Two Triangularity Results and Invariants of $(\mathfrak{s p}(p+q, \mathbb{C}), S p(p) \times S p(q))$-Modules

Let \mathcal{O} be a special nilpotent co-adjoint orbit and write $A(\mathcal{O})$ for the group of components of the centralizer of an element in \mathcal{O}. The Springer correspondence attaches to $(\mathcal{O}, e \in \hat{A}(\mathcal{O}))$ an irreducible W-modules $\operatorname{Sp}(\mathcal{O}) . S p(\mathcal{O})$ admits two basis consisting of W-harmonic polynomials. One basis consists of Goldie rank polynomials $\left\{P_{I}: I\right.$ is a primitive ideal with inf. char. ρ and $\left.A V(I)=\overline{\mathcal{O}}\right\}$. The second basis consists of polynomials parametrized by orbital varieties (irreducible components of $\overline{\mathcal{O}} \cap \mathfrak{n})$. We write $\left\{P_{\Upsilon}: \Upsilon\right.$ is orbital for $\left.\mathcal{O}\right\}$. McGovern defined a combinatorial order on orbital varieties so that, in that order, the matrix that relates the basis of Goldie rank polynomials to $\left\{P_{\Upsilon}\right\}$ is upper triangular. On the other hand, Trapa, using the geometry of characteristic cycles of Harish-Chandra modules of real forms, defined different orders on the set $\{\Upsilon\}$ and concluded that the relation between basis of $S p(\mathcal{O})$, in those orders, is upper triangular. In this talk, in the context of $\mathfrak{g}_{\mathbb{R}}=\mathfrak{s p}(p, q)$, we investigate the relation between these orders and derive consequences relevant to the computation of invariants of Harish-Chandra modules. In particular, we address a question posted by Trapa on the shape of the Leading term cycle of such modules.

