character table:

X(H) := (Trace(TWC, Ev)>E€|”(W)’CEC|(W)'

(2) ~ For any w € W, there are unique f,, ¢ € Z[v,v '] such that
T, = ZCeCI(W)fw’C Twe mod [H, HJ.

v
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ar 1 s s
E® o0 1 1 1
EGH 1 2 0 -1
E@i) 3 1 -1 1

?



Character values of Hecke algebras

Example. W(A,) = (s1,s2) = G3. Character tables:

ar 1 s sis i Ty Ty
E® o0 1 1 1 E®) 1 v V2
ECH 1 2 0 -1 ECY 2 y—vl -1
EAD 3 1 -1 1 EMD 1 —yt 2

=} = = = DA C
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Character values of Hecke algebras

Example. W(A,) = (s1,s2) = G3. Character tables:
ar 1 s s1s T, Ty T
E® 0 1 1 1 E®) 1 v V2
ECH 1 2 0 -1 ECY 2 y—vl -1
EA 3 1 -1 1 EAY) 1 vyt 2
All these tables in:  http://www.math.rwth-aachen.de/~CHEVIE/ )
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Character values of Hecke algebras

Example. W(Az) = (s1,5,) = S3. Character tables:
ar 1 s s1s T, Ty T
E® 0 1 1 1 E®) 1 v V2
ECH 1 2 0 -1 ECY 2 y—vl -1
EA 3 1 -1 1 EAY) 1 vyt 2
All these tables in:  http://www.math.rwth-aachen.de/~CHEVIE/

Let w = s15555.
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Character values of Hecke algebras

Example. W(A,) = (s1,5) = S3. Character tables:
ar 1 s s T, Ty Tgs
E® 0 1 1 1 E®) 1 v V2
ECH 1 2 0 -1 ECY 2 y—vl -1
EA 3 1 -1 1 EAY) 1 vyt 2
All these tables in:  http://www.math.rwth-aachen.de/~CHEVIE/

Let w = s;15,51. Then w — s, via conjugation with s;; furthermore,

S, conjugate to s;.
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Character values of Hecke algebras

Example. W(A,) = (s1,5) = S3. Character tables:
Tl T51 T5152

ar 1 ST S15
E® 0 1 1 1 E®) 1 v v
ECH 1 2 0 -1 ECY 2 y—vl -1

EMD 31 -1 1
http://www.math.rwth-aachen.de/~CHEVIE/

EA) 1 vt oy

All these tables in:

Let w = s;15,51. Then w — s, via conjugation with s;; furthermore,

s, conjugate to s;. So
TS15251 = T51 + (V - Vﬁl)T5152 mOd [H, H]

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013 13 /15



Character values of Hecke algebras

Example. W(A,) = (s1,5) = S3. Character tables:

Tl T51 T$1 s

ar 1 ST S15

E® 0 1 1 1 E®) 1 v v
ECY 2 y—vt -1

ECY 1 2 0 -1
EA 3 1 -1 1 EA) 1 vt oy

All these tables in: http://www.math.rwth-aachen.de/~CHEVIE/

Let w = s;15,51. Then w — s, via conjugation with s;; furthermore,

s, conjugate to s;. So
TS15251 = T51 + (V - Vﬁl)T5152 mOd [H, H]

Hence:
Trace(Toyssy, ERY) =
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Character values of Hecke algebras

Example. W(A,) = (s1,5) = S3. Character tables:
ar 1 s s T, Ty Tgs
E® 0 1 1 1 E®) 1 v V2
ECH 1 2 0 -1 ECY 2 y—vl -1
EA 3 1 -1 1 EAY) 1 vyt 2
All these tables in:  http://www.math.rwth-aachen.de/~CHEVIE/

Let w = s;15,51. Then w — s, via conjugation with s;; furthermore,
s, conjugate to s;. So

TS15251 = Tsl + (V - Vﬁl)T5152 mOd [H, H]
Hence:

Trace( T sy EY) = v—v 14 (v—v1)(=1) =0
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Character values of Hecke algebras

Example. W(A,) = (s1,5) = S3. Character tables:
ar 1 s s T, Ty Tgs
E® 0 1 1 1 E®) 1 v V2
ECH 1 2 0 -1 ECY 2 y—vl -1
EA 3 1 -1 1 EAY) 1 vyt 2
All these tables in:  http://www.math.rwth-aachen.de/~CHEVIE/

Let w = s;15,51. Then w — s, via conjugation with s;; furthermore,
s, conjugate to s;. So

TS15251 = Tsl + (V - Vﬁl)T5152 mOd [H, H]
Hence:

Trace( T515251’ E\£21)) = V_Vil_l—(v_vil)(_l) =0 ~ Cs15p51,E2D) = 0.
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e
Recursive computation of the polynomials f,, ¢ (induction on /(w)). J
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.

@ For some y € Cyc(w) and s € S we have I(sys) < I(y). Then
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.

@ For some y € Cyc(w) and s € S we have I(sys) < I(y). Then

fw,c = f,.c
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.

@ For some y € Cyc(w) and s € S we have I(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.

@ For some y € Cyc(w) and s € S we have /(sys) < I(y). Then
fw,C = f;,,(_" = fsys,C + (V — Vfl)fsy,c for all C € Cl(W)
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
@ For some y € Cyc(w) and s € S we have I(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
Q@ wec C . forsome C' € CI(W).
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
@ For some y € Cyc(w) and s € S we have /(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
Q@ w e (., for some C' € CI(W). Identify C’; then £, c = dc,c.

Meinolf Geck (Universitat Stuttgart) Kottwitz' conjecture Salt Lake City, July 2013 14 /15



Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
@ For some y € Cyc(w) and s € S we have /(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
Q@ w e (., for some C' € CI(W). Identify C’; then £, c = dc,c.

If /(w) = m, “only" need to know all f, ¢ where I(y) = m—1, m—2.
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
@ For some y € Cyc(w) and s € S we have /(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
Q@ w e (., for some C' € CI(W). Identify C’; then £, c = dc,c.

If /(w) = m, “only" need to know all f, ¢ where I(y) = m—1, m—2.

Worst case in Eg: 18 210 722 elements of length 60.
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
@ For some y € Cyc(w) and s € S we have /(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
Q@ w e (., for some C' € CI(W). Identify C’; then £, c = dc,c.

If /(w) = m, “only" need to know all f, ¢ where I(y) = m—1, m—2.

Worst case in Eg: 18 210 722 elements of length 60.
A priori &2 112 x 2 x 18 000 000 a2 4 x 10° polynomials required.
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Character values of Hecke algebras

Recursive computation of the polynomials f,, ¢ (induction on /(w)). )

Given w € W, compute the “cyclic shift orbit”
Cyc(w)={y e W|w —yand I(w) =I(y)}.
@ For some y € Cyc(w) and s € S we have /(sys) < I(y). Then
fuc =F.c="fysc+(v—vi)fyc forall Ce CI(W).
Note: /(sy) = I(w) — 1 and /(sys) = I(w) — 2. Apply induction.
Q@ w e (., for some C' € CI(W). Identify C’; then £, c = dc,c.

If /(w) = m, “only" need to know all f, ¢ where I(y) = m—1, m—2.

Worst case in Eg: 18 210 722 elements of length 60.
A priori &2 112 x 2 x 18 000 000 a2 4 x 10° polynomials required.
Use: f,.c = fur,c if w' € Cyc(w). Gain factor ~ 100.
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Character values of Hecke algebras

Python 2.7.4 (default, Apr 19 2013, 18:28:01)
[GCC 4.7.3] on linux2
HHSHHBHHHBHHHBAFHHBHHH B HH RS R R B HRR SRR R R RS

##
##
##
##
##
##
##
##
##
##
##
##

A PYTHON VERSION OF CHEVIE-GAP FOR (FINITE) COXETER GROUPS
(by Meinolf Geck, version 1r6pi18, 20 Dec 2012)

To get started type "help(coxeter)" or "allfunctions()";
see also http://dx.doi.org/10.1112/51461157012001064.
For notes about this version type '"versioninfo(1.6)".
Check www.mathematik.uni-stuttgart.de/~geckmf for updates.

Import into "sage" (4.7 or higher, www.sagemath.org) works.

The proposed name for this module is "PyCox".

All comments welcome!

##
##
##
##
##
##
##
##
##
##
##
H#

HASFHHBHHH B HBR SRR RS H B RS H R R R R R
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