Two triangularity results and invariants of $(\mathfrak{g}, Sp(p) \times Sp(q))$ modules

Leticia Barchini

Department of Mathematics Oklahoma State University

July , 2013

• G compact Lie group.

Irred. rep of G are "determined" by their characters.

Roughly: Understanding the characters of irred. rep. means that the Representation Theory of G is understood.

Weaker Invariant: dimension of the rep.

• G simple Lie group.

Global character of irred. rep. (infinite dimensional) has been define by Harish-Chandra (difficult to compute).

A number of other invariants contain relevant info about irred. rep.

Examples: Associated variety, Associated cycle, Annihilator, Characteristic cycles (can we compute some of them?)

- G is a complex simple algebraic group with involution θ .
- $K = G^{\theta}$. The real form defined by θ has a maximal compact subgroup with complexification K. Write $G_{\mathbb{R}}, K_{\mathbb{R}}$ for the real points.
- $\mathcal N$ denotes the nilpotent cone.
- We denote by X = {b ⊂ g Borel subalgebra} the flag variety. (All borel subalg. are G-conjugate. Hence if B = N_G(b) then X ≃ G/B). (b = h ⊕ n)
- The cotangent bundle is $T^*X = \{(\mathfrak{b},\xi) : \xi \in (\mathfrak{g}/\mathfrak{b})^*\}.$
- The moment map for the Hamiltonian action of G on $T^*(X)$ is

$$\mu: T^*X = \{(\mathfrak{b},\xi): \xi \in (\mathfrak{g}/\mathfrak{b})^*\} \to \mathcal{N}$$
$$(\mathfrak{b},\xi) \to \xi.$$

$\mathcal{M}_{\rho}(\mathfrak{g},B)$

• Let $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ be the abelian category of f. generated *B*-finite (\mathfrak{g}, B) -modules with inf. char. ρ . [The Grothendieck group $\mathcal{K}(\mathcal{M}_{\rho}(\mathfrak{g}, B)) = \oplus \mathbb{Z}L_{w}$.]

Study of invariants of irreds. in $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ gave rise to deep theories involving Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.

$\mathcal{M}_{\rho}(\mathfrak{g},B)$

• Let $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ be the abelian category of f. generated *B*-finite (\mathfrak{g}, B) -modules with inf. char. ρ . [The Grothendieck group $\mathcal{K}(\mathcal{M}_{\rho}(\mathfrak{g}, B)) = \oplus \mathbb{Z}L_{w}$.]

Study of invariants of irreds. in $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ gave rise to deep theories involving Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.

• Crucial to this is the equivalence of categories

 $\mathcal{M}_{\rho}(\mathfrak{g},B)\simeq \mathcal{M}_{\mathsf{coh}}(\mathfrak{D}_X,B).$

$\mathcal{M}_{\rho}(\mathfrak{g},B)$

• Let $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ be the abelian category of f. generated *B*-finite (\mathfrak{g}, B) -modules with inf. char. ρ . [The Grothendieck group $\mathcal{K}(\mathcal{M}_{\rho}(\mathfrak{g}, B)) = \oplus \mathbb{Z}L_{w}$.]

Study of invariants of irreds. in $\mathcal{M}_{\rho}(\mathfrak{g}, B)$ gave rise to deep theories involving Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.

• Crucial to this is the equivalence of categories

$$\mathcal{M}_{\rho}(\mathfrak{g},B)\simeq \mathcal{M}_{\mathsf{coh}}(\mathfrak{D}_X,B).$$

• {*B*-orbits on X} = {X(w)}_{$w \in W$} (Shubert cells)

The characteristic variety is a union of several conormal bundles to *B*-orbits in *X*:

$$CV(M) = \cup \overline{T^*_{X(y)}X} = \operatorname{supp}(gr(\mathcal{M}_M)).$$

The characteristic cycle keeps track of multiplicities along the components:

$$CC(M) = CC(\mathcal{M}_M) = \sum n_y[\overline{T^*_{X(y)}X}].$$

Recall the moment map $\mu : T^*(X) \to \mathcal{N}$. There is a special nilpotent *G*-orbit in \mathcal{N} so that

$$\mu(CV(L_w)) = \Upsilon_1 \cup \ldots \cup \Upsilon_r = AV(L_w)$$

where $\{\Upsilon_i\}$ are irred. components of $\overline{\mathcal{O}} \cap \mathfrak{n}$. (Orbital Varieties)

Joseph attaches to each Υ_i a polynomial $p_{\Upsilon_i} \in \mathcal{P}(\mathfrak{h}^*)$:

•{ p_{Υ} : Υ irred. component of $\overline{\mathcal{O}} \cap \mathfrak{n}$ }.

 $[p_{\Upsilon}$ measure the growth rate of the *H*-weights on $S(\overline{n})/I(\Upsilon)$ where $I(\Upsilon)$ is ideal of definition of Υ .]

• span{ $p_{\Upsilon} : \Upsilon$ irred. component of $\overline{\mathcal{O}} \cap \mathfrak{n}$ } = $Sp(\mathcal{O})$ Irred. *W*-module.

A second basis of $Sp(\mathcal{O})$

Define:

$${\sf Prim}_
ho({\cal O})=\{I: {\sf primitive 2-sided ideals in } {\cal U}({\mathfrak g}) \ {
m infinitesimal character }
ho\in {\mathfrak h}^* \ {
m the variety of zeros of } gr(I)=\overline{{\cal O}}\}.$$

Joseph attached to each $I \in Prim_{\rho}(\mathcal{O})$ a polynomial $q_I \in \mathcal{P}(\mathfrak{h}^*)$, the so called Goldie rank polynomial. $[\lambda \rightarrow rank(\mathcal{U}(\mathfrak{g})/Ann(L(\lambda))]$

• $\operatorname{span}_{\mathbb{C}}\{q_I : I \in \operatorname{Prim}_{\rho}(\mathcal{O})\} \simeq Sp(\mathcal{O})$, as W modules.

We are interested in: (a) the change of bases matrix (b) the info about CC of (\mathfrak{g}, B) and (\mathfrak{g}, K) modules encoded in the matrix. Monty McGovern defined a bijection:

$$\mathsf{Prim}_{\rho}(\mathcal{O}) \leftrightarrow \{ \Upsilon \text{ irred components of } \overline{\mathcal{O}} \cap \mathfrak{n} \}$$

[combinatorial in nature: both $\operatorname{Prim}_{\rho}(\mathcal{O})$ and $\{\Upsilon\}$ are parametrized by SDT of special shape. Roughly : Υ corresponds to I iff their SDT agree.]

The notion of τ^r -invariant and τ^r_{∞} is well defined at the level of tabeaux. Monty introduces an order on $\{\Upsilon\}$

$$\Upsilon_i < \Upsilon_j \leftrightarrow \tau_{\infty}^r(SDT_i) \subset \tau_{\infty}^r(SDT_j).$$

• He shows that the matrix relating $\{q_l\}$ to $\{p_{\Upsilon}\}$, in this order, is upper triangular.

FIRST TRIANGULARITY RESULT AND CC

McGovern's triangularity result says: If

$$CC(L_w) = T^*_{X(w)} + \sum m_{y,w} T^*_{X(y)}(X)$$

and
$$m_{y,w} \neq 0$$
, then $\tau_{\infty}^{r}(w) \subset \tau_{\infty}^{r}(y)$

Key Theorem (Joseph)

Write $q_{Ann(L_{w^{-1}})} = \sum m_i p_{\Upsilon_i}$. Then

 $m_i \neq 0 \Leftrightarrow \Upsilon_i$ is open in $AV(L_w)$.

McGovern's result

- imposes strong restriction on the "shape" of $AV(L_w)$,
- generalizes a triangularity result in type A_n by Joseph,
- proves a conjecture by Tanisaki.

SECOND TRIANGULARITY RESULT

• Let $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ the category of Harish-Chandra modules with inf. ch. ρ . Peter Trapa says:

Second triangularity result

- Let $\mathcal{M}_{\rho}(\mathfrak{g}, K)$ the category of Harish-Chandra modules with inf. ch. ρ . Peter Trapa says:
 - There is a bijection between Prim_ρ(O) and {Υirred components of O
 ∩ n} "geometric" in nature. Moreover, geometric orders can be defined on {Υ} so that the matrix relating Goldie rank polynomials and Joseph's characteristic polynomials is upper triangular.
 - **2** Joseph's theorem is closely related to *CC* of Harish-Chandra (\mathfrak{g}, K) -modules.

- The leading term cycle (" a piece of CC") encodes all needed info to compute Ann. and AV.
- Question: Is it true that *LTC* of H-C module for $G_{\mathbb{R}} = Sp(p,q)$ are irreducible?

• Beilinson-Berstein equivalence of categories

$$\mathcal{M}_{
ho}(\mathfrak{g}, K) \simeq \mathcal{M}_{\mathsf{coh}}(\mathcal{D}_X, K)$$

 $M
ightarrow \mathcal{M}_M = \mathcal{D}_X \otimes_{\mathcal{U}(\mathfrak{g})} M$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Beilinson-Berstein equivalence of categories

$$\mathcal{M}_{
ho}(\mathfrak{g}, K) \simeq \mathcal{M}_{\mathsf{coh}}(\mathfrak{D}_X, K)$$

 $M
ightarrow \mathcal{M}_M = \mathcal{D}_X \otimes_{\mathcal{U}(\mathfrak{g})} M$

{Irred. H-C modules with inf. cha. ρ } \leftrightarrow {(Ω, χ)K-orbits on X, local char.} • Similar to what we have done in $\mathcal{M}(\mathfrak{g}, B)$

The characteristic cycle is the support of $gr(\mathcal{M}_M)$ keeping track of multiplicities $CC(M) = CC(\mathcal{M}_M) = \sum n_{\Omega}[\overline{T_{\Omega}^*X}], \qquad CV(M) = \cup \overline{T_{\Omega}^*X} = \operatorname{supp}(gr(\mathcal{M}_M))$

• $\mu(\overline{T^*_{\mathbb{Q}}(X)}) = \overline{\mathcal{O}_K}$, nilpotent K-orbit.

The leading characteristic cycle is

$$\sum_{\mathfrak{Q}:\mu(T^*_{\mathfrak{Q}}(X)) \text{ of max dim}} n_{\mathfrak{Q}} \ \overline{T^*_{\mathfrak{Q}}(X)}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Geometric orders

To simplify exposition assume $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$.

- **9** Fix \mathcal{O} a nilpotent *G*-orbit and a real form $\mathcal{O}_K = K \cdot f \subset \overline{\mathcal{O}}$.
- $\mu^{-1}(f) = \bigcup C_i$. Let $A_G(f)$ the group of components of $Z_G(f)$.
- (Spaltenstein) There is a bijection

 $\{\Upsilon: \text{ irred. comp. } \overline{\mathcal{O}} \cap \mathfrak{n}\} \leftrightarrow \{A_G(f)\text{-orbits in } \operatorname{Irr}(\mu^{-1}(f))\}$

On the other hand, conormal bundles partition Springer fibers, i.e T^{*}_Q(X) ∩ µ⁻¹(f) is dense in a unique component C_Q. Hence,

$$\blacksquare \Upsilon_i \equiv A_G(f) \cdot C_i \leftrightarrow \{ \mathfrak{Q}_{i,t} \in K \ / X : \mu(\overline{T^*_{\mathfrak{Q}_{i,t}}(X)}) = \overline{\mathcal{O}_K} \text{ has } C_{i,t} \in A_G(f) \cdot C_i \}$$

Orders on $\{ \mathfrak{Q} \in \mathcal{K} / X \}$ compatible with orbit closure inclusion induce orders on $\{ \Upsilon \}$.

Continue with $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$ and $\mathcal{O}_K = K \cdot f \subset \overline{\mathcal{O}}$.

• Trapa defines a bijection between $\operatorname{Prim}_{\rho}(\mathcal{O})$ and { Υ irred components of $\overline{\mathcal{O}} \cap \mathfrak{n}$ } (a little technical for me to explain here.) In any of the orders just described on { Υ } the matrix relating Goldie rank polynomials and Joseph's characteristic polynomials is upper triangular.

Trapa's triangularity result says: If

$$LTC(M) = T^*_{supp(M)}(X) + \sum m_{\mathfrak{Q}_i} T^*_{\mathfrak{Q}_i}(X),$$

and $m_i \neq 0$, then $A_G(f) \cdot C_i < A_G(f) \cdot C_{supp(M)}$

• Can we relate and or combine the results just described to gain a little deeper understanding of invariants of H-C modules?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of H-C modules?
- Can we work "simultaneously" on the M_ρ(g, B) and M_ρ(g, K) categories to transfer info and gain insight on the invariants?

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of H-C modules?
- Can we work "simultaneously" on the M_ρ(g, B) and M_ρ(g, K) categories to transfer info and gain insight on the invariants?

[The Jacquet-Casselman functor $\mathbb{J} : \mathcal{M}(\mathfrak{g}, K)_{\rho} \to \mathcal{M}(\mathfrak{g}, B)_{\rho}$ should play a central role here. For us, \mathbb{J} is in the background, through McGovern's work.]

- Can we relate and or combine the results just described to gain a little deeper understanding of invariants of H-C modules?
- Can we work "simultaneously" on the M_ρ(g, B) and M_ρ(g, K) categories to transfer info and gain insight on the invariants?

[The Jacquet-Casselman functor $\mathbb{J} : \mathcal{M}(\mathfrak{g}, K)_{\rho} \to \mathcal{M}(\mathfrak{g}, B)_{\rho}$ should play a central role here. For us, \mathbb{J} is in the background, through McGovern's work.]

• A practical link,
$${\it G}_{\mathbb R}={\it Sp}(p,q)$$
 or ${\it SO}^*(2n)$

Theorem (Trapa) A Geometric interpretation of Joseph's Thm

Let *M* be an irred. H-C module with $AV(M) = \overline{K \cdot f}$ and $Ann(M) = Ann(L_{w^{-1}})$. Write

$$\star LTC(M) = \overline{T^*_{\mathsf{supp}(\mathsf{M})}(X)} + \sum m_{\mathfrak{Q}_i} \overline{T^*_{\mathfrak{Q}_i}(X)}, \ \star AV(L_w) = \cup \Upsilon_k$$

Then, $m_{\Omega_i} \neq 0$ "iff" the orbital variety Υ_i bijective to $A_G(f) \cdot C_{\Omega_i}$ is open in $AV(L_w)$.:

• If we want to understand CC we can not forget of a powerful tool: (Tanisaki)

$$\mathcal{CC}:\mathcal{K}(\mathcal{M}(\mathfrak{g},\mathcal{K})_{
ho})
ightarrow \mathcal{H}_{\mathrm{top}}(T^*_{\mathcal{K}}(X),\mathbb{Q})$$

is W-equivariant.

M(g, K)_ρ partitions into "equivalence classes", the HC cells {*C*_{HC,i}}. (designed to capture information on tensoring a HC modules with a finite dim. rep.)

Key property:

(McGovern) Assume $(\mathfrak{g}, Sp(p) \times Sp(q))$. Let \mathcal{O}_{K} be a nilpotent K-orbit. Then,

$$\mathcal{C}_{HC} = \{ X \in \mathcal{M}(\mathfrak{g}, K)_{\rho} : AV(X) = \overline{\mathcal{O}_{K}} \}.$$

 For each C_{HC}, there is a W-cell representation V_{C_{HC}} (minimal sub-quotient of the coherent continuation rep K(M(g, K)_ρ) that is spanned by C_{HC}).

MOTIVATING EXAMPLE

When $G_{\mathbb{R}} = U(p, q)$.

- Each irreducible (\mathfrak{g}, K) with inf. chr. ρ has irreducible associated variety, $AV(X) = \overline{\mathcal{O}_K} = \overline{K \cdot f}.$
- $V_{C_{HC}} \simeq H_{top}(\mu^{-1}(f))$ is an irreducible *W*-representation.
- The component groups A_G(f) of the centralizer of f are trivial. For X, Y ∈ C_{HC}, then Ann(X) ≠ Ann(Y).
- C_{HC} contains an $A_{\mathfrak{q}}$ for which the associated cycle can be computed.
- S As V_{C_{HC}} = ℚ[W] · A_q, (indeed any M ∈ C_{HC} has such property.) The point is that we can compute multiplicity polynomials using coherent continuation rep.
- Many irreducible M ∈ C_{HC}, have LTC(M) = 1 · T^{*}_Q(X) (Q̄ is the support of M).

We would like to emphasize that none of the above facts hold in general.

Proposition

Assume $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$. Let M_1, M_2 irreducible (\mathfrak{g}, K) -modules with $AV(M_i) = \overline{K \cdot f}$. Write \mathcal{Q}_{M_i} the support of M_i , and let $C_{\mathcal{Q}_{M_i}}$ be the irred. component of $(\mu^{-1}(f))$ corresponding to \mathcal{Q}_{M_i} . Then,

$$\operatorname{Ann}(M_1) = \operatorname{Ann}(M_2) \Longleftrightarrow C_{\mathcal{Q}_{M_1}} \in A_G(f) \cdot C_{\mathcal{Q}_{M_2}}.$$

Remark

- In view of the prop. T : Prim_ρ(O) ↔ { Tirred components of O ∩ n} can be described as follows.: given I ∈ Prim_ρ(O) take any M(Q) with AV(M(Q)) = K · f and Ann(M(Q)) = I, then T(I) = T ↔ A_G(f) · C_Q.
- The prop. will allow us to compare Trapa's bijection and McGovern bijection leading to restrictions on shape of LTC.
- The prop. (combined with other tools) give some info on the structure of $V_{\mathcal{C}_{HC}}$.

Proposition

Assume $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$. Let M_1, M_2 irreducible (\mathfrak{g}, K) -modules with $AV(M_i) = \overline{K \cdot f}$. Write \mathcal{Q}_{M_i} the support of M_i , and let $C_{\mathcal{Q}_{M_i}}$ be the irred. component of $(\mu^{-1}(f))$ corresponding to \mathcal{Q}_{M_i} . Then,

$$\operatorname{Ann}(M_1) = \operatorname{Ann}(M_2) \Longleftrightarrow C_{\mathcal{Q}_{M_1}} \in A_G(f) \cdot C_{\mathcal{Q}_{M_2}}.$$

Remark

- In view of the prop. T : Prim_ρ(O) ↔ { \U03c6 irred components of O ∩ n} can be described as follows.: given I ∈ Prim_ρ(O) take any M(Q) with AV(M(Q)) = K · f and Ann(M(Q)) = I, then T(I) = \u03c6 ↔ A_G(f) · C_Q.
- The prop. will allow us to compare Trapa's bijection and McGovern bijection leading to restrictions on shape of LTC.
- The prop. (combined with other tools) give some info on the structure of V_{C_{HC}}.

Proposition

Assume $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$. Let M_1, M_2 irreducible (\mathfrak{g}, K) -modules with $AV(M_i) = \overline{K \cdot f}$. Write \mathcal{Q}_{M_i} the support of M_i , and let $C_{\mathcal{Q}_{M_i}}$ be the irred. component of $(\mu^{-1}(f))$ corresponding to \mathcal{Q}_{M_i} . Then,

$$\operatorname{Ann}(M_1) = \operatorname{Ann}(M_2) \Longleftrightarrow C_{\mathcal{Q}_{M_1}} \in A_G(f) \cdot C_{\mathcal{Q}_{M_2}}.$$

Remark

- In view of the prop. T : Prim_ρ(O) ↔ { \u03c6 rired components of O ∩ n} can be described as follows.: given I ∈ Prim_ρ(O) take any M(Q) with AV(M(Q)) = K · f and Ann(M(Q)) = I, then T(I) = \u03c6 ↔ A_G(f) · C_Q.
- The prop. will allow us to compare Trapa's bijection and McGovern bijection leading to restrictions on shape of *LTC*.
- The prop. (combined with other tools) give some info on the structure of V_{CHC}.

Theorem

- $G_{\mathbb{R}} = Sp(p,q) \text{ or } SO^*(2n).$
- $Q[W]M \simeq V_{C_{HC}}$ if and only if $card\{M' \in C_{HC} : Ann(M') = Ann(M)\}$ is maximal for C_{HC} .
- ② If $M' \in \mathbb{C}_{HC}$, then

$$\mathbb{Q}[W]M' \simeq H_{top}(\mu^{-1}(f))^{A_G(f,C_{\mathfrak{Q}_{M'}})}$$

where,
$$A_G(f, C_{\mathcal{Q}_{M'}}) = \{z \in A_G(f) : z \cdot C_{\mathcal{Q}_{M'}} = C_{\mathcal{Q}_{M'}}\}.$$

<u>Remark:</u> The proof of Theorem relies in the Proposition and an result of McGovern, i.e for $\mathfrak{sp}(p,q)$ $V_{\mathcal{C}_{HC}} \simeq H_{top}(\mu^{-1}(f),\mathbb{Q})$ as W-modules.

Application: Theorem (4) (B.-Zierau) Assume $\mathfrak{g} = \mathfrak{sp}(p, q)$. There is an effective algorithm to compute multiplicity polynomials for each irreducible HC module $X \in \mathcal{C}_{HC}$ provided \mathcal{C}_{HC} contains a rep. in the discrete series.

Theorem

- $G_{\mathbb{R}} = Sp(p,q) \text{ or } SO^*(2n).$
- $Q[W]M \simeq V_{C_{HC}}$ if and only if $card\{M' \in C_{HC} : Ann(M') = Ann(M)\}$ is maximal for C_{HC} .
- ② If $M' \in \mathbb{C}_{HC}$, then

$$\mathbb{Q}[W]M' \simeq H_{top}(\mu^{-1}(f))^{A_G(f,C_{\mathfrak{Q}_{M'}})}$$

where,
$$A_G(f, C_{\mathcal{Q}_{M'}}) = \{z \in A_G(f) : z \cdot C_{\mathcal{Q}_{M'}} = C_{\mathcal{Q}_{M'}}\}.$$

<u>Remark:</u> The proof of Theorem relies in the Proposition and an result of McGovern, i.e for $\mathfrak{sp}(p,q)$ $V_{\mathcal{C}_{HC}} \simeq H_{top}(\mu^{-1}(f),\mathbb{Q})$ as *W*-modules.

Application: Theorem (4) (B.-Zierau) Assume $\mathfrak{g} = \mathfrak{sp}(p, q)$. There is an effective algorithm to compute multiplicity polynomials for each irreducible HC module $X \in \mathcal{C}_{HC}$ provided \mathcal{C}_{HC} contains a rep. in the discrete series.

An example

- $G_{\mathbb{R}} = Sp(1,1)$
- C_{HC} is the H-C cell with AV(Ann) = [2, 2] and $AV = \overline{K \cdot f}$ a real form of [2, 2].
- $C_{HC} = \{\pi_1 = ds_1, \pi_2 = ds_2, \pi_3 = A_q(\lambda)\}.$ where Ann $(ds_1) = Ann(ds_2) \neq Ann(A_q(\lambda)).$
- $V_{\mathcal{C}_{HC}} \equiv \mathbb{Q}[W] \cdot ds_i$ but $Q[W] \cdot A_{\mathfrak{q}}(\lambda) \subsetneq V_{\mathcal{C}_{HC}}$.
- $CC(\pi_i) = T^*_{\Omega_i}(X)$ with $\overline{\Omega_i} = \operatorname{supp}(\pi_i)$. Write C_i for the component of the Springer fiber corresponding to $T^*_{\Omega_i}(X) \cap \mu^{-1}(f)$.
- A basis for $H_{top}(\mu^{-1}(f))^{A_G(f,C_2)}$ is $\{[C_0 + C_1], [C_2]\}$ and

$$s_{\alpha_1}C_2 = -C_2 \qquad s_{\alpha_1}[C_0 + C_1] = [C_0 + C_1] + 2C_2 \\ s_{\alpha_2}C_2 = C_2 + [C_0 + C_1] \qquad s_{\alpha_2}[C_0 + C_1] = -[C_0 + C_1].$$

Theorem

Assume $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$. Fix C_{HC} with $AV(C_{HC}) = \overline{K \cdot f}$. Write $M(\Omega)$ for $M \in C_{HC}$ with $supp(M(\Omega)) = \overline{\Omega}$ and write

$$LTC(M(\mathfrak{Q}))=T^*_{\mathfrak{Q}}(X)+\sum\ m_{\mathfrak{Q}_j}\ T^*_{\mathfrak{Q}_j}(X),$$
 ther

 $\tau_{\infty}^{r}(M(\mathfrak{Q})) \subset \tau_{\infty}^{r}(M(\mathfrak{Q}_{j}))$

Remark:

- We show that $T : \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow \{\operatorname{\Upsilon} irred \text{ components of } \overline{\mathcal{O}} \cap \mathfrak{n} \}$ sends $I \to \operatorname{\Upsilon}(A_G(f)C_{\Omega}) = \operatorname{\Upsilon}_{SDT(I)}.$
- There are other restrictions that come from Trapa's order and also $\Omega_j \subset \Omega$.
- Restrictions + ATLAS (to compute coherent continuation, for example) yield many examples of HC modules with irred. LTC.

Theorem

Assume $G_{\mathbb{R}} = Sp(p,q)$ or $SO^*(2n)$. Fix C_{HC} with $AV(C_{HC}) = \overline{K \cdot f}$. Write $M(\Omega)$ for $M \in C_{HC}$ with $supp(M(\Omega)) = \overline{\Omega}$ and write

$$LTC(M(\mathfrak{Q}))=T^*_{\mathfrak{Q}}(X)+\sum\ m_{\mathfrak{Q}_j}\ T^*_{\mathfrak{Q}_j}(X),$$
 ther

 $\tau^r_\infty(M(\mathfrak{Q})) \subset \tau^r_\infty(M(\mathfrak{Q}_j))$

Remark:

- We show that $T : \operatorname{Prim}_{\rho}(\mathcal{O}) \leftrightarrow \{ \Upsilon \text{ irred components of } \overline{\mathcal{O}} \cap \mathfrak{n} \}$ sends $I \to \Upsilon(A_G(f)C_{\mathfrak{Q}}) = \Upsilon_{SDT(I)}.$
- There are other restrictions that come from Trapa's order and also $\Omega_j \subset \overline{\Omega}$.
- Restrictions + ATLAS (to compute coherent continuation, for example) yield many examples of HC modules with irred. LTC.

Key to the answer is:

Theorem (Trapa) A Geometric interpretation of Joseph's Thm

Assume *M* is irred., $AV(M) = \overline{K \cdot f}$ and $Ann(M) = Ann(L_{w^{-1}})$. Write $\star LTC(M) = \overline{T_{supp(M)}^*(X)} + \sum m_{\Omega_i} \overline{T_{\Omega_i}^*(X)}, \quad \star AV(L_w) = \cup \Upsilon_k$ Then, $m_{\Omega_i} \neq 0$ "iff" the orbital variety Υ_i bijective to $A_G(f) \cdot C_{\Omega_i}$ is open in $AV(L_w)$.:

Answer to the question: NO.

The strategy is to find a Highest Weight module L_w so that

- AV(Ann(L_w)) = O is the associated variety of the annihilator of a (sp(2n), Sp(p) × Sp(q))-module and
- \bigcirc AV(L_w) is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra module with reducible leading term cycle.

Key to the answer is:

Theorem (Trapa) A Geometric interpretation of Joseph's Thm

Assume *M* is irred., $AV(M) = \overline{K \cdot f}$ and $Ann(M) = Ann(L_{w^{-1}})$. Write $\star LTC(M) = \overline{T_{supp(M)}^*(X)} + \sum m_{\Omega_i} \overline{T_{\Omega_i}^*(X)}, \quad \star AV(L_w) = \cup \Upsilon_k$ Then, $m_{\Omega_i} \neq 0$ "iff" the orbital variety Υ_i bijective to $A_G(f) \cdot C_{\Omega_i}$ is open in $AV(L_w)$.:

Answer to the question: NO.

The strategy is to find a Highest Weight module L_w so that

- AV(Ann(L_w)) = O is the associated variety of the annihilator of a (sp(2n), Sp(p) × Sp(q))-module and
- \bigcirc AV(L_w) is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra module with reducible leading term cycle.

Key to the answer is:

Theorem (Trapa) A Geometric interpretation of Joseph's Thm

Assume *M* is irred., $AV(M) = \overline{K \cdot f}$ and $Ann(M) = Ann(L_{w^{-1}})$. Write $\star LTC(M) = \overline{T_{supp}^*(M)}(X) + \sum m_{\Omega_i} \overline{T_{\Omega_i}^*(X)}, \quad \star AV(L_w) = \cup \Upsilon_k$ Then, $m_{\Omega_i} \neq 0$ "iff" the orbital variety Υ_i bijective to $A_G(f) \cdot C_{\Omega_i}$ is open in $AV(L_w)$.:

Answer to the question: NO.

The strategy is to find a Highest Weight module L_w so that

- AV(Ann(L_w)) = O is the associated variety of the annihilator of a (sp(2n), Sp(p) × Sp(q))-module and
- **2** $AV(L_w)$ is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra module with reducible leading term cycle.

We find a $Sp(2n, \mathbb{R})$ Highest Weight module M so that

O AV(Ann(M)) = ∂ and o is also the associated variety of the annihilator of some Sp(p, q)-module.

2 LTC(M) is reducible.

The Highest Weight L_w we are looking for, has $Ann(L_{w^{-1}}) = Ann(M)$. A concrete example:

- We consider $\mathcal{O} \simeq [2, 2, 2, 2]$.
- There is a $(\mathfrak{sp}(8,\mathbb{C}), GL(4))$ -module $R_{\mathfrak{q}}(Y)$ with $(Y \ a \ \mathfrak{sp}(4)$ -module with red. CC and irr. LTC) $LTC(R_{\mathfrak{q}}(Y)) = CC(R_{\mathfrak{q}}(Y)) = T^*_{\Omega'_1}(X) + T^*_{\Omega'_2}(X).$
- $AV(Ann(R_q(Y)) = \overline{O}$. L_w : $Ann(R_q(Y)) = Ann(L_{w^{-1}})$

We find a $Sp(2n, \mathbb{R})$ Highest Weight module M so that

AV(Ann(M)) = ∂ and b is also the associated variety of the annihilator of some Sp(p, q)-module.

2 LTC(M) is reducible.

The Highest Weight L_w we are looking for, has $Ann(L_{w^{-1}}) = Ann(M)$.

A concrete example:

- We consider $\mathcal{O} \simeq [2, 2, 2, 2]$.
- There is a $(\mathfrak{sp}(8,\mathbb{C}), GL(4))$ -module $R_{\mathfrak{q}}(Y)$ with $(Y \ a \ \mathfrak{sp}(4)$ -module with red. CC and irr. LTC) $LTC(R_{\mathfrak{q}}(Y)) = CC(R_{\mathfrak{q}}(Y)) = T^*_{\mathfrak{Q}'_1}(X) + T^*_{\mathfrak{Q}'_2}(X).$
- $AV(Ann(R_q(Y)) = \overline{O}$. $L_w : Ann(R_q(Y)) = Ann(L_{w^{-1}})$

We find a $Sp(2n, \mathbb{R})$ Highest Weight module M so that

2 LTC(M) is reducible.

The Highest Weight L_w we are looking for, has $Ann(L_{w^{-1}}) = Ann(M)$. A concrete example:

- We consider $\mathcal{O} \simeq [2, 2, 2, 2]$.
- There is a $(\mathfrak{sp}(8,\mathbb{C}), GL(4))$ -module $R_{\mathfrak{q}}(Y)$ with $(Y \ a \ \mathfrak{sp}(4)$ -module with red. CC and irr. LTC) $LTC(R_{\mathfrak{q}}(Y)) = CC(R_{\mathfrak{q}}(Y)) = T^*_{\Omega'_1}(X) + T^*_{\Omega'_2}(X).$
- $AV(Ann(R_q(Y)) = \overline{O}$. $L_w : Ann(R_q(Y)) = Ann(L_{w^{-1}})$

We find a $Sp(2n, \mathbb{R})$ Highest Weight module M so that

2 LTC(M) is reducible.

The Highest Weight L_w we are looking for, has $Ann(L_{w^{-1}}) = Ann(M)$. A concrete example:

- We consider $\mathcal{O} \simeq [2, 2, 2, 2]$.
- There is a $(\mathfrak{sp}(8,\mathbb{C}), GL(4))$ -module $R_{\mathfrak{q}}(Y)$ with $(Y \ a \ \mathfrak{sp}(4)$ -module with red. CC and irr. LTC) $LTC(R_{\mathfrak{q}}(Y)) = CC(R_{\mathfrak{q}}(Y)) = T^*_{\mathfrak{Q}'_1}(X) + T^*_{\mathfrak{Q}'_2}(X).$
- $AV(Ann(R_q(Y)) = \overline{O}$. $L_w : Ann(R_q(Y)) = Ann(L_{w^{-1}})$