Two triangularity results and invariants of $(\mathfrak{g}, S p(p) \times S p(q))$ modules

Leticia Barchini
Department of Mathematics
Oklahoma State University

July, 2013

Motivation

- G compact Lie group.

Irred. rep of G are "determined" by their characters.
Roughly: Understanding the characters of irred. rep. means that the Representation Theory of G is understood.
Weaker Invariant: dimension of the rep.

- G simple Lie group.

Global character of irred. rep. (infinite dimensional) has been define by Harish-Chandra (difficult to compute).

A number of other invariants contain relevant info about irred. rep.

Examples: Associated variety, Associated cycle, Annihilator, Characteristic cycles (can we compute some of them?)

- G is a complex simple algebraic group with involution θ.
- $K=G^{\theta}$. The real form defined by θ has a maximal compact subgroup with complexification K. Write $G_{\mathbb{R}}, K_{\mathbb{R}}$ for the real points.
- \mathcal{N} denotes the nilpotent cone.
- We denote by $X=\{\mathfrak{b} \subset \mathfrak{g}$ Borel subalgebra $\}$ the flag variety. (All borel subalg. are G-conjugate. Hence if $B=N_{G}(\mathfrak{b})$ then $\left.X \simeq G / B\right)$. $(\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n})$
- The cotangent bundle is $T^{*} X=\left\{(\mathfrak{b}, \xi): \xi \in(\mathfrak{g} / \mathfrak{b})^{*}\right\}$.
- The moment map for the Hamiltonian action of G on $T^{*}(X)$ is

$$
\begin{aligned}
\mu: T^{*} X=\left\{(\mathfrak{b}, \xi): \xi \in(\mathfrak{g} / \mathfrak{b})^{*}\right\} & \rightarrow \mathcal{N} \\
(\mathfrak{b}, \xi) & \rightarrow \xi
\end{aligned}
$$

$\mathcal{M}_{\rho}(\mathfrak{g}, B)$

- Let $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ be the abelian category of \mathfrak{f}. generated B-finite (\mathfrak{g}, B)-modules with inf. char. ρ. [The Grothendieck group $\mathcal{K}\left(\mathcal{M}_{\rho}(\mathfrak{g}, B)\right)=\oplus \mathbb{Z} L_{w}$.]

Study of invariants of irreds. in $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ gave rise to deep theories involving Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.
$\mathcal{M}_{\rho}(\mathfrak{g}, B)$

- Let $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ be the abelian category of \mathfrak{f}. generated B-finite (\mathfrak{g}, B)-modules with inf. char. ρ. [The Grothendieck group $\mathcal{K}\left(\mathcal{M}_{\rho}(\mathfrak{g}, B)\right)=\oplus \mathbb{Z} L_{w}$.]

Study of invariants of irreds. in $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ gave rise to deep theories involving Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.

- Crucial to this is the equivalence of categories

$$
\mathcal{M}_{\rho}(\mathfrak{g}, B) \simeq \mathcal{M}_{\operatorname{coh}}\left(\mathcal{D}_{X}, B\right)
$$

$\mathcal{M}_{\rho}(\mathfrak{g}, B)$

- Let $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ be the abelian category of \mathfrak{f}. generated B-finite (\mathfrak{g}, B)-modules with inf. char. ρ. [The Grothendieck group $\mathcal{K}\left(\mathcal{M}_{\rho}(\mathfrak{g}, B)\right)=\oplus \mathbb{Z} L_{w}$.]

Study of invariants of irreds. in $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ gave rise to deep theories involving Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.

- Crucial to this is the equivalence of categories

$$
\mathcal{M}_{\rho}(\mathfrak{g}, B) \simeq \mathcal{M}_{\mathrm{coh}}\left(\mathcal{D}_{X}, B\right)
$$

- $\{B$-orbits on $X\}=\{X(w)\}_{w \in W}$ (Shubert cells)

The characteristic variety is a union of several conormal bundles to B-orbits in X :

$$
C V(M)=\cup \overline{T_{X}^{*}(y)} \boldsymbol{X}=\operatorname{supp}\left(\operatorname{gr}\left(\mathcal{M}_{M}\right)\right)
$$

The characteristic cycle keeps track of multiplicities along the components:

$$
C C(M)=C C\left(\mathcal{M}_{M}\right)=\sum n_{y}\left[\overline{T_{X(y)}^{*} X}\right] .
$$

Recall the moment map $\mu: T^{*}(X) \rightarrow \mathcal{N}$. There is a special nilpotent G-orbit in \mathcal{N} so that

$$
\mu\left(C V\left(L_{w}\right)\right)=\Upsilon_{1} \cup \ldots \cup \Upsilon_{r}=A V\left(L_{w}\right)
$$

where $\left\{\Upsilon_{i}\right\}$ are irred. components of $\overline{\mathcal{O}} \cap \mathfrak{n}$. (Orbital Varieties)
Joseph attaches to each Υ_{i} a polynomial $p \Upsilon_{i} \in \mathcal{P}\left(\mathfrak{h}^{*}\right)$:

- $\left\{p_{\Upsilon}: \Upsilon\right.$ irred. component of $\left.\overline{\mathcal{O}} \cap \mathfrak{n}\right\}$.
[p_{Υ} measure the growth rate of the H-weights on $\mathcal{S}(\bar{n}) / I(\Upsilon)$ where $I(\Upsilon)$ is ideal of definition of \uparrow.]
- $\operatorname{span}\left\{p_{\Upsilon}: \Upsilon\right.$ irred. component of $\left.\overline{\mathcal{O}} \cap \mathfrak{n}\right\}=\operatorname{Sp}(\mathcal{O})$ Irred.
W-module.

A second basis of $\operatorname{Sp}(\mathcal{O})$

Define:

$$
\begin{aligned}
\operatorname{Prim}_{\rho}(\mathcal{O})=\{I & \text { :primitive 2-sided ideals in } \mathcal{U}(\mathfrak{g}) \\
& \text { infinitesimal character } \rho \in \mathfrak{h}^{*} \\
& \text { the variety of zeros of } \operatorname{gr}(I)=\overline{\mathcal{O}}\} .
\end{aligned}
$$

Joseph attached to each $I \in \operatorname{Prim}_{\rho}(\mathcal{O})$ a polynomial $q_{I} \in \mathcal{P}\left(\mathfrak{h}^{*}\right)$, the so called Goldie rank polynomial. $[\lambda \rightarrow \operatorname{rank}(\mathcal{U}(\mathfrak{g}) / \operatorname{Ann}(L(\lambda))]$

- $\operatorname{span}_{\mathbb{C}}\left\{q_{I}: I \in \operatorname{Prim}_{\rho}(\mathcal{O})\right\} \simeq \operatorname{Sp}(\mathcal{O})$, as W modules.

We are interested in: (a) the change of bases matrix
(b) the info about $C C$ of (\mathfrak{g}, B) and (\mathfrak{g}, K) modules encoded
in the matrix.

First triangularity result

Monty McGovern defined a bijection:

$$
\operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow\{\Upsilon \text { irred components of } \overline{\mathcal{O}} \cap \mathfrak{n}\}
$$

[combinatorial in nature: both $\operatorname{Prim}_{\rho}(\mathcal{O})$ and $\{\Upsilon\}$ are parametrized by SDT of special shape. Roughly : Υ corresponds to $/$ iff their SDT agree.]

The notion of τ^{r}-invariant and τ_{∞}^{r} is well defined at the level of tabeaux.
Monty introduces an order on $\{\Upsilon\}$

$$
\Upsilon_{i}<\Upsilon_{j} \leftrightarrow \tau_{\infty}^{r}\left(S D T_{i}\right) \subset \tau_{\infty}^{r}\left(S D T_{j}\right)
$$

- He shows that the matrix relating $\left\{q_{l}\right\}$ to $\left\{p_{\Upsilon}\right\}$, in this order, is upper triangular.

First triangularity result and CC

- McGovern's triangularity result says: If

$$
\begin{gathered}
C C\left(L_{w}\right)=T_{X(w)}^{*}+\sum m_{y, w} T_{X(y)}^{*}(X) \\
\text { and } m_{y, w} \neq 0, \text { then } \tau_{\infty}^{r}(w) \subset \tau_{\infty}^{r}(y)
\end{gathered}
$$

Key Theorem (Joseph)
Write $q_{A n n\left(L_{w-1}\right)}=\sum m_{i} p_{\Upsilon_{i}}$. Then

$$
m_{i} \neq 0 \Leftrightarrow \Upsilon_{i} \text { is open in } A V\left(L_{w}\right) .
$$

McGovern's result

- imposes strong restriction on the "shape" of $\operatorname{AV}\left(L_{w}\right)$,
- generalizes a triangularity result in type A_{n} by Joseph,
- proves a conjecture by Tanisaki.
- Let $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ the category of Harish-Chandra modules with inf. ch. ρ. Peter Trapa says:
- Let $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ the category of Harish-Chandra modules with inf. ch. ρ.

Peter Trapa says:
(1) There is a bijection between $\operatorname{Prim}_{\rho}(\mathcal{O})$ and $\{\Upsilon$ irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ "geometric" in nature. Moreover, geometric orders can be defined on $\{\Upsilon\}$ so that the matrix relating Goldie rank polynomials and Joseph's characteristic polynomials is upper triangular.
(2) Joseph's theorem is closely related to CC of Harish-Chandra (\mathfrak{g}, K)-modules.
(3) The leading term cycle (" a piece of CC") encodes all needed info to compute Ann. and AV.
(1) Question: Is it true that LTC of H-C module for $G_{\mathbb{R}}=S p(p, q)$ are irreducible?

- Beilinson-Berstein equivalence of categories

$$
\begin{aligned}
\mathcal{M}_{\rho}(\mathfrak{g}, K) & \simeq \mathcal{M}_{\text {coh }}\left(\mathcal{D}_{X}, K\right) \\
M & \rightarrow \mathcal{M}_{M}=\mathcal{D}_{X} \otimes_{\mathcal{U}(\mathfrak{g})} M
\end{aligned}
$$

- Beilinson-Berstein equivalence of categories

$$
\begin{aligned}
\mathcal{M}_{\rho}(\mathfrak{g}, K) & \simeq \mathcal{M}_{\mathrm{coh}}\left(\mathcal{D}_{X}, K\right) \\
M & \rightarrow \mathcal{M}_{M}=\mathcal{D}_{X} \otimes_{\mathcal{U}(\mathfrak{g})} M
\end{aligned}
$$

$\{$ Irred. H-C modules with inf. cha. $\rho\} \leftrightarrow\{(Q, \chi) K$-orbits on X, local char. $\}$

- Similar to what we have done in $\mathcal{M}(\mathfrak{g}, B)$

The characteristic cycle is the support of $\operatorname{gr}\left(\mathcal{M}_{M}\right)$ keeping track of multiplicities

$$
C C(M)=C C\left(\mathcal{M}_{M}\right)=\sum n_{Q}\left[\overline{T_{Q}^{*} X}\right], \quad C V(M)=U \overline{T_{Q}^{*} X}=\operatorname{supp}\left(g r\left(\mathcal{M}_{M}\right)\right)
$$

- $\mu\left(\overline{T_{Q}^{*}(X)}\right)=\overline{\mathcal{O}_{K}}$, nilpotent K-orbit.

The leading characteristic cycle is

$$
\sum_{Q: \mu\left(T_{\mathbb{Q}}^{*}(X)\right) \text { of } \max \operatorname{dim}} n_{\mathcal{Q}} \overline{T_{Q}^{*}(X)}
$$

Geometric orders

To simplify exposition assume $G_{\mathbb{R}}=S p(p, q)$ or $S O^{*}(2 n)$.
(1) Fix \mathcal{O} a nilpotent G-orbit and a real form $\mathcal{O}_{K}=K \cdot f \subset \overline{\mathcal{O}}$.
(3) $\mu^{-1}(f)=\cup C_{i}$. Let $A_{G}(f)$ the group of components of $Z_{G}(f)$.
(3) (Spaltenstein) There is a bijection

$$
\{\Upsilon: \text { irred. comp. } \overline{\mathcal{O}} \cap \mathfrak{n}\} \leftrightarrow\left\{A_{G}(f) \text {-orbits in } \operatorname{Irr}\left(\mu^{-1}(f)\right)\right\}
$$

- On the other hand, conormal bundles partition Springer fibers, i.e $T_{Q}^{*}(X) \cap \mu^{-1}(f)$ is dense in a unique component C_{Q}. Hence,
$■ \Upsilon_{i} \equiv A_{G}(f) \cdot C_{i} \leftrightarrow\left\{\mathcal{Q}_{i, t} \in K / X: \mu\left(\overline{T_{Q_{i, t}}^{*}(X)}\right)=\overline{\mathcal{O}_{K}}\right.$ has $\left.C_{i, t} \in A_{G}(f) \cdot C_{i}\right\}$
Orders on $\{Q \in K / X\}$ compatible with orbit closure inclusion induce orders on $\{\Upsilon\}$.

Continue with $G_{\mathbb{R}}=S p(p, q)$ or $S O^{*}(2 n)$ and $\mathcal{O}_{K}=K \cdot f \subset \overline{\mathcal{O}}$.

- Trapa defines a bijection between $\operatorname{Prim}_{\rho}(\mathcal{O})$ and $\{$ 个irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ (a little technical for me to explain here.) In any of the orders just described on $\{\Upsilon\}$ the matrix relating Goldie rank polynomials and Joseph's characteristic polynomials is upper triangular.
- Trapa's triangularity result says: If

$$
\begin{aligned}
& \quad \operatorname{LTC}(M)=T_{\text {supp }(M)}^{*}(X)+\sum m_{Q_{i}} T_{Q_{i}}^{*}(X), \\
& \text { and } m_{i} \neq 0, \text { then } A_{G}(f) \cdot C_{i}<A_{G}(f) \cdot C_{\text {supp }(M)}
\end{aligned}
$$

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of $\mathrm{H}-\mathrm{C}$ modules?

Questions

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of $\mathrm{H}-\mathrm{C}$ modules?
- Can we work "simultaneously" on the $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ and $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ categories to transfer info and gain insight on the invariants?

Questions

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of $\mathrm{H}-\mathrm{C}$ modules?
- Can we work "simultaneously" on the $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ and $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ categories to transfer info and gain insight on the invariants?
[The Jacquet-Casselman functor $\mathbb{J}: \mathcal{M}(\mathfrak{g}, K)_{\rho} \rightarrow \mathcal{M}(\mathfrak{g}, B)_{\rho}$ should play a central role here. For us, \mathbb{J} is in the background, through McGovern's work.]

Questions

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of $\mathrm{H}-\mathrm{C}$ modules?
- Can we work "simultaneously" on the $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ and $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ categories to transfer info and gain insight on the invariants?
[The Jacquet-Casselman functor $\mathbb{J}: \mathcal{M}(\mathfrak{g}, K)_{\rho} \rightarrow \mathcal{M}(\mathfrak{g}, B)_{\rho}$ should play a central role here. For us, \mathbb{J} is in the background, through McGovern's work.]
- A practical link, $G_{\mathbb{R}}=\operatorname{Sp}(p, q)$ or $S O^{*}(2 n)$

Theorem (Trapa) A Geometric interpretation of Joseph's Thm
Let M be an irred. H-C module with $A V(M)=\overline{K \cdot f}$ and $\operatorname{Ann}(M)=\operatorname{Ann}\left(L_{w^{-1}}\right)$. Write

$$
\star L T C(M)=\overline{T_{\operatorname{supp}(M)}^{*}(X)}+\sum m_{Q_{i}} \overline{T_{Q_{i}}^{*}(X)}, \star A V\left(L_{w}\right)=\cup \Upsilon_{k}
$$

Then, $m_{Q_{i}} \neq 0$ " iff" the orbital variety Υ_{i} bijective to $A_{G}(f) \cdot C_{Q_{i}}$ is open in $A V\left(L_{w}\right) .:$

- If we want to understand CC we can not forget of a powerful tool: (Tanisaki)

$$
C C: \mathcal{K}\left(\mathcal{M}(\mathfrak{g}, K)_{\rho}\right) \rightarrow H_{\text {top }}\left(T_{K}^{*}(X), \mathbb{Q}\right)
$$

is W-equivariant.

- $\mathcal{M}(\mathfrak{g}, K)_{\rho}$ partitions into "equivalence classes", the HC cells $\left\{\mathcal{C}_{H C,}\right\}$. (designed to capture information on tensoring a HC modules with a finite dim. rep.)
Key property:
(McGovern) Assume $(\mathfrak{g}, S p(p) \times S p(q))$. Let \mathcal{O}_{K} be a nilpotent K-orbit. Then,

$$
\mathcal{C}_{H C}=\left\{X \in \mathcal{M}(\mathfrak{g}, K)_{\rho}: A V(X)=\overline{\mathcal{O}_{K}}\right\} .
$$

- For each $\mathcal{C}_{H C}$, there is a W-cell representation $V_{\mathcal{C}_{H C}}$ (minimal sub-quotient of the coherent continuation rep $\mathcal{K}\left(\mathcal{M}(\mathfrak{g}, K)_{\rho}\right)$ that is spanned by $\left.\mathcal{C}_{H C}\right)$.

When $G_{\mathbb{R}}=U(p, q)$.
(1) Each irreducible (\underline{g}, K) with inf. chr. ρ has irreducible associated variety, $A V(X)=\overline{\mathcal{O}_{K}}=\overline{K \cdot f}$.
(2) $V_{\mathcal{C}_{H C}} \simeq H_{\text {top }}\left(\mu^{-1}(f)\right)$ is an irreducible W-representation.
(3) The component groups $A_{G}(f)$ of the centralizer of f are trivial. For $X, Y \in \mathcal{C}_{H C}$, then $\operatorname{Ann}(X) \neq \operatorname{Ann}(Y)$.
(1) $\mathcal{C}_{H C}$ contains an $A_{\mathfrak{q}}$ for which the associated cycle can be computed.
(-) As $V_{\mathcal{C}_{H C}}=\mathbb{Q}[W] \cdot A_{q}$, (indeed any $M \in \mathcal{C}_{H C}$ has such property.) The point is that we can compute multiplicity polynomials using coherent continuation rep.
(1) Many irreducible $M \in \mathcal{C}_{H C}$, have $L T C(M)=1 \cdot \overline{T_{2}^{*}(X)}$ ($\overline{\mathfrak{Q}}$ is the support of $M)$.
We would like to emphasize that none of the above facts hold in general.

Proposition
Assume $G_{\mathbb{R}}=\operatorname{Sp}(p, q)$ or $S O^{*}(2 n)$.
Let M_{1}, M_{2} irreducible (\mathfrak{g}, K)-modules with $A V\left(M_{i}\right)=\overline{K \cdot f}$. Write $Q_{M_{i}}$ the support of M_{i}, and let $C_{Q_{M_{i}}}$ be the irred. component of $\left(\mu^{-1}(f)\right)$ corresponding to $Q_{M_{i}}$. Then,

$$
\operatorname{Ann}\left(M_{1}\right)=\operatorname{Ann}\left(M_{2}\right) \Longleftrightarrow C_{Q_{M_{1}}} \in A_{G}(f) \cdot C_{Q_{M_{2}}}
$$

(1) In view of the prop. $T: \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow\{\Upsilon$ irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ can be described as follows.: given $I \in \operatorname{Prim}_{\rho}(\mathcal{O})$ take any $M(Q)$ with
(2) The prop. will allow us to compare Trapa's bijection and McGovern bijection leading to restrictions on shape of LTC.

Proposition

Assume $G_{\mathbb{R}}=\operatorname{Sp}(p, q)$ or $S O^{*}(2 n)$.
Let M_{1}, M_{2} irreducible (\mathfrak{g}, K)-modules with $A V\left(M_{i}\right)=\overline{K \cdot f}$.
Write $Q_{M_{i}}$ the support of M_{i}, and let $C_{Q_{M_{i}}}$ be the irred. component of $\left(\mu^{-1}(f)\right)$ corresponding to $Q_{M_{i}}$. Then,

$$
\operatorname{Ann}\left(M_{1}\right)=\operatorname{Ann}\left(M_{2}\right) \Longleftrightarrow C_{Q_{M_{1}}} \in A_{G}(f) \cdot C_{Q_{M_{2}}} .
$$

Remark

(1) In view of the prop. $T: \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow\{\Upsilon$ irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ can be described as follows.: given $I \in \operatorname{Prim}_{\rho}(\mathcal{O})$ take any $M(\mathbb{Q})$ with $A V(M(Q))=\overline{K \cdot f}$ and $A n n(M(Q))=I$, then $T(I)=\Upsilon \leftrightarrow A_{G}(f) \cdot C_{Q}$.
(3) The prop. will allow us to compare Trapa's bijection and McGovern bijection leading to restrictions on shape of LTC.

Proposition

Assume $G_{\mathbb{R}}=\operatorname{Sp}(p, q)$ or $S O^{*}(2 n)$.
Let M_{1}, M_{2} irreducible (\mathfrak{g}, K)-modules with $A V\left(M_{i}\right)=\overline{K \cdot f}$.
Write $Q_{M_{i}}$ the support of M_{i}, and let $C_{Q_{M_{i}}}$ be the irred. component of $\left(\mu^{-1}(f)\right)$ corresponding to $Q_{M_{i}}$. Then,

$$
\operatorname{Ann}\left(M_{1}\right)=\operatorname{Ann}\left(M_{2}\right) \Longleftrightarrow C_{Q_{M_{1}}} \in A_{G}(f) \cdot C_{Q_{M_{2}}}
$$

Remark

(1) In view of the prop. $T: \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow\{\Upsilon$ irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ can be described as follows.: given $I \in \operatorname{Prim}_{\rho}(\mathcal{O})$ take any $M(Q)$ with $A V(M(Q))=\overline{K \cdot f}$ and $\operatorname{Ann}(M(Q))=I$, then $T(I)=\Upsilon \leftrightarrow A_{G}(f) \cdot C_{Q}$.
(2) The prop. will allow us to compare Trapa's bijection and McGovern bijection leading to restrictions on shape of LTC.
(3) The prop. (combined with other tools) give some info on the structure of $V_{\mathcal{C}_{H C}}$.

Theorem
$G_{\mathbb{R}}=S p(p, q)$ or $S O^{*}(2 n)$.
(1) $Q[W] M \simeq V_{\mathcal{C}_{H C}}$ if and only if $\operatorname{card}\left\{M^{\prime} \in \mathcal{C}_{H C}: \operatorname{Ann}\left(M^{\prime}\right)=\operatorname{Ann}(M)\right\}$ is maximal for $\mathcal{C}_{H C}$.
(2) If $M^{\prime} \in \mathbb{C}_{H C}$, then

$$
\mathbb{Q}[W] M^{\prime} \simeq H_{\text {top }}\left(\mu^{-1}(f)\right)^{A_{G}\left(f, C_{Q_{M^{\prime}}}\right)}
$$

where, $A_{G}\left(f, C_{Q_{M^{\prime}}}\right)=\left\{z \in A_{G}(f): z \cdot C_{Q_{M^{\prime}}}=C_{Q_{M^{\prime}}}\right\}$.
Remark: The proof of Theorem relies in the Proposition and an result of McGovern, i.e for $\mathfrak{s p}(p, q) V_{\mathcal{C}_{H C}} \simeq H_{\text {top }}\left(\mu^{-1}(f), \mathbb{Q}\right)$ as W-modules.

Theorem

$G_{\mathbb{R}}=S p(p, q)$ or $S O^{*}(2 n)$.
(1) $Q[W] M \simeq V_{\mathcal{C}_{H C}}$ if and only if $\operatorname{card}\left\{M^{\prime} \in \mathcal{C}_{H C}: \operatorname{Ann}\left(M^{\prime}\right)=\operatorname{Ann}(M)\right\}$ is maximal for $\mathcal{C}_{H C}$.
(2) If $M^{\prime} \in \mathbb{C}_{H C}$, then

$$
\mathbb{Q}[W] M^{\prime} \simeq H_{\mathrm{top}}\left(\mu^{-1}(f)\right)^{A_{G}\left(f, C_{Q_{M^{\prime}}}\right)}
$$

where, $A_{G}\left(f, C_{Q_{M^{\prime}}}\right)=\left\{z \in A_{G}(f): z \cdot C_{Q_{M^{\prime}}}=C_{Q_{M^{\prime}}}\right\}$.
Remark: The proof of Theorem relies in the Proposition and an result of McGovern, i.e for $\mathfrak{s p}(p, q) V_{\mathcal{C}_{H C}} \simeq H_{\text {top }}\left(\mu^{-1}(f), \mathbb{Q}\right)$ as W-modules.
Application: Theorem (4) (B.-Zierau) Assume $\mathfrak{g}=\mathfrak{s p}(p, q)$. There is an effective algorithm to compute multiplicity polynomials for each irreducible HC module $X \in \mathcal{C}_{H C}$ provided $\mathcal{C}_{H C}$ contains a rep. in the discrete series.

- $G_{\mathbb{R}}=\operatorname{Sp}(1,1)$
- $\mathcal{C}_{H C}$ is the $\mathrm{H}-\mathrm{C}$ cell with $A V(A n n)=[2,2]$ and $A V=\overline{K \cdot f}$ a real form of [2, 2].
- $\mathcal{C}_{H C}=\left\{\pi_{1}=d s_{1}, \pi_{2}=d s_{2}, \pi_{3}=A_{\mathfrak{q}}(\lambda)\right\}$. where $\operatorname{Ann}\left(d s_{1}\right)=\operatorname{Ann}\left(d s_{2}\right) \neq \operatorname{Ann}\left(A_{\mathfrak{q}}(\lambda)\right.$.
- $V_{\mathcal{C}_{H C}} \equiv \mathbb{Q}[W] \cdot d s_{i}$ but $Q[W] \cdot A_{\mathfrak{q}}(\lambda) \subsetneq V_{\mathcal{C}_{H C}}$.
- $C C\left(\pi_{i}\right)=T_{Q_{i}}^{*}(X)$ with $\overline{Q_{i}}=\operatorname{supp}\left(\pi_{i}\right)$. Write C_{i} for the component of the Springer fiber corresponding to $T_{Q_{i}}^{*}(X) \cap \mu^{-1}(f)$.
- A basis for $H_{\text {top }}\left(\mu^{-1}(f)\right)^{A_{G}\left(f, C_{2}\right)}$ is $\left\{\left[C_{0}+C_{1}\right],\left[C_{2}\right]\right\}$ and

$$
\begin{array}{ll}
s_{\alpha_{1}} C_{2}=-C_{2} & s_{\alpha_{1}}\left[C_{0}+C_{1}\right]=\left[C_{0}+C_{1}\right]+2 C_{2} \\
s_{\alpha_{2}} C_{2}=C_{2}+\left[C_{0}+C_{1}\right] & s_{\alpha_{2}}\left[C_{0}+C_{1}\right]=-\left[C_{0}+C_{1}\right] .
\end{array}
$$

Theorem
Assume $G_{\mathbb{R}}=\operatorname{Sp}(p, q)$ or $S O^{*}(2 n)$.
Fix $\mathcal{C}_{H C}$ with $A V\left(\mathcal{C}_{H C}\right)=\overline{K \cdot f}$. Write $M(Q)$ for $M \in \mathcal{C}_{H C}$ with $\operatorname{supp}(M(Q))=\bar{Q}$ and write

$$
\begin{gathered}
\operatorname{LTC}(M(Q))=T_{Q}^{*}(X)+\sum m_{Q_{j}} T_{Q_{j}}^{*}(X), \text { then } \\
\tau_{\infty}^{r}(M(Q)) \subset \tau_{\infty}^{r}\left(M\left(Q_{j}\right)\right)
\end{gathered}
$$

- We show that $T: \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow\{$ 个irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ sends $I \rightarrow \Upsilon\left(A_{G}(f) C_{Q}\right)=\Upsilon_{S D T(I)}$
- There are other restrictions that come from Trapa's order and also $Q_{j} \subset \bar{Q}$.
- Restrictions + ATLAS (to compute coherent continuation, for example) yield many examples of HC modules with irred. LTC.

Theorem
Assume $G_{\mathbb{R}}=\operatorname{Sp}(p, q)$ or $S O^{*}(2 n)$.
Fix $\mathcal{C}_{H C}$ with $A V\left(\mathcal{C}_{H C}\right)=\overline{K \cdot f}$. Write $M(\mathbb{Q})$ for $M \in \mathcal{C}_{H C}$ with $\operatorname{supp}(M(\mathbb{Q}))=\bar{Q}$ and write

$$
\begin{gathered}
\operatorname{LTC}(M(Q))=T_{Q}^{*}(X)+\sum m_{Q_{j}} T_{Q_{j}}^{*}(X), \text { then } \\
\tau_{\infty}^{r}(M(Q)) \subset \tau_{\infty}^{r}\left(M\left(Q_{j}\right)\right)
\end{gathered}
$$

Remark:

- We show that $T: \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow\{\Upsilon$ irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}\}$ sends $I \rightarrow \Upsilon\left(A_{G}(f) C_{Q}\right)=\Upsilon_{S D T(I)}$.
- There are other restrictions that come from Trapa's order and also $Q_{j} \subset \bar{Q}$.
- Restrictions + ATLAS (to compute coherent continuation, for example) yield many examples of HC modules with irred. LTC.
$\operatorname{IF} G_{\mathbb{R}}=S p(p, q)$, ARE LTC iRRED?

Key to the answer is:
Theorem (Trapa) A Geometric interpretation of Joseph's Thm
Assume M is irred., $A V(M)=\overline{K \cdot f}$ and $\operatorname{Ann}(M)=\operatorname{Ann}\left(L_{w^{-1}}\right)$. Write $\star L T C(M)=\overline{T_{\text {supp }(\mathrm{M})}^{*}(X)}+\sum m_{Q_{i}} \overline{T_{Q_{i}}^{*}(X)}, \star A V\left(L_{w}\right)=\cup \Upsilon_{k}$
Then, $m_{\Omega_{i}} \neq 0$ " iff" the orbital variety Υ_{i} bijective to $A_{G}(f) \cdot C_{Q_{i}}$ is open in $A V\left(L_{w}\right) .:$

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra module with reducible leading term cycle.

IF $G_{\mathbb{R}}=S p(p, q)$, ARE LTC iRRED?

Key to the answer is:
Theorem (Trapa) A Geometric interpretation of Joseph's Thm
Assume M is irred., $A V(M)=\overline{K \cdot f}$ and $\operatorname{Ann}(M)=\operatorname{Ann}\left(L_{w^{-1}}\right)$. Write $\star L T C(M)=\overline{T_{\text {supp }(\mathrm{M})}^{*}(X)}+\sum m_{Q_{i}} \overline{T_{Q_{i}}^{*}(X)}, \star A V\left(L_{w}\right)=\cup \Upsilon_{k}$
Then, $m_{\Omega_{i}} \neq 0$ " iff" the orbital variety Υ_{i} bijective to $A_{G}(f) \cdot C_{Q_{i}}$ is open in $A V\left(L_{w}\right) .:$

Answer to the question: NO.
(1) $\operatorname{AV}\left(\operatorname{Ann}\left(L_{w}\right)\right)=\overline{\mathcal{O}}$ is the associated variety of the annihilator of a $(\mathfrak{s p}(2 n), \operatorname{Sp}(p) \times \operatorname{Sp}(q))$-module and

- $\operatorname{AV}\left(L_{w}\right)$ is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra module with reducible leading term cycle.
$\operatorname{IF} G_{\mathbb{R}}=S p(p, q)$, ARE LTC IRRED?

Key to the answer is:
Theorem (Trapa) A Geometric interpretation of Joseph's Thm
Assume M is irred., $A V(M)=\overline{K \cdot f}$ and $\operatorname{Ann}(M)=\operatorname{Ann}\left(L_{w^{-1}}\right)$. Write $\star L T C(M)=\overline{T_{\text {supp }(M)}^{*}(X)}+\sum m_{Q_{i}} \overline{T_{Q_{i}}^{*}(X)}, \quad \star A V\left(L_{w}\right)=\cup \Upsilon_{k}$
Then, $m_{\Omega_{i}} \neq 0$ " iff" the orbital variety Υ_{i} bijective to $A_{G}(f) \cdot C_{Q_{i}}$ is open in $A V\left(L_{w}\right) .:$

Answer to the question: NO.
The strategy is to find a Highest Weight module L_{w} so that
(1) $\operatorname{AV}\left(\operatorname{Ann}\left(L_{w}\right)\right)=\overline{\mathcal{O}}$ is the associated variety of the annihilator of a $(\mathfrak{s p}(2 n), \operatorname{Sp}(p) \times \operatorname{Sp}(q))$-module and
(2) $A V\left(L_{w}\right)$ is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra module with reducible leading term cycle.

How do we find such L_{w} ?

We change real form.
We find a $\operatorname{Sp}(2 n, \mathbb{R})$ Highest Weight module M so that
(1) $\operatorname{AV}(\operatorname{Ann}(M))=\overline{\mathcal{O}}$ and \mathcal{O} is also the associated variety of the annihilator of some $\operatorname{Sp}(p, q)$-module.
(2) $\operatorname{LTC}(M)$ is reducible.

The Highest Weight L_{w} we are looking for, has $\operatorname{Ann}\left(L_{w^{-1}}\right)=\operatorname{Ann}(M)$.
A concrete example:

- We consider $\mathcal{O} \simeq[2,2,2,2]$.
- There is a $(\mathfrak{s p}(8, \mathbb{C}), G L(4))$-module $R_{\mathfrak{q}}(Y)$ with (Y a $\mathfrak{s p}(4)$-module with red. CC and irr. LTC)
$\operatorname{LTC}\left(R_{\mathrm{q}}(Y)\right)=C C\left(R_{q}(Y)\right)=T_{Q_{1}^{\prime}}^{*}(X)+T_{Q_{2}^{\prime}}^{*}(X)$.
- $\operatorname{AV}\left(\operatorname{Ann}\left(R_{\mathrm{q}}(Y)\right)=\overline{\mathcal{O}} \cdot L_{w}: \operatorname{Ann}\left(R_{\mathrm{q}}(Y)\right)=\operatorname{Ann}\left(L_{w^{-1}}\right)\right.$

How do we find such L_{w} ?

We change real form.
We find a $\operatorname{Sp}(2 n, \mathbb{R})$ Highest Weight module M so that
(1) $\operatorname{AV}(\operatorname{Ann}(M))=\overline{\mathcal{O}}$ and \mathcal{O} is also the associated variety of the annihilator of some $\operatorname{Sp}(p, q)$-module.
(2) $\operatorname{LTC}(M)$ is reducible.

The Highest Weight L_{w} we are looking for, has $\operatorname{Ann}\left(L_{w^{-1}}\right)=\operatorname{Ann}(M)$.

- We consider $\mathcal{O} \simeq[2,2,2,2]$.
- There is a $(\mathfrak{s p}(8, \mathbb{C}), G I(4))$-module $R_{q}(Y)$ with (Y a $\mathfrak{s p}(4)$-module with red. CC and irr. LTC) $\operatorname{LTC}\left(R_{\mathfrak{q}}(Y)\right)=C C\left(R_{\mathfrak{q}}(Y)\right)=T_{Q_{1}^{\prime}}^{*}(X)+T_{Q_{2}^{\prime}}^{*}(X)$
- $\operatorname{AV}\left(\operatorname{Ann}\left(R_{\mathrm{q}}(Y)\right)=\overline{\mathcal{O}} \cdot L_{w}: \operatorname{Ann}\left(R_{q}(Y)\right)=\operatorname{Ann}\left(L_{w-1}\right)\right.$

How do we find such L_{w} ?

We change real form.
We find a $\operatorname{Sp}(2 n, \mathbb{R})$ Highest Weight module M so that
(1) $\operatorname{AV}(\operatorname{Ann}(M))=\overline{\mathcal{O}}$ and \mathcal{O} is also the associated variety of the annihilator of some $\operatorname{Sp}(p, q)$-module.
(2) $\operatorname{LTC}(M)$ is reducible.

The Highest Weight L_{w} we are looking for, has $\operatorname{Ann}\left(L_{w^{-1}}\right)=\operatorname{Ann}(M)$. A concrete example:

- We consider $\mathcal{O} \simeq[2,2,2,2]$.
- There is a $(\mathfrak{s p}(8, \mathbb{C}), G L(4))$-module $R_{q}(Y)$ with (Y a $\mathfrak{s p}(4)$-module with red. CC and irr. LTC) $\operatorname{LTC}\left(R_{\mathfrak{q}}(Y)\right)=C C\left(R_{\mathfrak{q}}(Y)\right)=T_{Q_{1}^{\prime}}^{*}(X)+T_{Q_{2}^{\prime}}^{*}(X)$.
- $\operatorname{AV}\left(\operatorname{Ann}\left(R_{\mathfrak{q}}(Y)\right)=\overline{\mathcal{O}} \cdot L_{w}: \operatorname{Ann}\left(R_{\mathfrak{q}}(Y)\right)=\operatorname{Ann}\left(L_{w^{-1}}\right)\right.$

How do we find such L_{w} ?

We change real form.
We find a $\operatorname{Sp}(2 n, \mathbb{R})$ Highest Weight module M so that
(1) $\operatorname{AV}(\operatorname{Ann}(M))=\overline{\mathcal{O}}$ and \mathcal{O} is also the associated variety of the annihilator of some $\operatorname{Sp}(p, q)$-module.
(2) $\operatorname{LTC}(M)$ is reducible.

The Highest Weight L_{w} we are looking for, has $\operatorname{Ann}\left(L_{w^{-1}}\right)=\operatorname{Ann}(M)$. A concrete example:

- We consider $\mathcal{O} \simeq[2,2,2,2]$.
- There is a $(\mathfrak{s p}(8, \mathbb{C}), G L(4))$-module $R_{q}(Y)$ with (Y a $\mathfrak{s p}(4)$-module with red. CC and irr. LTC) $\operatorname{LTC}\left(R_{\mathfrak{q}}(Y)\right)=C C\left(R_{\mathfrak{q}}(Y)\right)=T_{Q_{1}^{\prime}}^{*}(X)+T_{Q_{2}^{\prime}}^{*}(X)$.
- $\operatorname{AV}\left(\operatorname{Ann}\left(R_{\mathfrak{q}}(Y)\right)=\overline{\mathcal{O}} \cdot L_{w}: \operatorname{Ann}\left(R_{\mathfrak{q}}(Y)\right)=\operatorname{Ann}\left(L_{w^{-1}}\right)\right.$

