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extended quotient

extended quotient of the second kind

extended quotient of the second kind twisted by a family of 2-cocycles

——————————————————————————–
Joint work with Anne-Marie Aubert, Roger Plymen, and Maarten Solleveld.
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Equivalence of categories(
Commutative unital finitely generated

nilpotent− free C algebras

)
∼=

(
Affine algebraic
varieties over C

)op

O(X)←− X
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X an affine algebraic variety over C

HP∗ = periodic cyclic homology

HPj(O(X)) = ⊕
k
H2k+j(X ; C) j = 0, 1

Hochschild-Kostant-Rosenberg

J. Cuntz - D. Quillen
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The extended quotient

Let Γ be a finite group acting on an affine variety X.

X is an affine variety over the complex numbers C.

Γ×X −→ X

The quotient variety X/Γ is obtained by collapsing each orbit to a point.
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For x ∈ X, Γx denotes the stabilizer group of x.

Γx = {γ ∈ Γ | γx = x}

c(Γx) denotes the set of conjugacy classes of Γx.

The extended quotient is obtained by replacing the orbit of x by c(Γx).

This is done as follows:
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Set X̃ = {(γ, x) ∈ Γ×X | γx = x}

X̃ ⊂ Γ×X

X̃ is an affine variety and is a sub-variety of Γ×X.

Γ acts on X̃.
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Γ× X̃ → X̃

g(γ, x) = (gγg−1, gx) g ∈ Γ (γ, x) ∈ X̃

The extended quotient, denoted X//Γ, is X̃/Γ.

i.e. The extended quotient X//Γ is the ordinary quotient for the action of
Γ on X̃.

The extended quotient is an affine variety.
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X̃ = {(γ, x) ∈ Γ×X | γx = x}

The projection X̃ → X

(γ, x) 7→ x

is Γ-equivariant and, therefore, passes to quotient spaces to give a map

ρ : X//Γ→ X/Γ

ρ is the projection of the extended quotient onto the ordinary quotient.
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X/Γ ↪→ X//Γ→ X/Γ

x 7→ (e, x)
e=identity element of Γ.
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EXTENDED QUOTIENT OF THE SECOND KIND
Let Γ be a finite group acting as automorphisms of a complex affine
variety X.

Γ×X → X.

For x ∈ X, Γx denotes the stabilizer group of x:

Γx = {γ ∈ Γ : γx = x}.

Let Irr(Γx) be the set of (equivalence classes of) irreducible
representations of Γx. The representations are on finite dimensional vector
spaces over the complex numbers C.
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The extended quotient of the second kind, denoted (X//Γ)2,
is constructed by replacing the orbit of x by Irr(Γx).
This is done as follows :
Set X̃2 = {(x, τ)

∣∣x ∈ X and τ ∈ Irr(Γx)}.
Γ acts on X̃2.

Γ× X̃2 → X̃2,

γ(x, τ) = (γx, γ∗τ),

where γ∗ : Irr(Γx)→ Irr(Γγx). (X//Γ)2 is defined by :

(X//Γ)2 := X̃2/Γ,

i.e. (X//Γ)2 is the usual quotient for the action of Γ on X̃2.
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(X//Γ)2 is not an affine variety, but is an algebraic variety in a more
general sense.

(X//Γ)2 is a non-separated algebraic variety over C.
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X/Γ ↪→ (X//Γ)2 → X/Γ

x 7→ (x, 1x)
1x= trivial one-dimensional representation of Γx.
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Notation. If A is a C algebra, Irr(A) is the set of (isomorphism classes of)
irreducible left A-modules.

Example. X an affine variety over C , Irr(O(X)) = X.
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Γ×X −→ X

HP∗ = periodic cyclic homology

HPj(O(X) o Γ) = ⊕
k
H2k+j(X//Γ ; C) j = 0, 1

Irr(O(X) o Γ) = (X//Γ)2
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Extended quotients are used to “lift” BC (Baum-Connes)
from K-theory to representation theory.

Lie groups

p-adic groups

Paul Baum (Penn State) Geometric Structure July 9, 2013 18 / 70



Lie group G — e.g. SL(n,R) GL(n,R)

K= maximal compact subgroup of G.
G = Lie algebra of G. K = Lie algebra of K.

Irrtempered(G)←→ (Xunitary(G/K)//K)2

Xunitary(G/K) = unitary characters of G/K

= Pontrjagin dual of G/K.

See results of Nigel Higson and his students.
Uses results of David Vogan.
The Mackey Analogy
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Let G be a reductive p-adic group.

Examples of reductive p-adic groups are GL(n, F ), SL(n, F )
where n can be any positive integer and F can be any finite
extension of the field Qp of p-adic numbers.

The smooth dual of G is the set of (equivalence classes of) smooth
irreducible representations of G. The representations are on vector spaces
over the complex numbers C. In a canonical way, the smooth dual of G is
the disjoint union of countably many subsets known as the Bernstein
components.
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Various results —

Proof by V. Lafforgue that the BC (Baum-Connes) conjecture is valid
for any reductive p-adic group G.

K∗C
∗
rG
∼= KG

∗ (βG)

P. Schneider ( N.Higson-V.Nistor) theorem on the periodic cyclic
homology of any reductive p-adic group G.

HP∗(HG) ∼= C⊗Z K
G
∗ (βG)

βG = the affine Bruhat-Tits building of G
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V. Heiermann (and many others) theorems on Bernstein’s ideals in
HG and finite type algebras.

P.Baum-V.Nistor theorem on the periodic cyclic homology of affine
Hecke algebras.

G. Lusztig, E. Opdam, M. Solleveld (and many others) theorems on
the representation theory of affine Hecke algebras.

— indicate that a very simple geometric structure might be present in the
smooth dual of G.
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The ABPS (Aubert-Baum-Plymen-Solleveld) conjecture makes this precise
by asserting that each Bernstein component in the smooth dual of G is a
complex affine variety. These varieties are explicitly identified as certain
extended quotients.
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For connected split G, (granted a mild restriction on the residual
characteristic) the ABPS conjecture has recently been proved for any
Bernstein component in the principal series of G. A corollary is that the
local Langlands conjecture is valid throughout the principal series of G.
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ABPS Conjecture

ABPS = Aubert-Baum-Plymen-Solleveld

The conjecture can be stated at four levels :

K-theory

Periodic cyclic homology

Geometric equivalence of finite type algebras

Representation theory
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ABPS Conjecture
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Let G be a reductive p-adic group. G is defined over a finite extension F
of the p-adic numbers Qp. F denotes the algebraic closure of F .
Shall assume that G(F ) is connected in the Zariski topology.

Examples are:

GL(n, F ) SL(n, F ) PGL(n, F ) SO(n, F ) Sp(n, F )

where n can be any positive integer and
F can be any finite extension of the p-adic numbers Qp.
These are connected split reductive p-adic groups.
“split” = the maximal p-adic torus in G has the “correct” dimension.
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Definition

A representation of G is a group homomorphism

φ : G→ AutC(V )

where V is a vector space over the complex numbers C.
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The p-adic numbers Qp in its natural topology is a locally compact and
totally disconnected topological field. Hence G is a locally compact and
totally disconnected topological group.

Definition

A representation
φ : G→ AutC(V )

of G is smooth if for every v ∈ V ,

Gv = {g ∈ G | φ(g)v = v}

is an open subgroup of G.
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Definition

Two smooth representations of G

φ : G→ AutC(V )

and
ψ : G→ AutC(W )

are equivalent if ∃ an isomorphism of C vector spaces T : V →W such
that for all g ∈ G there is commutativity in the diagram

V
φ(g)

//

T

��

V

T

��

W
ψ(g)

// W
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The smooth dual of G, denoted Ĝ, is the set of equivalence classes of
smooth irreducible representations of G.

Ĝ = {Smooth irreducible representations of G}/ ∼

Problem: Describe Ĝ.
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Since G is locally compact we may fix a (left-invariant) Haar measure dg
for G.

The Hecke algebra of G, denoted HG, is then the convolution algebra of
all locally-constant compactly-supported complex-valued functions
f : G→ C.

(f + h)(g) = f(g) + h(g)

(f ∗ h)(g0) =
∫
G
f(g)h(g−1g0)dg


g ∈ G
g0 ∈ G
f ∈ HG
h ∈ HG
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Definition

A representation of the Hecke algebra HG is a homomorphism of C
algebras

ψ : HG→ EndC(V )

where V is a vector space over the complex numbers C.
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Definition

A representation
ψ : HG→ EndC(V )

of the Hecke algebra HG is irreducible if ψ : HG→ EndC(V ) is not the
zero map and @ a vector subspace W of V such that W is preserved by
the action of HG and {0} 6= W and W 6= V .
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Definition

A primitive ideal I in HG is the null space of an irreducible representation
of HG.

Thus
0 −→ I ↪−→ HG ψ−−→ EndC(V )

is exact where ψ is an irreducible representation of HG.

There is a (canonical) bijection of sets

Ĝ←→ Prim(HG)

where Prim(HG) is the set of primitive ideals in HG.
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Bijection (of sets)
Ĝ←→ Prim(HG)

What has been gained from this bijection?

On Prim(HG) have a topology — the Jacobson topology.

If S is a subset of Prim(HG) then the closure S (in the Jacobson toplogy)
of S is

S = {J ∈ Prim(HG) | J ⊃
⋂
I∈S

I}
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Prim(HG) (with the Jacobson topology) is the disjoint union of its
connected components.

Point set topology. In a topological space W two points w1, w2 are in the
same connected component if and only if :

Whenever U1, U2 are two open sets of W with w1 ∈ U1, w2 ∈ U2, and
U1 ∪ U2 = W , then U1 ∩ U2 6= ∅.

As a set, W is the disjoint union of its connected components. If each
connected component is both open and closed, then as a topological space
W is the disjoint union of its connected components.
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Ĝ = Prim(HG) (with the Jacobson topology) is the disjoint union of its
connected components. Each connected component is both open and
closed. The connected components of Ĝ = Prim(HG) are known as the
Bernstein components.

πoPrim(HG) denotes the set of connected components of Prim(HG).

πoPrim(HG) is a countable set and has no further structure.
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πoPrim(HG) is the Bernstein spectrum of G.

πoPrim(HG) = {(M,σ)}/ ∼ where (M,σ) can be any cuspidal pair i.e.
M is a Levi factor of a parabolic subgroup P of G
and σ is an irreducible super-cuspidal representation of M .

∼ is the conjugation action of G, combined with tensoring σ by unramified
characters of M .

“unramified” = “the character is trivial on every compact subgroup of M .”
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πoPrim(HG) = {(M,σ)}/ ∼
(M,σ) ∼ (M ′, σ′) iff there exists an unramified character
ψ : M → C× = C− {0} of M and an element g of G, g ∈ G, with

g(M,ψ ⊗ σ) = (M ′, σ′)

The meaning of this equality is:

gMg−1 = M ′

g∗(ψ ⊗ σ) and σ′ are equivalent
smooth irreducible representations of M ′.
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For each α ∈ πoPrim(HG),
Ĝα denotes the connected component of Prim(HG) = Ĝ.

The problem of describing Ĝ now breaks up into two problems.

Problem 1 Describe the Bernstein spectrum
πoPrim(HG) = {(M,σ)}/ ∼.

Problem 2 For each α ∈ πoPrim(HG) = {(M,σ)}/ ∼,

describe the Bernstein component Ĝα.
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Problem 1 involves describing the irreducible super-cuspidal
representations of Levi subgroups of G. The basic conjecture on this issue
is that if M is a reductive p-adic group (e.g. M is a Levi factor of a
parabolic subgroup of G) then any irreducible super-cuspidal
representation of M is obtained by smooth induction from an irreducible
representation of a subgroup of M which is compact modulo the center of
M . This basic conjecture is now known to be true in many examples.

For Problem 2, the ABPS conjecture proposes that each

Bernstein component Ĝα has a very simple geometric structure.
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Notation

C× denotes the (complex) affine variety C− {0}.

Definition

A complex torus is a (complex) affine variety T such that there exists an
isomorphism of affine varieties

T ∼= C× × C× × · · · × C×.
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Bernstein assigns to each α ∈ πoPrim(HG) a complex torus Tα and a
finite group Γα acting on Tα.

Tα is a complex algebraic group and ∃ a non-negative integer r such that
Tα as an algebraic group defined over C is (non-canonically) isomorphic to
(C×)r := C× × C× × · · · × C×. C× := C− {0}

Tα ∼= C× × C× × · · · × C×

In general, Γα acts on Tα not as automorphisms of the algebraic group Tα
but only as automorphisms of the underlying complex affine variety Tα.
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Bernstein then forms the quotient variety Tα/Γα and proves that there is a
surjective map πα mapping Ĝα onto Tα/Γα .

Ĝα

Tα/Γα

πα
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This map πα is referred to as the infinitesimal character or the central
character or the cuspidal support map.

In Bernstein’s work Ĝα is a set (i.e. is only a set) so πα

Ĝα

Tα/Γα

πα

is a map of sets.

πα is surjective, finite-to-one and generically one-to-one.
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πoPrim(HG) = {(M,σ)}/ ∼

Given a cuspidal pair (M,σ), let WG(M) be the Weyl group of M .

WG(M) := NG(M)/M

Bernstein’s finite group Γα is the subgroup of WG(M) :

Γα := {w ∈WG(M)| ∃an unramified characterχofM with w∗σ ∼ χ⊗σ}

Bernstein’s complex torus Tα is a finite quotient of the complex torus
consisting of all unramified characters of M .
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πoPrim(HG) = {(M,σ)}/ ∼

Given a cuspidal pair (M,σ), the Bernstein component Ĝα ⊂ Ĝ consists
of all irreducible constituents of IndGM (χ⊗ σ) where IndGM is (smooth)
parabolic induction and χ ranges over all the unramified characters of M .

Ĝα

Tα/Γα

πα

πα is surjective, finite-to-one and generically one-to-one.
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Conjecture

Let G be a connected split reductive p-adic group.
Let α ∈ πoPrim(HG) = {(M,σ)}/ ∼.
Then there is a certain resemblance between

Tα//Γα

Tα/Γα

ρα

Ĝα

Tα/Γα

παand
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Conjecture

Tα//Γα

Tα/Γα

ρα

Ĝα

Tα/Γα

παand

are almost the same.
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How can this conjecture be made precise?
What does “almost the same” mean?
The precise conjecture uses the extended quotient of the second kind.
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The precise conjecture consists of four statements.

Conjecture

#1. The infinitesimal character

πα : Ĝα → Tα/Γα

is one-to-one if and only if the action of Γα on Tα is free.

#2. The extended quotient of the second kind (Tα//Γα)2
is canonically in bijection with Ĝα.

(Tα//Γα)2 ←→ Ĝα

Paul Baum (Penn State) Geometric Structure July 9, 2013 52 / 70



Conjecture

#3.There is a canonically defined commutative triangle

(Tα//Wα)2

**UUUUUUUUUUUUUUUU

zztttttttttt

Ĝα
// {Langlands parameters}α/LG

in which the left slanted arrow is bijective, the right slanted arrow is
surjective and finite-to-one, and the horizontal arrow is the map of the
local Langlands correspondence. The maps in this commutative triangle
are canonical.
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Conjecture

#4. A geometric equivalence

O(Tα//Γα) ∼ O(Tα) o Γα

can be chosen such that the resulting bijection

Tα//Γα ←→ (Tα//Γα)2

when composed with the canonical bijection (Tα//Γα)2 ←→ Ĝα gives a
(non-canonical) bijection

να : Tα//Γα ←→ Ĝα

with the following properties:
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α ∈ πoPrim(HG)
Within the admissible dual Ĝ have the tempered dual Ĝtempered.

Ĝtempered = {smooth tempered irreducible representations of G}/ ∼
Ĝtempered = Support of the Plancherel measure
Kα = maximal compact subgroup of Tα.
Kα is a compact torus. The action of Γα on Tα preserves the maximal
compact subgroup Kα , so can form the compact orbifold Kα//Γα.

Conjecture : Properties of the bijection να

The bijection να : Tα//Γα ←→ Ĝα maps

Kα//Γα onto Ĝα ∩ Ĝtempered
Kα//Γα ←→ Ĝα ∩ Ĝtempered
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Conjecture : Properties of the bijection να
For many α the diagram

Tα//Γα

Tα/Γα

ρα

να

Ĝα

Tα/Γα

πα

I

does not commute.
I = the identity map of Tα/Γα.
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Conjecture : Properties of the bijection να
In the possibly non-commutative diagram

Tα//Γα

Tα/Γα

ρα

να

Ĝα

Tα/Γα

πα

I

the bijection να : Tα//Γα −→ Ĝα is continuous where Tα//Γα has

the Zariski topology and Ĝα has the Jacobson topology
AND the composition

πα ◦ να : Tα//Γα −→ Tα/Γα

is a morphism of affine algebraic varieties.
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Conjecture : Properties of the bijection να

For each α ∈ πoPrim(HG) there is an algebraic family

θt : Tα//Γα −→ Tα/Γα

of morphisms of algebraic varieties, with t ∈ C×, such that

θ1 = ρα and θ√q = πα ◦ να

C× = C− {0}
q = order of the residue field of the p-adic field F over which G is
defined
πα = infinitesimal character of Bernstein
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Conjecture : Properties of the bijection να

Fix α ∈ πoPrim(HG). For each irreducible component Z ⊂ Tα//Γα
(Z is an irreducible component of the affine variety Tα//Γα)
there is a cocharacter

hZ : C× −→ Tα

such that

θt(x) = λ(hZ(t) · x)

for all x ∈ Z.

cocharacter = homomorphism of algebraic groups C× −→ Tα
λ : Tα −→ Tα/Γα is the usual quotient map from Tα to Tα/Γα.
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Question

Where are these correcting co-characters coming from?

Answer

The correcting co-characters are produced by the SL(2,C) part of the
Langlands parameters.

WF × SL(2,C) −→ LG
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Example

G = GL(2, F )
F can be any finite extension of the p-adic numbers Qp.
q denotes the order of the residue field of F .

Ĝα = { Smooth irreducible representations of GL(2, F ) having a non-zero
Iwahori fixed vector}

Tα = {unramified characters of the maximal torus of GL(2, F )}
= C× × C×

Γα = the Weyl group of GL(2, F ) = Z/2Z

0 6= γ ∈ Z/2Z γ(ζ1, ζ2) = (ζ2, ζ1) (ζ1, ζ2) ∈ C× × C×

(C× × C×)//(Z/2Z) = (C× × C×)/(Z/2Z)
⊔

C×
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C× × C×/(Z/2Z)

C× × C×//(Z/2Z) = C× × C×/(Z/2Z)
⊔

C×

Locus of reducibility

{ζ1ζ−1
2 , ζ2ζ

−1
1 } = {q, q−1}

{ζ1, ζ2} such that

ζ1 = ζ2

{ζ1, ζ2} such that

correcting cocharacter C× −→ C× × C× is t 7→ (t, t−1)
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Projection of the
extended quotient on
the ordinary quotient

Infinitesimal
character
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QUESTION. In the ABPS view of Ĝ, what are the L-packets?

CONJECTURAL ANSWER. Fix α ∈ πoPrim(HG). In the list
h1, h2, . . . , hr of correcting cocharacters
(one hj for each irreducible component of the affine variety Tα//Γα)
there may be repetitions — i.e. it may happen that for i 6= j, hi = hj .
It is these repetitions that give rise to L-packets.
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Fix α ∈ πoPrim(HG). Let
Z1, Z2, . . . , Zr be the irreducible components of the affine variety Tα//Γα.
Let h1, h2, . . . , hr be the correcting cocharacters.

Let να : Tα//Γα −→ Ĝα be the bijection of ABPS.
CONJECTURE. Two points [(γ, t)], [(γ′, t′)] have

να[(γ, t)] and να[(γ′, t′)] are in the same L− packet

if and only if

hi = hj where [(γ, t)] ∈ Zi and [(γ′, t′)] ∈ Zj
and

ci = cj

and
For all τ ∈ C×, θτ [(γ, t)] = θτ [(γ′, t′)]
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WARNING. An L-packet might have non-empty intersection with more
than one Bernstein component. The conjecture does not address this
issue. The statement of the ABPS conjecture begins

Fix α ∈ πoPrim(HG).

So the ABPS conjecture assumes that a Bernstein component has been
fixed — and then describes the intersections of L-packets with this
Bernstein component.
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Example

G = SL(2, F )
F can be any finite extension of the p-adic numbers Qp.
q denotes the order of the residue field of F .

Ĝα = { Smooth irreducible representations of GL(2, F ) having a non-zero
Iwahori fixed vector}

Tα = {unramified characters of the maximal torus of SL(2, F )}
= C×

Γα = the Weyl group of SL(2, F ) = Z/2Z

0 6= γ ∈ Z/2Z γ(ζ) = ζ−1 ζ ∈ C×

C×//(Z/2Z) = C×/(Z/2Z)
⊔
•
⊔
•
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Projection of the
extended quotient on
the ordinary quotient

{−1,−1} {1, 1}

Infinitesimal
character

{−1,−1} {q, q−1}

Correcting cocharacter is t 7→ t2.

Preimage of {−1,−1} is an L-packet.
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Wiggly arrow indicates
“There is some interaction between the two conjectures.”

Baum-Connes

ABPS

Local Langlands
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Theorem (V. Lafforgue)

Baum-Connes is valid for any reductive p-adic group G.

Theorem (Harris and Taylor, G.Henniart)

Local Langlands is valid for GL(n, F).

Theorem (ABPS)

ABPS is valid for GL(n, F).
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