
INFINITE-DIMENSIONAL REPRESENTATIONS OF
REAL REDUCTIVE GROUPS

DAVID A. VOGAN, JR.

1. First introduction: GL(2)

The purpose of these notes is to introduce the infinite-dimensional
representations of real reductive Lie groups: to say what they are,
what is known about them, what is not known about them, and why
one might care.

I’ll begin with an extremely general definition, then look at some
examples in GL(2,R).

Definition 1.1. Suppose G is a topological group. A (continuous)
representation of G is a pair (π, V ) consisting of a complete locally
convex topological vector space V , and a continuous homomorphism
π : G→ Aut(V ). “Continuity” means that the action map

G× V → V, (g, v) 7→ π(g)v

is continuous. “Locally convex” means that the space has lots of contin-
uous linear functionals, which is technically fundamental. “Complete”
allows us to take limits in V , and so define things like integrals and
derivatives.

The representation (π, V ) is irreducible if V has exactly two closed
invariant subspaces (which are necessarily 0 and V ).

The representation (π, V ) is unitary if V is a Hilbert space, and the
operators π(g) are unitary.

I will assume that you already know lots of interesting examples
of finite-dimensional representations, and pass directly to the infinite-
dimensional setting. Because we will look at representations on many
different kinds of topological space (sometimes preferring to use smooth
functions rather than L2 functions, for example) it is useful to gener-
alize the definition of unitary a little. We will say that π is pre-unitary
if there is a positive definite G-invariant (continuous) Hermitian form
〈, 〉π on V .
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Example 1.2. Suppose G = GL(2,R), the 4-dimensional group of
invertible 2× 2 real matrices. Then G acts transitively on the space Z
of positive definite quadratic forms on R2. Inside Z there is a natural
basepoint z0, the standard inner product on R2. The stabilizer of z0

is the one-dimensional group O(2) of real orthogonal matrices, and
therefore

Z ' GL(2,R)/O(2),

a three-dimensional homogeneous space. The space Z appears for ex-
ample in the study of rational quadratic forms in two variables. The
fundamental idea of representation theory is to study such (nonlinear)
objects by means of (linear) spaces of functions on them. So for exam-
ple we can consider

V ∞ = complex-valued smooth functions on Z

V ∞m = complex-valued smooth densities on Z

V ∞m,c = compactly supported smooth densities

V −∞ = generalized functions on Z = dual of V ∞m.c
L2 = complex-valued square integrable functions on Z

(with respect to a G-invariant measure on Z). Each of these spaces,
and countless others like them, is a complete locally convex topological
vector space. The group G acts on functions on Z by

π(g)f(z) = f(g−1 · z),

and in a similar fashion on densities and on distributions. In this way
we get (continuous) representations (written (π∞, V ∞), (π∞m , V

∞
m ), and

so on) of G on each of these vector spaces.

Just as a reminder that these abstract matters are not quite trivial,
I will mention a non-example:

L∞ = bounded measurable functions on Z

This is a perfectly good complete locally convex topological vector
space, even a Banach space. But if f is a discontinuous bounded func-
tion on Z, then even small translations of f may produce large changes
in the values of f ; so the action of G is not a (continuous) Banach space
representation.

The representation π2 on L2 is unitary. None of the other represen-
tations is unitary, because none of the other spaces is a Hilbert space.
Notice however that there is a G-equivariant continuous inclusion of
V ∞m.c into L2 with a dense image, using the G-invariant measure on Z.
It follows immediately that π∞m,c is pre-unitary. Using duality, it follows

also that L2 is included in V −∞ as a dense subspace.
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Exercise 1.3. Prove that each of the representations in Example 1.2
is reducible, by exhibiting as explicitly as possible a proper closed G-
invariant subspace.

One lesson to be extracted from this example is that there are many
different topological representations (like V ∞m.c ↪→ L2 ↪→ V −∞) that look
to an algebraic eye to be almost the same. Exactly which representation
we should consider depends on exactly what kind of questions we are
asking. On the Hilbert space L2 we have a powerful and general spectral
theory, allowing us to diagonalize many operators. On the other two
spaces the action of the group can be differentiated to get a Lie algebra
representation, which is algebraically a much more elementary object.
(The reason is that a Lie algebra representation is a linear map.)

Here is a rather different family of representations.

Example 1.4. Suppose G = GL(2,R). Then G acts transitively on
the space X(R) of complete flags in R2; that is, chains of subspaces

{0} = V0 ⊂ V1 ⊂ V2 = R2, dimVj = j.

Of course this is the same as the one-dimensional projective space RP1

of lines in R2; it may be identified with the unit circle in R2 modulo
±1.

Inside X(R) there is a natural basepoint

x0 = (R0 ⊂ R1 ⊂ R2),

with R1 the span of the first coordinate vector (the x axis). The stabi-
lizer of x0 is the Borel subgroup

B(R) =

{(
a1 b
0 a2

)
| a1, b, a2 ∈ R, a1a2 6= 0

}
of upper-triangular matrices, and therefore

X(R) ' GL(2,R)/B(R).

On the space X(R) there are two natural G-equivariant real line bun-
dles: L1, whose fiber at the flag (V0, V1, V2) is V1, and L2, whose fiber
is V2/V1. The bundle L1 is often called the tautological bundle. The
isotropy group B(R) acts on the fiber at x0 of Lj, defining two charac-
ters

χj : B(R)→ R×, χj

((
a1 b
0 a2

))
= aj.

If n1 and n2 are integers, then one can define the tensor power line
bundle

L(n1,n2) = L1
⊗n1 ⊗ L2

n2 .
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It is easy to see that smooth sections of L(n1,n2) correspond to smooth
functions

f : G→ R, f(gb) = f(g)χ1(b)−n1χ2(b)−n2 (b ∈ B(R)).

If we introduce absolute values, then the exponents ni in this formula
can be replaced by any complex numbers. We begin (for any ν ∈ C2)
by defining a character

χν : B(R)→ C×, χν(b) = |χ1(b)|ν1|χ2(b)|ν2 .
Then we get a complex line bundle L(ν1,ν2) on X(R) whose smooth sec-
tions correspond to smooth functions

f : G→ C, f(gb) = χν(b
−1)f(g) (b ∈ B(R)).

Clearly G acts by left translation on this space of smooth sections. We
write

W∞
(ν1,ν2) = smooth sections of L(ν1+ 1

2
,ν2− 1

2
).

The shift by (1
2
,−1

2
) is a traditional convenience. Here is why it is

introduced. The bundle L(1,−1) can be identified with the bundle of den-
sities on X(R) (by picking a Lebesgue measure on Tx0(X(R); the char-
acter χ(1,−1) is how the isotropy group B(R) acts on such measures).

This means that if φ1 and φ2 are smooth sections of L( 1
2
,− 1

2
), then φ1φ2

(a smooth section of L(1,−1)) may be identified with a complex-valued
smooth density on X(R). Integrating this density over the compact
manifold X(R) gives a complex number, and so defines a G-invariant
pre-Hilbert space structure on W∞

(0,0).
Exactly the same argument applies whenever ν is purely imaginary:

we can define

〈φ1, φ2〉 =

∫
X(R)

φ1φ2 φi ∈ W∞
(ν1,ν2), νj ∈ iR,

a pre-Hilbert space structure. Write

L2
(ν1,ν2) = Hilbert space completion of W∞

(ν1,ν2) (νj ∈ iR).

This may be identified with certain measurable sections of L(ν1+ 1
2
,ν2− 1

2
),

and so with measurable functions on G transforming by χ(ν1− 1
2
,ν2+ 1

2
)

under B(R) on the right.

Exercise 1.5. Prove that the representation W∞
(− 1

2
, 1
2

)
is reducible, by

exhibiting a one-dimensional G-invariant subspace.

This is the representation on smooth functions on X(R).

Exercise 1.6. Prove that the representation W∞
( 1
2
,− 1

2
)

is reducible.
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This is the representation on smooth densities on X(R).

Exercise 1.7. Suppose that F(n1,n2) is the finite-dimensional algebraic
representation of GL(2,C) of highest weight (n1, n2). Prove that if n1

and n2 are even, then F(n1,n2) has a vector transforming by the character
χ(n1,n2) of B(R).

Exercise 1.8. Suppose that n1 ≥ n2 are non-negative even integers.
Prove that the representation ρ∞

(−(n1+ 1
2

),−(n2− 1
2

))
contains F ∗n1,n2

as a

subrepresentation. Prove that ρ∞
((n1+ 1

2
),(n2− 1

2
))

is reducible. Prove that

ρ∞(ν1,ν2) is reducible whenever ν1 − ν2 is an odd integer.

Exercise 1.9. Insert into Example 1.4 two parities ε1 and ε2 in Z/2Z.
Wherever |χi(b)|νi appears, replace it by |χi(b)|νi sgn(χi(b))

εi. What
happens to the example, and to the exercises that follow?

Notice that the pair (ν, ε) (with ν ∈ C and ε ∈ Z/2Z defines a general
one-dimensional character of the multiplicative group R×.

Exercise 1.10. Replace the 2 (in GL(2,R)) by any positive integer n
in Example 1.4 and in the exercises that follow.

Proposition 1.11. In the setting of Example 1.4, suppose that ν =
(ν1, ν2) ∈ C2.

(1) The representation ρ∞ν on W∞
ν is irreducible unless ν1 − ν2 is

an odd integer.
(2) If ν1 − ν2 is a positive odd integer m, then W∞

ν has a unique
m-dimensional quotient representation Eν. The corresponding
subrepresentation

Dν = ker (W∞
ν → Eν) (ν1 − ν2 odd positive)

is irreducible.
(3) The representation ρ∞(ν1,ν2) is equivalent to ρ∞(ν2,ν1) unless ν1− ν2

is an odd integer.
(4) If ν1−ν2 is a positive odd integer m, then there is a short exact

sequence

0→ Eν → W∞
(ν2,ν1) → Dν → 0,

exhibiting Eν as the unique proper subrepresentation of W∞
ν2,ν1

.
In particular, ρ∞(ν1,ν2) and ρ∞(ν2,ν1) have equivalent composition
series.

(5) The collection of representations

{W∞
ν | ν1 − ν2 /∈ (2Z + 1)} ∪ {Eν | ν1 − ν2 odd positive integer}
in a certain sense exhausts the irreducible representations of G
having a non-zero vector fixed by O(2).
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The phrase “in a certain sense” requires a serious explanation. There
are many representations (like L2

ν for ν ∈ (iR)2) that are not equivalent
to any W∞

ν , but rather are topological variations of them. We will
return to Harish-Chandra’s resolution of this issue in Section 7.

Here is one of the morals of the story so far.

Representations of a real reductive group G(R)
are almost parametrized by characters (homo-
morphisms to C×) of a Cartan subgroup H(R).

A little more precisely, we expect for each H(R) to be able to construct

a family of representations {π(χ) | χ ∈ Ĥ(R)} indexed (more or less)
by characters of H(R). A submoral is that the indexing may behave
better if we shift it a little bit (as with the shift (1

2
,−1

2
) in Example 1.4).

We expect most of the representations π(χ) to be irreducible. They
should depend only on the conjugacy class of (H(R), χ); in particular,
they should (for fixed H(R)) be constant on orbits of the real Weyl
group.

Because unitary representations are so fundamental, we interrupt
the algebraic development to describe those.

Proposition 1.12. In the setting of Example 1.4, suppose that ν =
(ν1, ν2) ∈ C2.

(1) The representation ρ∞ν is pre-unitary whenever ν is purely imag-
inary, and whenever

ν = (s+ it,−s+ it), s ∈ (−1

2
,
1

2
), t ∈ R.

None of the other irreducible representations ρ∞ν is pre-unitary.
(2) The one-dimensional representations E( 1

2
+it,− 1

2
+it) (for t ∈ R)

are unitary; none of the other finite-dimensional representa-
tions Eν is unitary.

(3) For m a positive odd integer and t ∈ R, the representation
D(m/2+it,−m/2+it) is pre-unitary. None of the other representa-
tions Dν is pre-unitary.

Example 1.13. In order to test the first moral of the story, we look
for representations attached to the other conjugacy class of Cartan sub-
group in GL(2,R). We get this Cartan by identifying R2 with C; then
the multiplicative action of C× on C defines an inclusion

T (R) ' C× ↪→ GL(2,R), x+ iy 7→
(
x −y
y x

)
.
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Just as in the previous example, we build all the characters of T (R)
from two special characters that are the eigenvalues of the matrix:

ξ1(z) = z, ξ2(z) = z, z ∈ T (R) ' C×.
It turns out that the characters of T (R) are

ξ(ν1,ν2)(z) = zν1zν2 νi ∈ C, ν1 − ν2 ∈ Z.
This may look a bit more plausible if it is rewritten as

ξ(ν1,ν2)(r e
iθ) = rν1+ν2 ei(ν1−ν2)θ νi ∈ C, ν1 − ν2 ∈ Z.

Using Proposition 1.11, we can now define a representation

D(ν1,ν2) = D(ν2,ν1) = W∞
ν /Eν , ν ∈ C2, ν1 − ν2 odd positive.

Exercise 1.14. Show that the Weyl group of T (R) in G(R) has or-
der two, and acts by the Galois action of complex conjugation on C×.
Therefore this action carries ξ(ν1,ν2) to ξ(ν2,ν1).

Exercise 1.15. (Assuming Exercise 1.9.) Suppose ν ∈ C2 and ε ∈
(Z/2Z)2. Assume ν1−ν2 is a non-negative integer m, of parity opposite
to ε1−ε2. Prove that V ∞ν,ε has an m-dimensional quotient representation

Eν,ε = W∞
ν,ε/Dν,ε.

It turns out that Dν,ε is independent of ε (always subject to the parity
assumptions of the exercise); so this exercise completes a definition of
an irreducible representation Dν attached to each character ν of T (R)
with ν1 − ν2 a non-negative integer. We define

D(ν1,ν2) = D(ν2,ν1)

when ν1 − ν2 is a non-positive integer.
Of course this is an extraordinarily unsatisfactory definition: al-

though it is more or less constructive, the construction makes almost
no reference to T (R). There is also a peculiar feature in the case
ν1 − ν2 = 0: in that case Dν is defined to be equal to the irreducible
representation W∞

ν,(even,odd).
I will conclude this introduction with some hints about classical har-

monic analysis problems: about how one might hope to relate irre-
ducible representations (typically related to flag varieties, like the rep-
resentations W∞

ν of Example 1.4) to interesting reducible representa-
tions (like the function spaces of Example 1.2). We will follow [8], to
which we refer for details and much more information.

Always we are considering G = GL(2,R). Recall first from Example
1.2 the (large, very reducible) representation space

(1.16a) V ∞ = C∞(Z) ' {f ∈ C∞(G) | f(gk) = f(g), k ∈ O(2)},
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and the (small, usually irreducible) representation spaces

(1.16b) W∞
ν ' {φ ∈ C∞(G) | φ(gb) = χν+ρ(b

−1)φ(g), b ∈ B(R)}.

Here we write ρ = (1
2
,−1

2
), and

(1.16c) χη(b) = |χ1(b)|η1|χ2(b)|η2 (b ∈ B(R), η ∈ C2);

the Borel subgroup B(R) and its characters χi are as defined in Exam-
ple 1.4. On the spaces V ∞ and W∞

ν the group G acts by left translation.
In order to clarify the connection with classical mathematics, we note

Lemma 1.16d. Suppose q ∈ Z is a positive definite quadratic form
on R2 (Example 1.2). Write qij(i, j ∈ {1, 2}) for the four entries of q
(regarded as a 2× 2 symmetric matrix). Define

d(q) = det(q)1/2 = (q11q22 − q2
12)1/2,

a positive real number, and

z(q) =
q11 − q22

q11 + q22

− i 2q12

q11 + q22

,

a complex number. Then z(q) belongs to the open unit disk D in the
complex plane. The map (d, z) is a diffeomorphism of Z onto R+×D.
The action of G on Z corresponds to the action on R+ by multiplication
by det−1, and the action on D by(

a b
c d

)
· z =

[(a+ d) + (b− c)i]z + [(a− d) + (−b− c)i
[(a− d) + (b+ c)i]z + [(a+ d) + (c− b)i]

for matrices of positive determinant.

The proof (and most likely the correction of the statement) are left
as an exercise.

Exercise 1.16e. If t > 0 and q ∈ Z is a positive definite quadratic
form, then tq is also a positive definite quadratic form. Show that
d(tq) = td(q), and that z(tq) = z(q). Show that the action of G com-
mutes with this action of R+.

A function f ∈ V ∞ on positive forms is called homogeneous of degree
λ1 if

f(tq) = tλ1f(q).

This definition makes sense for any λ1 ∈ C. Show that that the sub-
space of functions homogeneous of degree λ1 is a nonzero closed G-
invariant subspace, isomorphic to C∞(D) (in fact as a representation
of SL(2,R)).
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Because the group O(2) is compact, integration over O(2) is an easy
way to produce functions in V ∞. The Poisson transform is the map

(1.16f) P : W∞
ν → V ∞, (Pφ)(g) =

∫
O(2)

φ(gk)dk.

Exercise 1.16g. Show that P is a G-equivariant continuous linear
map. Show that W∞

ν has a one-dimensional subspace of O(2)-invariant
vectors, and that P is non-zero on this subspace. Conclude (using
Proposition 1.11) that P is one-to-one unless ν1 − ν2 is a positive odd
integer.

Show that the range of P is contained in functions homogeneous of
degree ν1 + ν2.

Exercise 1.16h. The classical Poisson transform goes from functions
on the unit circle to functions on the unit disk, and it’s given by a
formula that looks significantly more complicated than (1.16f). Find
some relationship between the two. (Hint: since G = SO(2) · B(R),
functions in W∞

ν are determined by their restriction to SO(2). Show
that this restriction defines an isomorphism

W∞
ν → smooth even functions on SO(2).

Even functions on SO(2) may in turn be identified with functions on
the circle. In this way the domain of P is identified with functions on
the circle.

The range of P , on the other hand, consists of homogeneous functions
of degree ν1 + ν2. According to Exercise 1.16e, the range may therefore
be identified with smooth functions on the disk. That is, we can think
of the Poisson transform as a map

Pν1−ν2 : C∞(circle)→ C∞(disk),

depending on the parameter ν1 − ν2. Your final mission, should you
decide to accept it, is to write an entirely classical-looking formula for
this map, making no reference to GL(2,R). If everything goes well,
this should look like the classical Poisson formula when ν1 − ν2 = −1.
As a hint, here is an approximation of a final formula (for φ0 a smooth
function on the circle, regarded as a periodic function of θ, and f the
image function on the unit disk):

f(r eit) =
1

2π

∫ 2π

0

(
1− r2

1− 2r cos(t− θ) + r2

) 1−(ν1−ν2)
2

φ0(θ)dθ

In order to prove a formula like this, notice that both the Poisson map-
ping P and this mapping respect the rotation actions. It is therefore
enough to consider the case t = 0.



10 DAVID A. VOGAN, JR.

So what is special about the functions on Z that are in the image
of the Poisson mapping P? We have already seen that they are ho-
mogeneous (Exercise 1.16e), which means that they are eigenfunctions
of a certain first order differential operator (like t ∂

∂t
) on Z, commut-

ing with the action of G. There is also a second order operator on Z
commuting with the action of G: it is the Laplace operator ∆D for the
hyperbolic metric on the unit disk D ([8], page 31; this is the operator
that Helgason calls L).

Proposition 1.16i ([8], page 331, Exercise 4). Consider the action
of SL(2,R) on functions on the unit disk D, arising by restriction
of the GL(2,R) action on Z. This makes the enveloping algebra of
SL(2,R) act by differential operators on D. The Casimir operator Ω
for SL(2,R) acts by the Laplace operator ∆D.

Corollary 1.16j ([8], page 36, Theorem 4.3). The Casimir operator
Ω for SL(2,R) acts on the representation W∞

ν1,ν2
by the scalar λ(ν) =

[(ν1 − ν2)2 − 1]/4. Since the Poisson mapping P commutes with the
action of SL(2,R), the image of P is contained in the λ(ν) eigenspace
of ∆D.

In coordinates z = x + iy on the unit disk D, the Laplace operator
is

(1.16k) ∆D = (1− x2 − y2)2

(
∂2

∂x2
+

∂2

∂y2

)
.

An eigenvalue of ∆D with eigenvalue 0 (corresponding to the case
ν1 − ν2 = ±1) is therefore the same as a harmonic function on D
(for the Euclidean Laplace operator). For other eigenvalues this is not
the case. That may be part of the reason that the Poisson kernel is
treated only for the case ν1 − ν2 = −1 in most texts. Of course lin-
ear fractional transformations of the disk are central to any study of
the Poisson kernel. These transformations preserve the hyperbolic Rie-
mannian metric and ∆D, but not the Euclidean metric and Euclidean
Laplace operator.

Theorem 1.16l. Let ∆1 be the first-order differential operator on Z
arising by differentiation of the dilation action, and ∆2 the action of the
Casimir operator for SL(2,R) (corresponding to the Laplace operator
on D). If λ = (λ1, λ2) ∈ C2, define

V ∞λ = {f ∈ C∞(Z) | ∆if = λif (i = 1, 2)}.

Then V ∞λ is a closed G-invariant subspace of V ∞.
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Fix ν ∈ C2, and define

λ1(ν) = ν1 + ν2, λ2(ν) = [(ν1 − ν2)2 − 1]/4.

Then the Poisson transform P of (1.16f) carries W∞
ν into V ∞λ .

Notice that every λ is of the form λ(ν) for some ν. In fact ν is
uniquely determined up to interchanging its coordinates. Since we
know that P is always nonzero on the O(2)-fixed line in W∞

ν (Exercise
1.16g), it follows that each eigenspace V ∞λ is nonzero. If ν1 − ν2 is
not an odd negative integer, which we can always arrange by perhaps
interchanging the coordinates, it even follows that V ∞λ (ν) contains a
copy of the (infinite-dimensional) representation W∞

ν .
Of course it is natural to ask whether all eigenfunctions of the ∆i

are in the image of P . We refer to [8] for details about this question,
but here is a sketch. Recall that W∞

ν may be identified with smooth
functions on the circle. The formula in Exercise 1.16g writes P as an
integral over the circle of this smooth function (of θ) against a kernel
that is analytic in θ (and in the parameter z = reit ∈ D). It follows
that the integral is defined not only for smooth functions on the circle,
but also for continuous functions, or even for distributions, or even for
hyperfunctions. On all of these spaces it yields (analytic) functions in
V ∞λ(ν). As long as ν1 − ν2 is not a positive odd integer, this extension

of the Poisson transform (from smooth functions to hyperfunctions on
the circle) is a surjective isomorphism ([7]; see [8], page 36, Theorem
4.3). This theorem of Helgason has been the foundation of enormous
generalizations, beginning with [10].

What about going from functions in V ∞λ back to W∞
ν ? Since the

Poisson map from the second to the first is not surjective, we should
not expect to have an everywhere-defined inverse. Again we must refer
to [8] for details, but here is one weak result.

Proposition 1.16m. Suppose that ν ∈ C2, Re(ν1 − ν2) < 0, that

φ ∈ W∞
ν , and f = Pφ ∈ V ∞λ(ν). Define at =

(
et/2 0
0 e−t/2

)
∈ G. Then

there is a constant c(ν) (independent of φ) so that

lim
t→+∞

e−t(ν2−ν1−1)f(gat) = c(ν)φ(g).

In case ν = (−1/2, 1/2) the exponential in the limit is 1, c(ν) = 1,
and the Proposition is the classical fact that the Poisson kernel solves
the boundary value problem for the Laplacian on the disk.
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2. Second introduction: compact groups

Hiding in the background in many of the results about GL(2,R)
discussed in Section 1 was the theory of Fourier series on the circle.
In order to describe Harish-Chandra’s theory for reductive groups, we
need to recall some generalizations of the theory of Fourier series to
other compact groups. Since compact connected Lie groups are also
examples of reductive groups, this will afford also the opportunity to
express familiar facts about compact groups in the language we will
use for general reductive groups.

In order to maintain an air of concreteness,1 we will discuss only the
case of the unitary group; but everything in this section extends in a
straightforward fashion to any compact connected Lie group G. Doing
this is an additional exercise for the reader.

(2.1a)
G = U(n) = linear maps of Cn preserving inner product

= n× n complex matrices g such that tg = g−1.

Study of the unitary group depends on the maximal torus

(2.1b)
H = U(1)n = diagonal matrices in U(n)

= diag(eiθ1 , . . . , eiθn) θj ∈ R.

A one-dimensional (complex) representation of the group H means a
continuous action of H on a one-dimensional (complex) vector space.
Any automorphism of a one-dimensional space is multiplication by a
non-zero scalar; so a one-dimensional representation is the same as a
continuous group homomorphism

(2.1c) χ : H → C×

Suppose m = (m1, . . . ,mn) ∈ Zn. One example of a homomorphism χ
is

(2.1d) χm : H → C×, χm(diag(eiθ1 , . . . , eiθn)) = ei
P
mjθj .

Equivalently,

(2.1e) χm(h) =
n∏
j=1

(jth entry of h)mj .

(The motivation for this second formulation is to show that, despite
the various eiθ terms floating around, the representation χm can be

1Only in the study of higher mathematics is the smell of cement regarded as a
consummation devoutly to be wished.



INFINITE-DIMENSIONAL REPRESENTATIONS 13

thought of as essentially algebraic rather than transcendental.) These
are all the continuous characters of H, so we write

(2.1f) Ĥ = X∗(H) = {χm | m ∈ Zn} ' Zn,

the lattice of characters of H. For the moment one can think of Ĥ
and X∗(H) as just two alternative notations for the same thing. (Here
is a sneak peek ahead. For a Cartan subgroup H in a general real

reductive group G, we are going to write Ĥ for the (abelian group)
of all continuous characters of H, and X∗(H) for the sublattice of
characters that extend algebraically to the complex points.)

Proposition 2.2. Suppose (π, V ) is a finite-dimensional (complex)

representation of H. For χ ∈ Ĥ, define

V (χ) = {v ∈ V | π(h)v = χ(h)v, all h ∈ H}.

Then

V =
∑
χ∈ bH

V (χ).

Exercise 2.3. Prove this. What happens if H is replaced by the group
T (R) of Example 1.13?

We define the set of weights of H in V as

(2.4) ∆(V,H) = {χ ∈ Ĥ | V (χ) 6= 0},

a finite subset of Ĥ. Sometimes it is useful to think of ∆(V,H) as
a multiset; that is, as a set in which each element has some positive
integer multiplicity. Here the multiplicity of χ is equal to dimV (χ), so
that the cardinality of ∆(V,H) (as a multiset) is equal to dimV .

Here also is some inconsistent notation: the set of roots of H in gC
is

(2.5) ∆(gC, H) = {nonzero weights of Ad(H) on gC} ⊂ X∗(H).

Here

g = Lie(G) = n× n skew hermitian matrices

is the Lie algebra of G = U(n), and

gC = g⊗R C = n× n complex matrices

is its complexification. (The inconsistency with ∆(V,H) is that the
zero weights of the adjoint action of H are not counted as roots.) The
set of roots is

(2.6) ∆(gC, H) = {χei−ej , 1 ≤ i 6= j ≤ n};
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here {e1, . . . , en} is the standard basis of Zn, so

χei−ej(h) = hih
−1
j h ∈ H,

with hi the ith diagonal entry of h. Finally, we fix a set of positive
roots

(2.7) ∆+ = ∆+(gC, H) = {χei−ej | 1 ≤ i < j ≤ n}.

Using the set of positive roots, we define a partial order on Ĥ by

(2.8) χm � χm′ ⇔ χm′ − χm =
∑
α∈∆+

nαα, nα ∈ N.

Exercise 2.9. Show that χm � χm′ if and only if
p∑
i=1

mi ≤
p∑
i=1

m′i (1 ≤ p < n),

and also

n∑
i=1

mi =
n∑
i=1

m′i.

Can you generalize this result to any compact connected group G?

Definition 2.10. In the setting of (2.1b) the Weyl group of H in G
is

W = W (G,H) =def NG(H)/ZG(H),

the quotient of the normalizer of H by the centralizer (which is H) of

H. The Weyl group acts on H and on Ĥ. It is isomorphic to the
symmetric group Sn, acting on H by permutation of the coordinates.
It is therefore generated by the root reflections

sij = transposition of i and j (1 ≤ i 6= j ≤ n).

A weight χm ∈ Ĥ is called G-dominant (or ∆+-dominant if we wish
to emphasize the choice of positive roots) if m is decreasing; that is, if

mi ≥ mj, all i < j.

This condition is equivalent to

χm � w · χm, all w ∈ W .

The dominant weights are a fundamental domain for the action of W

on Ĥ.
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Definition 2.11. Suppose (τ, V ) is a representation of G = U(n). A
highest weight of τ is an element of ∆(V,H) that is maximal for the
partial order � of (2.8). An extremal weight of τ is an element of
∆(V,H) that is maximal for the partial order corresponding to some
set of positive roots.

Theorem 2.12 (Cartan-Weyl; see for example [11], Theorem 5.110,
and [9], Proposition 21.3). Suppose G = U(n) and H is the diagonal
maximal torus of (2.1b).

(1) Every irreducible representation of G is finite-dimensional.
(2) Every irreducible representation τ of G has a unique highest

weight (Definition 2.10) µhw(τ) ∈ Ĥ.
(3) If τ and τ ′ are irreducible representations of G with µhw(τ) =

µhw(τ ′), then τ is equivalent to τ ′.
(4) The highest weight of any irreducible representation of G is

dominant (Definition 2.10).

(5) Every dominant weight µ ∈ Ĥ is the highest weight of a unique
irreducible representation τhw(µ) for G. Every weight µ′ is an
extremal weight of a unique irreducible representation τex(µ

′) of
G. If µ is dominant, then τhw(µ) = τex(µ).

(6) The set of extremal weights of τ is equal to the W -orbit of the
highest weight.

(7) Every weight of τ belongs to the lattice coset

µhw(τ) + Z∆(gC, H) ⊂ Ĥ.

(8) The set of weights of τ is equal to the intersection of the lattice

coset µhw(τ)+Z∆(gC, H) with the rational convex hull (in Ĥ⊗Z
Q) of the extremal weights W · µhw(τ).

The phrase “convex hull” does not appear in the references cited
here. The following exercise concerns the connection between the no-
tion of saturated set of weights appearing in [9] and the formulation in
the theorem.

Exercise 2.13. Suppose χm is a dominant weight and χm′ is any other
character of H. Prove (using the theorem) that χm′ is a weight of
τhw(χm) if and only if

∑
j∈J

m′j ≤
|J |∑
i=1

mi (J ( {1, . . . , n}),
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and also

n∑
i=1

m′i =
n∑
i=1

mi.

Corollary 2.14. Suppose G = U(n) and H is the diagonal maximal
torus of (2.1b). Then the correspondence

τ ↔ {extremal weights of τ}

establishes a bijection

Ĝ↔ Ĥ/W (G,H)

between irreducible representations of G and Weyl group orbits of char-
acters of H.

This is a good time to say again that exactly the same statement is
true whenever G is a compact connected Lie group and H is a maximal
torus.

Here are a few statements peculiar to U(n).

Proposition 2.15. Suppose G = U(n) and m ∈ Zn is dominant (that
is, decreasing). Write M =

∑
imi. If mn ≥ 0, then the representation

τ(ξm) of highest weight χm occurs as an irreducible constituent of the
M th tensor power (Cn)⊗M .

The one-dimensional representation det of G has weight (1, . . . , 1).
Consequently

τ(χm)⊗ detN ' τ(χm+(N,...,N)).

In particular, τ(χm) occurs as an irreducible constituent of

(Cn)⊗(M−nmn) ⊗ (detmn).

After we define matrix coefficients in Definition 3.1 below, we will
be able to deduce

Corollary 2.16. Suppose G = U(n). Write eij for the function on
G whose value at the unitary matrix g is equal to the (i, j) entry of g.
Then the matrix coefficients of finite-dimensional representations of G
are precisely the polynomials in the functions eij and det−1.

Unfortunately Theorem 2.12 and the Corollary 2.14 do not provide
examples of the parametrization we want for general reductive groups
(of irreducible representations by characters of Cartan subgroups). The
difficulty is that there is nothing like the shift (appearing in Example
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1.4) by (1/2,−1/2). In the present setting, we have described an irre-
ducible representation of G in terms of its set of weights. The descrip-
tion that generalizes better is in terms of its character.

Definition 2.17. Suppose G = U(n), H = U(1)n is the diagonal
maximal torus, and ∆+(gC, H) is the set of positive roots chosen in
(2.7). Define

2ρ =
∑
α∈∆+

α ∈ X∗(H) = Ĥ,

the sum of the positive roots. (We are not yet defining ρ; the symbol

2ρ is so far a single unit.) In the identification of Ĥ with Zn, it is easy
to calculate

2ρ↔ (n− 1, n− 3, · · · ,−(n− 3),−(n− 1)).

That is,

2ρ(h) =
n∏
j=1

(hj)
n−2j+1,

with hj the jth diagonal entry of H.
The ρ double cover of H is the group

Hρ = {(h, z) ∈ H × C× | 2ρ(h) = z2}.
We write π : Hρ → H for the projection on the first factor, and

ρ : Hρ → C×, ρ(h, z) = z

for the projection on the second factor. Finally, define

ε = (1,−1) ∈ Hρ.

A representation τ of Hρ is called genuine if τ(ε) = − Id. It is called
ordinary if τ(ε) = Id. Similarly, a function f on Hρ is called genuine

if f(εh̃) = −f(h̃); it is called ordinary if f(εh̃) = f(h̃).

Proposition 2.18. In the setting of Definition 2.17, there is a short
exact sequence

1→ {1, ε} → Hρ
π→ H → 1

The function ρ is a genuine character of Hρ.
The characters of H are in one-to-one correspondence (by compo-

sition with π with the ordinary characters of Hρ. The characters of
H are also in one-to-one correspondence (by composition with π and
adding ρ) with the genuine characters of Hρ. Consequently

Ĥρ ' Ĥ t (Ĥ + ρ),

with the symbol t indicating disjoint union.
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There is a natural action of the Weyl group W (G,H) on Hρ, fixing
ε and compatible via π with the action on H.

The proof is an exercise. The first short exact sequence explains the
terminology “double cover.”

Corollary 2.19. In the setting of Definition 2.17, the covering group
Hρ does not depend on the choice of positive root system. That is, if
(∆+)′ is any other choice of positive roots, with 2ρ′ the corresponding
character, then there is a natural isomorphism

Hρ → Hρ′

over the identity map on H, carrying ε to ε′.

Finding a formula for this isomorphism is an exercise.

Exercise 2.20. (The first part applies only to G = U(n).) Show that
the character 2ρ of H has a square root if and only if n is odd. Show
that for even n, Hρ is a connected torus

Hρ ' (iR)n/(2πiL),

where
L = {m ∈ Zn |

∑
(n− 2j + 1)mj ∈ 2Z}.

Show that for odd n,
Hρ ' H × {1, ε}.

Can you find parallel statements that apply to a general compact con-
nected Lie group G?

The definitions of � and dominant extend immediately to characters
of Hρ. For characters of Hρ we need also another definition (which
makes sense for characters of H, but is less important there).

Definition 2.21. Suppose G = U(n), H = U(1)n is the diagonal
maximal torus, and Hρ is the ρ double cover (Definition 2.17). A

character ξ ∈ Ĥρ is called regular if for every coroot α∨, the integer
〈ξ, α∨〉 is not zero. It is equivalent to require that ξ is not fixed by any
reflection sα ∈ W (G,H), for α ∈ ∆(gC, H). This in turn is equivalent
to

w · ξ = ξ ⇒ w = 1 (w ∈ W (G,H)).

The sign character of W is the homomorphism

sgn: W (G,H)→ {±1}, sgn(w) = det(w),

where on the right we regard w as a linear transformation of the vector
space h = Lie(H). This homomorphism is characterized by

sgn(sα) = −1, (α ∈ ∆(gC, H)).
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For any character ξ ∈ Ĥρ, we can define the Weyl numerator function

in C∞(Ĥρ) as

N(ξ)(h̃) =
∑

w∈W (G,H)

sgn(w)(w · ξ)(h̃).

This function is genuine or ordinary (Definition 2.17) according as the
character ξ is genuine or ordinary.

The Weyl denominator function is the genuine function

∆(h̃) = N(ρ)(h̃) =
∑

w∈W (G,H)

sgn(w)(w · ρ)(h̃).

We emphasize that the following theorem applies as stated to any
compact connected Lie group G.

Theorem 2.22 (Weyl Character Formula; see [11], Theorem 5.75).
Suppose G = U(n) and H = U(1)n is the diagonal maximal torus. Use
the notation of Definition 2.21.

(1) The Weyl numerator functions satisfy N(w · ξ) = sgn(w)N(ξ).
(2) Each Weyl numerator function satisfies

N(ξ)(w · h̃) = sgn(w)N(ξ)(h̃) (̃h ∈ Hρ).

Such a function is called W -skew invariant.
(3) The function N(ξ) is nonzero if and only if ξ is regular.
(4) The functions {N(ξ) | ξ dominant regular} form an orthogonal

basis for the W -skew invariant functions on Hρ.
(5) Suppose τ is an irreducible representation of G, with character

Θτ = tr τ ∈ C∞(G).

Then there is a unique dominant regular genuine character

µchar(τ) ∈ Ĥρ

so that

(Θτ |H) ·N(ρ) = N(µchar(τ)).

(6) We have µchar(τ) = µhw(τ) + ρ (see Theorem 2.12).
(7) Adding ρ is a bijection from dominant characters of H to dom-

inant regular genuine characters of Hρ. In particular, µchar is a

bijection from Ĝ to dominant regular genuine characters of H.

Corollary 2.23. Suppose G = U(n) and H = U(1)n is the diagonal
maximal torus.
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(1) For each genuine character µ of Ĥρ, there is a unique represen-
tation τchar(µ) characterized by the property

(Θτchar(µ)|H) ·N(ρ) = ±N(µ).

(2) The representation τchar(µ) depends only on the Weyl group or-
bit W · µ.

(3) The representation τchar(µ) is irreducible if and only if µ is reg-
ular.

(4) The representation τchar(µ) is zero if and only if µ is not regular.
(5) The correspondence µ 7→ τchar(µ) establishes a bijection

Ĝ↔ (regular genuine characters of Hρ)/W (G,H).

Proposition 2.24. Suppose G is a compact connected Lie group with
maximal torus H. Then restriction to h = Lie(H) defines a one-to-one
correspondence from G-invariant negative Riemannian structures on G
to W -invariant negative inner products on h. These correspond in turn
by duality to W -invariant positive inner products on

ih∗ ' X∗(H)⊗Z R.

If G = U(n) and H = U(1)n is the diagonal maximal torus, then the
identification X∗(H) ' Zn identifies ih∗ with Rn.

Fix such a W -invariant positive inner product 〈, 〉 on ih∗; in the case
of U(n), we can choose the standard inner product on Rn. Let Ω ∈
U(gC) be the corresponding Casimir operator, so that Ω acts on C∞(G)
by the Laplace-Beltrami operator LΩ for the (negative) Riemannian
structure on G.

Suppose (τ, V ) is an irreducible representation of G of highest weight

µhw(τ) ∈ Ĥ ⊂ ih∗. Then the Casimir operator Ω acts in τ by the scalar

τ(Ω) = 〈µhw(τ) + 2ρ, µhw(τ)〉
= 〈µhw(τ) + ρ, µhw(τ) + ρ〉 − 〈ρ, ρ〉
= 〈µchar(τ), µchar(τ)〉 − 〈ρ, ρ〉

(notation as in Theorems 2.12, 2.22).
The corresponding Laplace-Beltrami operator LΩ acts on the matrix

coefficients of τ (Definition 3.1) by the same scalar τ(Ω).

The choice of a negative Riemannian structure on G is natural for
two reasons. First, it corresponds to a positive inner product on the
lattice X∗(H). Second, it means that the Laplace-Beltrami operator
on C∞(G) has non-negative spectrum.
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3. Harmonic analysis on compact groups

In this section we will recall the Peter-Weyl and Paley-Wiener the-
orems for a compact group G, and look at some generalizations to
abstract representations of G. The central idea is that the compact-
ness of G provides a decomposition theory for general representations
that is comparable in power to the spectral theory for operators on a
Hilbert space. It is this decomposition theory for compact group rep-
resentations that Harish-Chandra used as his basic tool for studying
representations of noncompact groups.

Definition 3.1. Suppose (π, V ) is a representation of the topological
group G (Definition 1.1). Suppose v ∈ V and ξ ∈ V ∗ is a continuous
linear functional on V . Define

fv,ξ(g) = ξ(π(g−1)v,

a continuous function on G. A matrix coefficient of π is a finite linear
combination of functions fξ,v.

Exercise 3.2. Show that, for fixed ξ, the map v 7→ fv,ξ is continuous
from V to the space C(G) of continuous functions on G, and that it
intertwines the representation π on V with the left translation action
on continuous functions.

Exercise 3.3. Suppose T is a finite-rank continuous linear operator
on V (that is, that T has finite-dimensional image). Find a reasonable
definition of the trace of T , and define

fT (g) = tr(π(g−1)T ).

Prove that fT is a matrix coefficient of π, and that every matrix coef-
ficient has this form.

The map

(3.4) Endfin(V )→ C(G), T 7→ fT (g) = tr(π(g−1)T )

(from finite-rank operators on V to continous functions on G) is called
the inverse Fourier transform. We may also write it as T∨(g).

Exercise 3.5. Suppose π1 and π2 are representations of G, and that
dim π1 < ∞. Explain how to define the tensor product representation
π1 ⊗ π2—specifically, how to put a nice topology on the tensor product
vector space. Prove that the matrix coefficients of π1⊗ π2 are precisely
finite sums of products

(matrix coefficient of π1)(matrix coefficient of π2).
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Exercise 3.6. Suppose (π, V ) is a representation of G. Write V for
the vector space with the same additive structure as V , but with the
new scalar multiplication by z equal to the old scalar multiplication by
z. Write π for the same set of operators as π, now regarded as linear
maps on V . Prove that π is a representation of G, and that the matrix
coefficients of π are the complex conjugates of the matrix coefficients
of π.

Give an example in which π is not equivalent to π.

Definition 3.7. Suppose G is a topological group. Write Hc(G) for
the collection of compactly supported complex-valued Radon measures
on G. A measure D is a continuous linear functional

φ 7→
∫
G

φ(g)dD(g) ∈ C (φ ∈ C(G))

on the space C(G) of continous functions on G. Similarly, if E is a
complete locally convex topological vector space, then we can regard D
as a continuous linear map from E-valued continuous functions on G
to E:

C(G,E)→ E, Φ 7→
∫
G

Φ(g)dD(g) ∈ E.

If (π, V ) is a representation of G, we can regard π as a continous
map from G to E = Hom(V, V ) = End(V ), the algebra of continuous
endomorphisms of V . The corresponding map

π : Hc(G)→ End(V ), π(D) =

∫
G

π(g)dD(g)

is called the operator-valued Fourier transform, and sometimes written

D̂(π).
Suppose D1 and D2 are compactly supported Radon measures. Then

D1 �D2 is a compactly supported Radon measure on G×G:∫
G×G

ψ(g1, g2)d(D1 �D2) =

∫
G

(∫
G

ψ(g1, g2)dD1(g1)

)
dD2(g2)

The convolution product is the Radon measure on G given by∫
G

φ(g)d(D1 ? D2) =

∫
G×G

φ(g1g2)d(D1 �D2).

Some elements of Hc(G) are the point masses δg at elements of G.
Clearly π(δg) = π(g), and it is easy to check that δg?δg′ = δgg′ . The con-
volution product makes Hc(G) into an associative algebra, containing
the group algebra of G as a subalgebra. The reason for the definition
of convolution is
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Proposition 3.8. Suppose π is a representation of the topological
group G. Then the operator-valued Fourier transform is an algebra
homomorphism from the convolution product on Hc(G) to End(V ).

We leave the proof as an exercise.
For general representations of general topological groups, we there-

fore have an inverse Fourier transform

Endfinite(V )
inverse Fourier−−−−−−−−→ C(G),

and a Fourier transform

Hc(G)
operator Fourier−−−−−−−−−→ End(V ).

These maps cannot in general be composed: the continuous functions
in the range of the first typically have noncompact support, and so
cannot be related to compactly supported measures; and the operators
in the range of the second map typically have infinite rank.

For the balance of this section we assume that G is compact. Then
G has a Haar measure dg, which allows us to define a natural inclusion

(3.9) C(G) ↪→ Hc(G), φ 7→ φ(g)dg.

This inclusion allows us to define the operator-valued Fourier transform
of any continuous function:

φ̂(π) =

∫
G

φ(g)π(g)dg ∈ End(V ) (φ ∈ C(G)).

It turns out that C(G) is a subalgebra under convolution: the formula
is

(φ ? ψ)(x) =

∫
G

φ(xg)ψ(g−1)dg.

Since G is compact, every irreducible representation (τ, V ) of G is
finite-dimensional, and so all the operators are of finite rank. The
inverse Fourier transform is therefore defined on all operators:

(3.10) T∨(g) = tr(µ(g−1)T ) (T ∈ End(V )).

Theorem 3.11 (Peter-Weyl; see for example [11], pages 243–248).
Suppose G is a compact group, and (τ, V ) is an irreducible representa-
tion of G. Define

d(τ) = Vol(G)/ dim(V ),

a positive real number. For any T ∈ End(V ),

T̂∨(τ ′) =

{
d(τ)T ′, τ ' τ ′,

0, τ 6' τ ′.
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(Here we use the isomorphism of τ with τ ′ to identify T with an operator
T ′ on V ′.) A little more explicitly,∫

G

tr(τ ′(g−1T )τ ′(g)dg =

{
Vol(G)
dimV

T ′ if τ ' τ ′

0 if τ 6' τ ′.

Corollary 3.12. Suppose G is a compact group, and τ is an irreducible
representation of G. Then the space C(G)(τ) of matrix coefficients of τ
is a convolution subalgebra of Hc(G), isomorphic by the operator-valued
Fourier transform (at τ) to End(V ). The function

eτ = tr(τ(g−1) · dim(V )/Vol(G)

is the identity element of this subalgebra, and therefore a (convolution)
idempotent in Hc(G).

The subspace C(G)(τ) of C(G) (or of Hc(G)) is isomorphic to a
direct sum of copies of τ under the left translation action; it is the
largest subspace with this property.

Definition 3.13. Suppose D ∈ Hc(G) is a complex-valued Radon mea-
sure on the compact group G, and τ is an irreducible representation of
G. The τ Fourier coefficient of D is the continuous function

Dτ (x) = (eτ ? D) = d(τ)

∫
G

tr(τ(gx−1)dD(g) ∈ C(G)τ ,

with d(τ) as in Theorem 3.11. The Fourier series of D is the formal
sum ∑

τ∈ bG
Dτ .

Suppose (π, V ) is an arbitrary representation of G (continuous, and
on a complete topological vector space, as always). The τ -isotypic sub-
space V (τ) is the largest invariant subspace of V that is a direct sum
of copies of τ . Equivalently,

Vτ = image of π(eτ ) = kernel of (π(eτ )− Id).

If v ∈ V , the τ Fourier coefficient of v is

vτ = π(eτ )v ∈ V (τ).

The Fourier series of v is the formal series∑
τ∈ bG

vτ .

It is certainly not the case that the Fourier series defined here must
converge; our final goal in this section is to give some very general
setting in which they do.
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Exercise 3.14. Prove the equivalence of the three definitions of V (τ).

Before turning to the convergence criteria we will use, we record a
classical one.

Theorem 3.15. Suppose G is compact and (π,H) is a unitary rep-
resentation of G. Then the spaces H(τ) are mutually orthogonal and
their sum is dense; π(eτ ) is the orthogonal projection. Consequently

H =
⊕̂

τ∈ bGH(τ)

(Hilbert space direct sum). The Fourier series of Definition 3.13 con-
verges in the Hilbert space norm to v.

We have

Hc(G) ⊃ L2(G) ⊃ C(G),

and the middle representation (under left translation) is unitary. Con-
sequently the Fourier series of a square-integrable function on G con-
verges in L2 to the function.

Even on the circle, the Fourier series of a continuous function need
not converge to the function pointwise. To get a good convergence
theorem, the example of the circle suggests that we should consider
nicer functions than continuous functions. We therefore assume now
that G is a compact Lie group, and consider

(3.16a) Cω(G) ⊂ C∞(G) ⊂ C(G) ⊂ Hc(G) ⊂ C−∞(G) ⊂ C−ω(G).

Here Cω(G) is the space of real analytic functions on G; C∞ is the
space of smooth functions; C−∞(G) is the continuous dual space of
C∞, the space of distributions on G; and C−ω is the continuous dual of
Cω, the space of hyperfunctions on G. (For more details about analytic
functions and hyperfunctions, see for example [8].) The left (and right)
translation representations of G are well-defined on all of these spaces.
Any finite-dimensional representation of a Lie group is automatically
(smooth and) real analytic; so the matrix coefficient spaces C(G)µ are
contained in Cω. In particular, the definition of Fourier coefficients
extends from Hc(G) to C−ω(G), and the Fourier coefficients all belong
to Cω(G).

What makes a (Fourier) series converge well is that the terms tend
to zero rapidly. In order to make precise sense of “rapidly,” we use the

precise structure on Ĝ established in Section 2. So fix a (connected)
maximal torus H ⊂ G. Define

(3.16b) W (G,H) = NG(H)/H ⊃ W (G0, H).
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It is easy to check that

(3.16c) W (G,H)/W (G0, H) ' G/G0,

a finite group. Fix a set of positive roots ∆+(gC, H), and use it to define

dominant weights in Ĥ as in Definition 2.10. Fix also a W (G,H)-
invariant positive definite inner product

(3.16d) 〈, 〉 : ih∗ × ih∗ → R

as in Proposition 2.24; write Ω for the corresponding Casimir operator
and LΩ for the Laplace-Beltrami operator on G. If τ is any irreducible
representation of G, define the norm of τ

‖τ‖ = τ(Ω) + 〈ρ, ρ〉 = 〈µchar(τ0), µchar(τ0)〉.

Here τ0 is any irreducible constituent of τ |G0 ; the length of the corre-
sponding character weight is independent of the choice of τ0.

Theorem 3.17 (Paley-Wiener theorem for compact Lie groups; see
[15], page 401). In the setting (3.16), let ‖f‖ be the Lp norm on C∞(G),
for some p ∈ [1,∞]. Recall from Definition 3.13 the definition of the
Fourier coefficients fτ for a function (or distribution, or hyperfunction)
f on G.

(1) Suppose f ∈ C∞(G) and N is a non-negative integer. Then
there is a positive constant CN,f so that

‖fτ‖ ≤ CN,f (1 + ‖τ‖)−N .

Conversely, if {fτ ∈ C(G)(τ) | τ ∈ Ĝ} is a collection of func-
tions satisfying the estimates above, then the Fourier series∑

τ∈ bG
fτ

converges absolutely (in any of the seminorms defining the C∞

topology) to some f ∈ C∞(G).
(2) Suppose D ∈ C−infty(G) is a distribution. Then there is a non-

negative integer M and a positive constant CM,D so that

‖Dτ‖ ≤ CM,f (1 + ‖τ‖)M .

Conversely, if these inequalities are satisfied, then the Fourier
series

∑
τ Dτ converges absolutely to a distribution D.

(3) Suppose f ∈ Cω(G) is a real analytic function. Then there is a
δ > 0 and a positive constant Cδ,f so that

‖fτ‖ ≤ Cδ,f (1− δ)‖τ‖.
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Conversely, if these inequalities are satisfied, then the Fourier
series

∑
τ fτ converges absolutely to a real analytic function f .

(4) Suppose D ∈ C−ω(G) is a hyperfunction. Then for every ε > 0
there is a positive constant Cε,D so that

‖Dτ‖ ≤ Cε,f (1 + ε)‖τ‖.

Conversely, if these inequalities are satisfied, then the Fourier
series

∑
τ Dτ converges absolutely to a hyperfunction D.

One interesting aspect of the theorem is that the formulation can
use so many different norms on C∞(G). A consequence is that, on the
space C(G)(τ) of matrix coefficients of τ , any of the norms is bounded
by a polynomial in ‖τ‖ times any other (with a polynomial independent
of τ).

The theorem is stated in [15] only for smooth functions, but the
other versions can be proved in a very similar fashion. The question
of the history of this theorem is an interesting one, to which I cannot
offer a reasonable answer, despite a delightful hour of instruction from
David Jerison. The theorem has an obvious extension with G replaced
by a real analytic Riemannian manifold M , and the spaces C(G)(τ) by
eigenspaces of the Laplace-Beltrami operator. That extension is proved
in two papers of Seeley from 1965 and 1969. According to Jerison, the
theorem (as far as it concerns smooth and analytic functions) was very
likely known to Weyl; and in fact Hadamard had the necessary tools
to prove it.

The earliest explicit reference that I can find is [5], Lemma 31 (proved
in [6], Lemma 3). This essentially proves a much more abstract and
general version, Theorem 3.20 below; we turn now to the formulation
of that result.

Definition 3.18. Suppose G is a Lie group, and (π, V ) is a continuous
representation of G. A vector v ∈ V is called smooth if the map

G→ V, g 7→ π(g)v

is infinitely differentiable. The vector space of smooth vectors is written
V ∞.

It is not difficult to show that V ∞ is dense in V , and that this
subspace is preserved by π(G). Differentiating the G action defines
an algebraic representation of LieG, and so of the enveloping algebra
U(gC), on V ∞. In fact there is a natural complete locally convex topol-
ogy on V ∞: if {| · |α (α ∈ A)} is a family of seminorms defining the
topology of V , then

(3.19) |v|u,α =def |π(u)v|α (u ∈ U(gC), α ∈ A)
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is a collection of seminorms defining the topology of V ∞. With this
definition, the action of U(g) on V ∞ is by continuous operators.

Theorem 3.20 (Harish-Chandra; see [5], Lemma 31). Suppose (π, V )
is a representation of the compact group G, and v ∈ V ∞ is a smooth
vector. If | · |α is any continuous seminorm on V , and N is a non-
negative integer, then there is a constant CN so that the Fourier com-
ponents of v (Definition 3.13) satisfy

|vτ |α ≤ cN,v,α(1 + ‖τ‖)−N

In particular, the Fourier series of v converges absolutely to v.

4. Real algebraic groups

We begin this section with the relationship between compact Lie
groups and complex reductive algebraic groups; then, with these won-
derful complex objects in hand, describe how to get from them the
real Lie groups that we wish to study. For a beautiful and complete
introduction to algebraic groups, the reader should consult [14]. Here
we just offer a few pieces that we need.

Definition 4.1. A complex algebraic group is a complex affine al-
gebraic variety G that is also a group, in such a way that the group
operations

m : G×G→ G, m(x, y) = xy

and
i : G→ G, i(x) = x−1

are morphisms of algebraic varieties. This means first of all that G
is endowed with a complex commutative algebra C[G] of functions on
G, called regular functions. The set of functions vanishing at a point
of G is then a maximal ideal in C[G], and we require that this corre-
spondence is a bijection Max C[G] ' G. A morphism φ : X → Y of
affine algebraic varieties is by definition the same thing as an algebra
homomorphism φ∗ : C[Y ] → C[X]; so the group operations correspond
to algebra homomorphisms

m∗ : C[G]⊗ C[G]→ C[G], i∗ : C[G]→ C[G].

The identity element e ∈ G corresponds to an algebra homomorphism
e∗ : C[G]→ C. The group axioms can be expressed as properties of the
algebra homomorphisms m∗, i∗, and e∗ ([14], 2.1.2).

Exercise 4.2. A complex algebraic variety X has a “classical topology”
as a closed subset of some complex vector space. The set of smooth
points Xsmooth is then a dense open subset (in the classical topology);
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it is a complex manifold of dimension equal to the dimension of the
algebraic variety X.

Assuming these facts, explain how a complex algebraic group “is equal
to” a complex Lie group of the same dimension.

Example 4.3. Let G = GL(n), the group of invertible n× n complex
matrices. The vector space M(n) of all n × n matrices is an affine
algebraic variety, with regular functions the polynomial algebra in n2

variables

C[eij] (1 ≤ i, j ≤ n).

The group GL(n) is the principal (Zariski) open subset {det(x) 6= 0}.
Therefore GL(n) is an affine algebraic variety, with regular functions
obtained by localizing the polynomial algebra in all matrix entries at the
polynomial function det:

C[GL(n)] = C[eij, det−1] (1 ≤ i, j ≤ n).

Comparing Example 4.3 with Corollary 2.16, we see that the un-
derlying bones and muscles on which the algebraic group GL(n) is
constructed (the regular functions) are very close to the bones and
muscles of harmonic analysis on the compact group U(n) (the matrix
coefficients). Our goal in this section is to generalize this connection
so that it includes all compact Lie groups and all complex reductive
algebraic groups.

To construct a complex algebraic group, we must construct the (com-
plex commutative) algebra C[G] and the algebra homomorphisms m∗

and i∗, and e∗ of Definition 4.1. Springer explains in [14], Section 2.5,
how to recover an algebraic group from its representations. We will be-
gin instead with the representations of a compact Lie group, and follow
the same construction to build a (larger) complex algebraic group.

We begin therefore with a compact Lie group K (possibly discon-
nected). Define

(4.4a) R =def C(K)fin =
∑
τ∈ bK

C(K)τ .

Here the first formula means all the continuous functions onK that gen-
erate finite-dimensional subspaces under left translation. Since finite-
dimensional representations of K are completely reducible (since K is
compact), we get the second identification of R, as the sum over ir-
reducible representations τ of the τ -isotypic subspaces. According to
Corollary 3.12, R is also precisely the space of matrix coefficients of
finite-dimensional representations of K.
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Clearly R is a complex vector space of functions on K. According
to Exercise 3.5, R is closed under multiplication of functions; so it is a
commutative algebra. (The constant function 1 is a matrix coefficient
of the trivial representation of K, so R has a unit.) Evaluation at
e ∈ K defines an algebra homomorphism

(4.4b) e∗ : R→ C.

In the notation of Definition 3.1, we have

fξ,v(g
−1) = ξ(π(g)v) = (π∗(g−1)ξ)(v) = fv,ξ(g).

That is, the composition with the inversion map i of a matrix coefficient
(of π) is again a matrix coefficient (of the contragredient representation
on V ∗). We therefore have an algebra homomorphism

(4.4c) i∗ : R→ R, i∗(fξ,v) = fv,ξ.

Finally, we need to see that the mapping m∗ (corresponding to mul-
tiplication of group elements) can be defined on matrix coefficients.
What this requires is knowing how to multiply matrices. To see this,
fix again a matrix coefficient fξ,v. Choose a basis {v1, . . . , vn} for V ,
and let {ξ1, . . . , ξn} be the dual basis of V ∗. Then

w =
n∑
j=1

ξj(w)vj (w ∈ V ).

Now we can compute

fξ,v(xy) = ξ(π(y−1x−1)v)

= ξ(π(y−1)π(x−1)v)

= ξ

(
π(y−1)

(
n∑
j=1

ξj(π(x−1)v)vj

))

=
n∑
j=1

ξj(π(x−1v))ξ(π(y−1vj))

=
n∑
j=1

fv,ξj(x)fvj ,ξ(y).

. That is,

(4.4d) m∗(fv,ξ) =
n∑
j=1

fv,ξj ⊗ fvj ,ξ.
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Theorem 4.5. Suppose K is a compact Lie group. Define the complex
commutative algebra R of matrix coefficients as in (4.4a), and define
algebra morphisms i∗ and m∗ as in (4.4). Then R is the ring of regular
functions on a complex reductive algebraic group

K(C) = MaxR,

(the set of maximal ideals in R) which we call the complexification of
K. Every complex reductive algebraic group arises in this way from an
appropriate compact Lie group K.

Evaluation of matrix coefficients at x ∈ K exhibits x as a maximal
ideal of R; so we get

K ↪→ K(C).

The complexification of U(n) is GL(n,C). If K is a closed subgroup
of U(n) of real dimension N , then K(C) is a Zariski-closed algebraic
subgroup of GL(n,C) of complex dimension N .

Restriction of representations from K(C) to K defines a natural
identification

(finite-dimensional algebraic representations of K(C))
∼−→ (finite-dimensional continuous representations of K).

The algebraic group K(C) is a kind of maximal domain of holomor-
phic extension for the representations of K. The points of K(C) are
maximal ideals in the algebra of matrix coefficients; and these maxi-
mal ideals arise by analytic continuation of the ideals of vanishing at a
point of K.

To understand and use this correspondence completely, we need to
know how to recover K from K(C). We will see that K is the group
of real points of a real form of K(C). Here is one way to look at the
definition. We start with a very simple case.

Definition 4.6. Suppose V is a complex vector space. A real form of
V is a real vector space V0 ⊂ V , with the property that the natural map

j0 : V0 ⊗R C→ V, j0(x⊗ z) = z · x(x ∈ V0, z ∈ C)

is an isomorphism. Equivalently, a real form is a conjugate-linear map

σ : V → V, σ2 = Id .

Here “conjugate-linear” means that

σ(av + bw) = aσ(v) + bσ(w) (a, b ∈ C, v, w ∈ V ).
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Here is how to see the two versions of the definition are equivalent.
Given V0, the defining condition means that every element v ∈ V has
a unique expression

v = x+ iy, x, y ∈ V0.

Using this expression, we can define

σ(v) = x− iy,
and check that σ is a conjugate-linear map of order two. Conversely,
given σ, we can define

V0 = V σ,

which is clearly a real vector space. We leave as an exercise the verifi-
cation that these two constructions are mutual inverses.

Definition 4.7. Suppose X is a complex affine algebraic variety, with
(complex) algebra of regular functions A = C[X]. A real form of X
is a real commutative subalgebra A0 ⊂ A with the property that A0

is a real form of A as a vector space. Equivalently, a real form is a
conjugate-linear ring homomorphism

σ∗ : A→ A, (σ∗)2 = Id .

Equivalently, a real form is map on sets

σ : X → X, σ2 = Id,

subject to the requirement that composition with σ carries a regular
function to the complex conjugate of a regular function:

σ∗(f)(x) =def f(σ(x)) ∈ C[X], f ∈ C[X].

Two real forms are called weakly equivalent if they are conjugate by an
automorphism of X.

Given a real form, we write

R[X] = A0 = (C[X])σ
∗
,

the (real) algebra of regular functions on the real form.
Finally, the set of real points of the real form is

X(R) = {algebra homomorphisms R[X]→ R}
= {fixed points of σ on X(C)}.

The notion of equivalence is not standard (or very interesting) for
general algebraic varieties; we include it only in order to set up the case
of algebraic groups. The term “weak” is present only to distinguish this
notion from a stronger one in the case of algebraic groups; the stronger
notion does not make sense for general varieties.



INFINITE-DIMENSIONAL REPRESENTATIONS 33

Notice that the mapping σ from X to X is not a morphism of al-
gebraic varieties, because the underlying ring homomorphism is not
complex linear.

It is immediate from the definitions that the functions in R[X] take
real values on X(R); so we have a homomorphism of real algebras

R[X]→ (R-valued functions on X(R)).

But, in contrast to the complex case, this homomorphism may be far
from injective: we cannot identify R[X] as an algebra of functions on
the set of real points. For example, it may happen that X(R) is empty
even though the algebra real form R[X] is not zero. We will see that
this subtlety does not arise for connected real algebraic groups.

Definition 4.8. Suppose G is a complex algebraic group (Definition
4.1). A real form of G is a real form of commutative algebras

R[G] ⊂ C[G],

preserved by the maps m∗ and i∗, and such that the e∗ (evalutation at
the identity) takes real values on R[G]. Equivalently, a real form is a
group homomorphism

σ : G→ G, σ2 = Id

with the property that the mapping on functions

(σ∗(f))(x) = f(σ(x))

preserves C[G].
Two real forms σ1 and σ2 are called weakly equivalent if they are

conjugate by an algebraic automorphism α of G:

σ2(x) = α
(
σ1

(
α−1(x)

))
(some α ∈ Aut(G)).

They are called strongly equivalent if they are conjugate by an inner
automorphism of G:

σ2(x) = aσ1(a−1xa)a−1 (some a ∈ G).

They are called inner (another equivalence relation on real forms) if
they are in the same coset of the inner automorphisms:

σ2(x) = bσ1(x)b−1 (some b ∈ G).

The group of real points of the real form is

G(R) =def G
σ.



34 DAVID A. VOGAN, JR.

Exercise 4.9. Show that two strongly equivalent real forms are neces-
sarily inner. Give examples to show that two real forms that are inner
to each other need not be weakly equivalent, and that weakly equivalent
real forms need not be inner.

Exercise 4.10. (Use the ideas from Exercise 4.2.) Suppose σ is a
real form of the complex algebraic group G. Define g to be the Zariski
tangent space to G at the identity element, a complex vector space.
Show that dσ is a real form of the complex vector space g. Deduce that
G(R) is a closed subgroup of G as a real Lie group, and that

dimR(G(R)) = dimC(G).

Prove that if G is connected, then restriction to G(R) identifies C[G]
with an algebra of real-analytic functions on G(R).

Exercise 4.11. Give an example of a complex algebraic group G and
a real form so that the homomorphism

R[G]→ functions on G(R)

is not one-to-one.

In the general theory of algebraic varieties, the question of whether
a variety is defined over a certain field F (that is, whether there is an
F -form) is a natural one. Typically this is a fairly uncommon occur-
rence; and if an F -form exists, it is typically unique. The situation
for algebraic groups is very different. Connected reductive groups (the
ones we are most concerned with) admit F -forms for any field F . There
can be many quite different F -forms, depending on the arithmetic of
F . Here are the basic definitions for keeping track of these matters.
We write

(4.12) Gal = Gal(C/R) = {1, bar}
for the Galois group.

Definition 4.13. Suppose X is a complex algebraic variety. Define

Aut(X) = {C-linear automorphisms of C[X]},
the group of automorphisms of X as a complex algebraic variety. Define

Aut(X)bar = {conjugate-linear automorphisms of C[X]}.
Define the Galois-extended automorphism group

Aut(X)Gal = Aut(X) t Aut(X)bar,

a group of real-linear automorphisms of C[X]. There is an exact se-
quence

1→ Aut(X)→ Aut(X)Gal → Gal .
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Proposition 4.14. In the setting of Definition 4.13, the following no-
tions are equivalent:

(1) a real form of X;
(2) an element of order two in the subset Aut(X)bar of Aut(X)Gal;
(3) a splitting Gal→ Aut(X)Gal of the sequence of Definition 4.13.

Suppose σ0 is a particular real form of X. Then

Aut(X)bar = Aut(X)σ0,

providing an identification

Aut(X)Gal ' Aut(X) o {1, σ0},
and also an action of Gal on Aut(X):

a = σ0aσ
−1
0 (a ∈ Aut(X)).

With respect to these structures, a real form of X is also equivalent
to a one-cocycle of Gal with coefficients in Aut(X); that is, to an el-
ement abar ∈ Aut(X) satisfying abarabar = 1. (The equivalence sends
the real form σ to abar = σσ−1

0 .) Two one-cocycles abar and bbar are
cohomologous—that is, bbar = αabarα

−1 for some α ∈ Aut(X)—if and
only if the corresponding real forms are weakly equivalent (Definition
4.8).

Notice that the first half of this proposition makes use of the Galois-
extended group Aut(X)Gal, and classical group-theoretic notions. The
restatement in the second half is phrased entirely in terms of Aut(X),
and uses Galois cohomology. There is no serious mathematical differ-
ence; the choice between the two points of view is a matter of taste.
I will almost always prefer to talk about extended groups, but the
reader may regard the problem of finding cohomological formulations
of everything as an extended exercise.

Corollary 4.15. In the setting of Definition 4.8, the following notions
are equivalent:

(1) a real form of G;
(2) an element of order two in the subset Aut(G)bar of Aut(G)Gal;
(3) a splitting Gal→ Aut(G)Gal of the sequence of Definition 4.13.

Suppose σ and σ′ are two real forms in Aut(G)bar.

(1) The real forms are weakly equivalent (Definition 4.8) if and only
if σ and σ′ are conjugate by Aut(G).

(2) The real forms are strongly equivalent (Definition 4.8) if and
only if σ and σ′ are conjugate by Int(G) ⊂ Aut(G).

(3) The real forms are inner to each other if they belong to the same
coset of Int(G).
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Theorem 4.16. Suppose K is a compact Lie group, and K(C) the
corresponding complex reductive algebraic group (Theorem 4.5). Then
there is a unique real form σ of K(C) with the property that the group
of real points is K.

Proof. Write R for the algebra of matrix coefficient functions on K,
which by definition is the same as the ring of regular functions on
K(C). Define a conjugate-linear automorphism σ∗ of R by

(4.17) (σ∗(f))(k) = f(k) (k ∈ K).

It is easy to see from the definitions that this is the only possible
definition of an algebra map σ∗ corresponding to a real form of K(C)
with group of real points containing K. The first issue is to check that
σ∗ is well-defined; that is, that the function on the right side is again a
matrix coefficient for K. So suppose f = fπ,ξ,v is a matrix coefficient for
a finite-dimensional representation (π, V ) of K (Definition 3.1). Write
V conj for the vector space with the same additive structure as V , but
with scalar multiplication modified by complex conjugation. The space
V conj has exactly the same linear operators as V , so we can interpret
π as a representation πconj on V conj. The linear functionals on V conj

are just complex conjugates of linear functionals on V . So ξ is a linear
functional on V conj. It is now easy to check that, as functions on K,

σ∗(fπ,ξ,v) = fπ,ξ,v = fπconj,ξ,v.

This proves that σ∗ is well-defined.
That σ∗ is a conjugate-linear algebra automorphism respecting m∗

and i∗ is very easy; so σ∗ is a real form of K(C). It is clear from (4.17)
and the definitions that

(4.18) K ⊂ K(R).

Exercise 4.19. In the setting above, fix a K-invariant Hilbert space
structure on V (as is always possible since K is compact). For g ∈
K(C), show that σ(g) = g if and only if π(g) is a unitary operator.
Deduce that the group of real points K(R) = K(C)σ is a compact group
containing K (a subgroup of the product over π of the groups U(V )).

Prove that every finite-dimensional representation of K has a canon-
ical extension to K(R).

Use the Peter-Weyl theorem to deduce that K = K(R).

This exercise completes the proof of Theorem 4.16. �

In order to analyze other real forms of complex connected reductive
algebraic groups, we begin with a long detour into the structure of
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algebraic automorphisms. For that we need to recall the fundamentals
of the structure theory; details may be found in [14].

Suppose G is a complex connected reductive algebraic group, with
Lie algebra g. Fix a Borel subgroup B ⊂ G, and a maximal torus
H ⊂ B. The torus H is isomorphic to a product of copies of C× (but
not canonically). The coordinate-free way to keep track of H is using

(4.20a) X∗ = Homalg(H,C×)),

the lattice of characters; this is a finitely generated torsion-free abelian
group. It is therefore a product of copies of Z (but not canonically).
We also make use of

(4.20b) X∗ = Homalg(C×), H),

the lattice of cocharacters of H. Composing a one-parameter subgroup
ξ : C× → H with a character λ : H → C× gives an algebraic group
morphism from C× to itself. Such a morphism is given by raising to
an integer power n; so we write

(4.20c) 〈λ, ξ〉 = n whenever λ(ξ(z)) = zn (z ∈ C×).

This pairing 〈·, ·〉 identifies

(4.20d) X∗ = Hom(X∗,Z), X∗ = Hom(X∗,Z).

Put

∆ = {roots of H in g} ⊂ X∗,(4.20e)

∆∨ = {coroots of H in g} ⊂ X∗.(4.20f)

The choice of Borel subgroup B defines a set of positive roots

(4.20g) ∆+ = {roots of H in b} ⊂ X∗.

Write

(4.20h) Π = {simple roots for ∆+}, Π∨ = {simple coroots}.

The quadruple R = (X∗,∆, X∗,∆
∨) is called the root datum of G;

more precisely, of the pair (G,H). Here we think of X∗ and X∗ as
lattices in duality by the pairing 〈·, ·〉, ∆ as a finite subset of X∗, and
∆∨ a finite subset of X∗ with a specified bijection α↔ α∨ between ∆
and ∆∨. An isomorphism of root data is required to preserve all of that
structure.

The quadruple Rb = (X∗,Π, X∗,Π
∨) is called the based root datum

of G.
Root data are characterized by remarkably simple axioms.
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Definition 4.21. An abstract root datum is a quadruple

R = (X∗,∆, X∗,∆
∨),

subject to the following requirements.

(1) The abelian groups X∗ and X∗ dual lattices (that is, finitely
generated torsion-free abelian groups). We write the pairing
between them as

〈·, ·〉 : X∗ ×X∗ → Z.

(2) The set ∆ is a finite subset of X∗, and ∆∨ a finite subset of
X∗. There is a specified bijection α↔ α∨ between ∆ and ∆∨.

We interrupt the axioms to introduce a little more notation. For each
α ∈ ∆, define endomorphisms of X∗ and of X∗ by

sα(λ) = λ− 〈λ, α∨〉α (λ ∈ X∗),

sα∨(ξ) = ξ − 〈α, ξ〉α∨ (ξ ∈ X∗).
These endomorphisms are transposes of each other. The next axiom
will ensure that they are invertible, so that we can define the Weyl
group of the root datum

W = group generated by the sα ⊂ Aut(X∗).

The inverse transpose map identifies W with

W∨ = group generated by the sα∨ ⊂ Aut(X∗).

We will follow standard practice and confuse these two groups, allowing
the context to indicate which one is intended.

(3) For each α ∈ ∆, 〈α, α∨〉 = 2 (and so s2
α = Id, s2

α∨ = Id).
(4) For each α ∈ ∆, sα(∆) = ∆, and sα∨(∆∨) = ∆∨.

Finally, the root datum is called reduced if in addition

(5) For α ∈ ∆, 2α /∈ ∆.

It is equivalent to require that 2α∨ /∈ ∆∨.
An isomorphism of root data

g : (X∗,∆, X∗,∆
∨)→ ((X ′)∗,∆′, (X ′)∗, (∆

′)∨)

is an isomorphism of abelian groups

g∗ : (X ′)∗ → X∗

so that (writing g∗ : X∗ → (X ′)∗ for the transpose isomorphism) we
have

g∗(∆′) = ∆, (α′)∨ = g∗(g
∗(α′)∨) (α′ ∈ ∆′).
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Theorem 4.22 (see [14], Theorem 9.6.2). Suppose G is a complex
connected reductive algebraic group, and H is a maximal torus in G.
The root datum defined in (4.20) is a reduced abstract root datum.

Suppose G′ is a second complex connected reductive algebraic group,
and H ′ is a maximal torus in G. Suppose that g is an isomorphism
from the root datum of G to the root datum of G′ (Definition 4.21).
Then there is an isomorphism of algebraic groups

γ : G→ G′, γ(H) = H ′,

so that γ induces the isomorphism g. Furthermore γ is unique up to
(pre-) composition with an inner automorphism coming from H, or up
to (post-) composition with an inner automorphism coming from H ′.

Suppose (X∗,∆, X∗,∆
∨) is a reduced abstract root datum (Definition

4.21). Then there is a complex connected reductive algebraic group G
and a maximal torus H giving rise to this root datum by means of
(4.20).

This theorem says very precisely the way in which a complex reduc-
tive algebraic group is determined by its root datum. (It is important
to keep in mind that a maximal torus is uniquely determined up to
conjugacy in G.)

One proof of this theorem is based on proving the more precise The-
orem 4.29 below. That in turn is based on writing a presentation of G
by generators and relations; details may be found in [14], Chapter 9.

Exercise 4.23. A weak isogeny is a morphism of connected reductive
algebraic groups

γ : G→ G′

with the properties

(1) ker γ is abelian;
(2) im γ is a closed normal subgroup of G′, and
(3) G′/(im γ) is abelian.

(For an isogeny, the two abelian groups are also required to be finite;
this forces the second group to be trivial.)

A weak isogeny of root data

g : (X∗,∆, X∗,∆
∨)→ ((X ′)∗,∆′, (X ′)∗, (∆

′)∨)

is a morphism of abelian groups

g∗ : (X ′)∗ → X∗

so that (writing g∗ : X∗ → (X ′)∗ for the transpose morphism) we have

g∗(∆′) = ∆, (α′)∨ = g∗(g
∗(α′)∨) (α′ ∈ ∆′).
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Generalize Theorem 4.22 to prove that weak isogenies of reductive
groups correspond to weak isogenies of root data.

Exercise 4.24. Find a definition of “morphism of root data” so that
something like Theorem 4.22 is true with isomorphisms replaced by
morphisms (of root data and of algebraic groups).

This is not an exercise but rather a possible career path. Dynkin has
done serious work in [4], but the problem is incredibly subtle.

In order to identify and work with individual automorphisms of G,
we need to refine Theorem 4.22 even further. Attached to each root α
is the three-dimensional (closed algebraic) subgroup Gα generated by
the root spaces for ±α. The intersections

(4.25a) Bα = B ∩Gα ⊃ Hα = H ∩Gα

are a Borel subgroup and a maximal torus in Gα. One of the funda-
mental results in the structure theory is that there are algebraic group
morphisms

(4.25b) φα∨ : SL(2)→ Gα ⊂ G

with the property that

(4.25c) φα∨

(
z 0
0 z−1

)
= α∨(z) ∈ Hα ⊂ H (z ∈ C×).

Such a morphism is called a root SL(2) for the root α. Using the
morphism φα∨ , we can define a preferred basis vector

(4.26) Xα = dφα∨

(
0 1
0 0

)
∈ gα

of the α root space. Conversely, if we first fix the basis vector Xα of the
root space, then we can find a unique group morphism φα∨ satisfying
(4.25) and (4.26). We record this fact as a lemma.

Lemma 4.27. The group morphism φα∨ is determined by the require-
ments (4.25) up to (pre-) composition with the adjoint action of an
element of the diagonal torus of SL(2), or up to (post-) composition
with the adjoint action of an element of Hα. The choice of φα∨ is
equivalent to the choice of the basis vector Xα of the root space gα.

Definition 4.28 ([3], Exposé XXIII). Suppose G is a complex con-
nected reductive algebraic group. A pinning (in [3] épinglage) of G is
a triple

P = (B,H, {φα∨ | α∨ ∈ Π∨}),
with B a Borel subgroup; H ⊂ G a maximal torus; Π∨ the set of simple
coroots for H corresponding to B (see (4.20)); and φα∨ a root SL(2)
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(for each simple root). According to Lemma 4.27, a pinning is the same
thing as a triple

(B,H, {Xα | α ∈ Π}),
with Xα a nonzero element of the root space gα.

Theorem 4.29 ([3], Exposé XXIII, Theorem 4.1). Every complex con-
nected reductive algebraic group admits a pinning, which is unique up
to inner automorphism.

Suppose (G,P) and (G′,P ′) are complex connected reductive alge-
braic groups endowed with pinnings. Write Rb and R′b for the based
root data corresponding to the pairs (B,H) and (B′, H ′). Suppose g is
an isomorphism from Rb to R′b. Then there is a unique isomorphism
γ : G→ G′ that carries P to P ′ and induces g on the root datum.

As explained after Theorem 4.22, one proof of this theorem is based
on using the pinnings to write presentations of G and of G′; see [14],
Section 9.4.

Corollary 4.30. Suppose G is a complex connected reductive algebraic
group, and

P = (B,H, {φα∨ | α∨ ∈ Π∨})
is a pinning of G. Write

Aut(G) = algebraic automorphisms of G

Int(G) = inner automorphisms of G ' G/Z(G)

Out(G) = Aut(G)/ Int(G)

so that there is a short exact sequence

1→ Int(G)→ Aut(G)→ Out(G)→ 1.

Finally, define Aut(G,P) to be the subgroup of automorphisms preserv-
ing the pinning.

Then AutG is a semidirect product

Aut(G) = Int(G) o Aut(G,P)

of the normal subgroup of inner automorphisms by the subgroup of au-
tomorphisms preserving the pinning.

Write R (resp. Rb) for the root datum (resp. based root datum) at-
tached to (G,H) (resp. to (G,B,H).) Then Aut(R) is a semidirect
product

Aut(R) = W (R) o Aut(Rb)

of the Weyl group (Definition 4.21) with the subgroup of automorphisms
preserving the positive roots.
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We therefore have natural isomorphisms

Out(G) ' Aut(G,P) ' Aut(Rb) ' Out(R).

(The last notation is explained in (4.31) below.)

The corollary is a straightforward consequence of Theorem 4.29. It is
natural to think of elements of the Weyl group as inner automorphisms
of a root datum R, and so to write

(4.31a) Int(R) =def W (R).

Then the short exact sequence

(4.31b) 1→ Int(R)→ Aut(R)→ Out(R)→ 1

defines Out(R). The fundamental fact that W (R) acts in a simply
transitive way on positive root systems (see for example [14], Proposi-
tion 8.2.4) shows that

(4.31c) Aut(R) = W (R) o Aut(Rb),

and therefore that

(4.31d) Out(R) ' Aut(Rb).

Corollary 4.32. Suppose G is a complex connected reductive algebraic
group with based root datum Rb. Then Aut(G) has a natural structure
of complex Lie group. The identity component is the complex connected
semisimple algebraic group

Int(G) = G/Z(G),

consisting of inner automorphisms of G. The group of connected com-
ponents is Aut(Rb), a subgroup of Aut(X∗) ' GL(n,Z). In fact there
is a semidirect product

Aut(G) ' Int(G) o Aut(Rb).

Essentially all of the analysis to this point can be applied with fairly
small changes to reductive algebraic groups over any field F . Theorems
4.22 and 4.29 are true essentially as stated with C replaced by any
algebraically closed field. Something like Proposition 4.14 is true for
any perfect field. With our analysis of Aut(G) in hand, it is now
natural to study the larger group Aut(G)Gal, and so the rational forms
of G. Proposition 4.14 suggests that it can be useful to do this using
a “base” rational form. When one wants to do this over a more or
less arbitrary base field, it is natural to look for a rational form that
makes sense over an arbitrary field. The only such form is the split
form. Chevalley’s great achievement in [2] is to construct (for each
semisimple root system) a corresponding (split) algebraic group “over
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Z.” In [3], Demazure extends this to give a split form of for any root
datum “over Z,” and therefore over any field F . One can then use
ideas like Galois cohomology to study other F -forms as “twists” of the
split form. This is the right way to proceed over general fields.

In the case of the real numbers, there is another way to proceed.
Every complex reductive group has (in addition to the split real form)
a compact real form. We are going to view the compact form as fun-
damental, and other real forms as “twists” of the compact form. Of
course there is a price to be paid (in the theory of automorphic forms,
for example) in treating the real field differently from p-adic fields.
But the benefits are enormous. Theorem 4.5 explains that subtle ana-
lytic questions about harmonic analysis on the compact real form are
precisely equivalent to easy algebraic statements about the complexi-
fication. Harish-Chandra’s theory provides parallel results for any real
reductive group, relating problems of harmonic analysis on the real
group to harmonic analysis on the “nearby” compact real form, and so
to algebra.

So here is a starting point for the analysis of rational forms over
general fields. (We leave to the reader’s imagination the underlying
definitions.)

Theorem 4.33. Suppose that F is an algebraically closed field of char-
acteristic zero, and that τ is any automorphism of F . Suppose (G,P)
and (G′,P ′) are connected reductive algebraic groups over F endowed
with pinnings. Write Rb and R′b for the based root data corresponding
to the pairs (B,H) and (B′, H ′). Suppose g is an isomorphism from
Rb to R′b. Then there is a unique isomorphism

γ = γ(g, τ) : G→ G′

characterized by the following requirements:

(1) γ(B,H) = (B′, H ′);
(2) γ[ξ(z)] = (g∗ξ)(τ(z)) (ξ ∈ X∗, z ∈ F ); and
(3) γ[φα∨(x)] = φg∗α∨(τ(x)) (α∨ ∈ Π∨, x ∈ SL(2, F )).

Here τ acts on the matrix group SL(2, F ) by acting on each entry.
The group homomorphism γ is a τ -algebraic morphism of algebraic

varieties, in the sense that it corresponds to a ring homomomorphism

γ∗ : F [G′]→ F [G]

carrying scalar multiplication by z to scalar multiplication by τ(z).

Here is the variant that is special to the real numbers.
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Theorem 4.34. Suppose (G,P) and (G′,P ′) are connected complex
reductive algebraic groups over F endowed with pinnings. Write Rb

and R′b for the based root data corresponding to the pairs (B,H) and
(B′, H ′). Suppose g is an isomorphism from Rb to R′b. Then there is
a unique isomorphism

γ0 = γ0(g, bar) : G→ G′

characterized by the following requirements:

(1) γ0(B,H) = (B′, H ′);
(2) γ0[ξ(z)] = (g∗ξ)(z

−1) (ξ ∈ X∗, z ∈ C); and

(3) γ0[φα∨(x)] = φg∗α∨(tx
−1

) (α∨ ∈ Π∨, x ∈ SL(2,C).

The isomorphism γ0 is conjugate-algebraic, in the sense that it carries
regular functions on G′ to complex conjugates of regular functions on
G.

Both versions of the theorem can be proved in exactly the same way
as Theorem 4.29, by inspection of the generators and relations for G
and G′ in Section 9.4 of [14].

Definition 4.35. Suppose G is a complex connected reductive algebraic
group, and

P = (B,H, {φα∨ | α ∈ Π})
is a pinning of G. The compact real form of G attached to P is the
conjugate-algebraic isomorphism σc = σc(P) attached by Theorem 4.34
to P and the identity map on the corresponding based root datum.

The split real form of G attached to P is the conjugate-algebraic
isomorphism σs attached by Theorem 4.33 to P and the identity map
on the based root datum.

Since pinnings are unique up to inner automorphism, the compact
and split real forms of G are unique up to inner automorphism.

Example 4.36. Suppose G = GL(n,C), B is the Borel subgroup of
upper triangular matrices, and H is the group of diagonal matrices.
There are obvious choices for simple root SL(2) subgroups (which you
should write down); write Pstd for the corresponding pinning. The cor-
responding compact real form is

σc(g) = tg−1,

which is the real form U(n).
The corresponding split real form is

σs(g) = g,

which is the real form GL(n,R).



INFINITE-DIMENSIONAL REPRESENTATIONS 45

Exercise 4.37. Suppose G is a complex connected reductive algebraic
group, and

P = (B,H, {φα∨ | α∨ ∈ Π∨})
The opposite pinning is

Pop = (Bop, H, {ψβ∨ | β∨ ∈ −Π∨}).
Here Bop ⊃ H is the Borel subgroup corresponding to the positive root
system −R+, with simple roots −Π; and

ψβ∨(x) = φ−β∨(tx−1) (x ∈ SL(2)).

Write

Rb = (X∗,Π, X∗,Π
∨)

for the based root datum attached to (B,H), and

Rop
b = (X∗,−Π, X∗,−Π∨)

for the opposite based root datum attached to (Bop, H). Let g be the
isomorphism of based root data from Rb to Rop

b given by g∗ = − Id on
X∗ (Definition 4.21). The Chevalley involution attached to P is the
element γ ∈ Aut(G) corresponding to g (Theorem 4.29). Prove that
γ2 = 1; that γ acts on H by inversion; that γ commutes with σc and
with σs; and that

σs = γσc.

[Insert exercise about K and K(C)]

Theorem 4.38. Suppose G is a complex connected reductive algebraic
group, and σ ∈ Aut(G)bar is a real form (Corollary 4.15); write G(R)
for the group of real points. Then there is a compact real form σc
(Definition 4.35) that commutes with σ. The involution σc is unique
up to conjugation by an inner automorphism in Int(G(R)).

The composition

θ = σ ◦ σc ∈ Aut(G)

called a Cartan involution attached to the real form σ is an (alge-
braic) automorphism of order 2; it is also unique up to conjugation
by Int(G(R)). Write

K = Gθ

for the group of fixed points of θ, a complex reductive algebraic subgroup
of G.

The restriction to K of σc defines a compact real form K(R) of K.
It is the group of common fixed points

Gσ,σc = Gσ,θ = Gσc,θ = K(R).
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In particular, K is the complexification of the compact group K(R)
(Theorem 4.5).

Conversely, suppose θ ∈ Aut(G) is an automorphism with θ2 = 1;
write K = Gθ for the (complex reductive algebraic) group of fixed points.
Then there is a compact real form σc of G that commutes with σ. The
real form σ is unique up to conjugation by an inner automorphism in
Int(K).

Corollary 4.39. Suppose G is a complex connected reductive algebraic
group. The construction of Theorem 4.38 establishes a bijection

{real forms of G}/(conjugation by Int(G))

↔ {involutions in Aut(G)}/(conjugation by Int(G)).

The conjugacy classes on the left in the Corollary are by definition
strong equivalence classes of real forms. On the right, each class belongs
to a single coset of Int(G) in Aut(G). Because the conjugacy class of
compact real forms is also contained in a single coset of Int(G), we
deduce

Corollary 4.40. Suppose G is a complex connected reductive algebraic
group. Then the bijection of Corollary 4.39 establishes (by passage to
the group Out(G) of components of Aut(G)) a bijection

{inner classes of real forms} ↔ {elements of order 2 in Out(G)}.
According to Corollary 4.30, these are exactly the automorphisms of
order 2 of the based root datum of G.

5. Interlude on linear algebra

We are going to need a little structure theory for the real reductive
groups that we have just described. The central fact is the following
theorem of linear algebra.

Theorem 5.1 (Polar decomposition). Suppose G = GL(n,C), and

σc(g) = tg−1 (g ∈ GL(n,C)

is the compact real form (with real points K = U(n). Then σc acts on
the Lie algebra g of G (consisting of n× n complex matrices) by

σc(X) = −tX = −X∗ (X ∈ g).

Write

p(n) = −1 eigenspace of σc on g

= n× n Hermitian matrices.



INFINITE-DIMENSIONAL REPRESENTATIONS 47

Then the map

U(n)× p(n)→ GL(n,C) (k,X) 7→ k exp(X)

is an analytic diffeomorphism of U(n) × p onto GL(n,C), called the
polar decomposition.

Suppose H is any closed subgroup of GL(n,C) preserved by σc, and
having finitely many connected components. Then H inherits the polar
decomposition: if h is the real Lie algebra of H, then

(H ∩ U(n))× (h ∩ p(n))→ H (k,X) 7→ k exp(X)

is an analytic diffeomorphism of (H ∩ U(n))× h ∩ p(n)) onto H.

One reason for the terminology is the case n = 1, when this is the
decomposition z = reiθ of a non-zero complex number. The positive
number r is exp(X) for unique real number X, and eiθ is the unitary
matrix.

In order to be able to apply this to general reductive groups, we need

Theorem 5.2 ([14], Theorem 2.3.7, and [11], Theorem 6.31). Suppose
G is a complex algebraic group. Then G may be realized as a (Zariski-
closed algebraic) subgroup of GL(n,C) for some n.

Suppose in addition that G is connected reductive algebraic, and that
σGc is a compact real form of G (Definition 4.35). Then σc can be
extended to a compact real form σc of GL(n,C).

It is the first assertion (about embedding G in GL(n)) that is proved
in [14]. The tricky point is the extension of σGc to U(n). (Springer
proves that any rational form of G can be arranged to extend to the
split form of GL(n); but in our real-oriented world, we want instead the
corresponding statement about compact forms.) The main difficulty is
to show that the real form G(R, σGc ) is really a compact group. With
this in hand, it is easy to show that the compact group must preserve an
inner product on the representation Cn. The existence of the extension
(which is inverse Hermitian transpose with respect to the invariant
inner product) follows.

Corollary 5.3 ([11], Theorem 6.31). Suppose G is a complex con-
nected reductive algebraic group, with compact real form σGc . Embed G
in GL(n,C, and fix a compact real form σc of GL(n,C extending σGc
(Theorem 5.2). After change of basis in Cn,

σc(g) = tg−1.

Write U = G(R, σGc ) for the corresponding group of real points, and
p ⊂ g for the −1 eigenspace of σGc . Then
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(1) U = G∩U(n) consists of the unitary matrices in G, a compact
group;

(2) p consists of the Hermitian matrices in g; and
(3) the map

U × p→ G, (k,X) 7→ k exp(X)

is an analytic diffeomorphism of U × p onto G.

Finally suppose that σ is a real form of G that commutes with σGc ;
write θ = σ ◦σGc for the corresponding (algebraic) Cartan involution of
G. Write

G(R) = Gσ, K = Gθ.

Finally write s for the −1 eigenspace of θ on g, so that

g = k⊕ s.

(1) The (differentiated) action of σ on g defines a real form of this
complex Lie algebra; the fixed points are

g(R) = Lie(G(R)).

The subspaces k and s are defined over R.
(2) The (differentiated) action of θ preserves g(R); the +1 and −1

eigenspaces are k(R) and s(R).
(3) The group K(R) = G(R)θ = G(R)∩U(n) consists of the unitary

matrices in G(R); it is compact.
(4) The space ∼(R) consists of the Hermitian matrices in g(R).
(5) The map

K(R)× s(R)→ G, (k,X) 7→ k exp(X)

is an analytic diffeomorphism of K(R)× s(R) onto G.

In particular, K(R) is maximal among compact subgroups of G(R);
and the homogeneous space G(R)/K(R) is diffeomorphic (in a K(R)-
equivariant way) to the Euclidean space s(R).

The corollary follows easily from the linear algebra in Theorem 5.1.

6. Interlude on angels and pinnings

We have seen in Corollary 4.39 how to parametrize equivalence classes
of real forms of a complex connected reductive algebraic group G by
conjugacy classes of involutions in Aut(G), and we have even seen (in
Corollary 4.30) some hints about how one might get one’s hands on such
involutions, by conjugating them into some kind of standard form. We
want now to turn to the problem of classifying representations of real
forms. The purpose of this section is to address a fundamental formal
problem. We will begin by formulating some questions in an apparently
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natural and reasonable way; but then we will give an example showing
that the natural and reasonable definition does not behave naturally
and reasonably. The last part of the section is devoted to modifying
the formulations to fix this problem. The reader should therefore be-
ware that the definitions formulated in (6.1) are not the ones that we
will ultimately use.

In classical representation theory, the basic question looks like this:

Fix a real reductive group G(R). Parametrize the
equivalence classes of irreducible representations
(π, V ) of G(R). Call this set of equivalence classes

Ĝ(R), “representations of the real form G(R)”.

If we want to think of understanding the real form by conjugating it
into standard position, we are led to modify this question:

Fix a complex reductive group G. Parametrize
the equivalence classes of pairs (σ, π), with σ a
real form of G and (π, V ) an irreducible represen-
tation (π, V ) of G(R, σ). Call this set of equivalence

classes Ĝ(R), “representations of real forms of G”.

In this modified question, there is an obvious notion of “equivalence”:
we should say that (σ, π) is equivalent to (σ′, π′) if there is an element
g ∈ G with the following two properties. First, roughly speaking, we
need g · σ = σ′. This means that conjugation by g should carry the
(conjugate-linear) automorphism σ to σ′:

(6.1a) σ′(x) = g[σ(g−1xg)]g−1.

This means in particular that g conjugates G(R, σ) to G(R, σ′). We
can therefore define a representation g · π of G(R, σ′) on the space V
of π by the formula

(6.1b) (g · π)(x) = π(g−1xg) (x ∈ G(R, σ′)).
Then the second requirement should be that g · π is equivalent to π′.

Formally this all makes good sense. It is obvious that there is a
well-defined map

(6.1c) equivalence classes of irreducibles of G(R, σ0)

−→ equivalence classes of pairs (σ, π)

by sending π to the equivalence class of (σ0, π). It is even clear that

Ĝ(R) =
⊔

equiv classes of σ

(image of Ĝ(R, σ)).
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The difficulty is this: with the definitions sketched above, the map-
ping in (6.1c) need not be one-to-one, so that our new problem about
all real forms is not just the disjoint union of the old problems about
each real form. Here is an example. Suppose G is SL(2), the group
of (complex) two by two matrices of determinant one. One of the real
forms of G is σ0, which acts on matrices by complex conjugation of
their entries. The corresponding real form is the group of fixed points
of σ0:

(6.2a) G(R, σ0) = SL(2,R).

Inside this real group is the maximal compact subgroup SO(2), whose
irreducible representations are one-dimensional and naturally indexed
by the integers:

(6.2b) τm

(
cos θ sin θ
− sin θ cos θ

)
= eimθ.

The group SL(2,R) has discrete series representations π(1) and π(−1),
which are characterized by the properties
(6.2c)
π(1)|SO(2) = τ2 + τ4 + τ6 + · · · , π(−1)|SO(2) = τ−2 + τ−4 + τ−6 + · · · .

It is clear from these characterizations that π(1) and π(−1) are in-

equivalent representations: they define distinct classes in ̂SL(2,R).
What we will show is that, with the definitions above, their images

in ŜL(2)(R) are equivalent. That is, we will show that (σ0, π(1)) is
equivalent to (σ0, π(−1)). According to the definition above, an equiv-
alence is given by an element g ∈ SL(2) that (first of all) conjugates
σ0 to σ0 and (second) carries π(1) to something equivalent to π(−1).

So what does it mean for g to fix σ0? According to (6.1a), the
condition is

σ0(x) = g[σ0(g−1xg)]g−1.

for all x ∈ SL(2). This is equivalent to

σ(x) = (gσ0(g)−1)[σ0(x)](gσ0(g)−1]

again for all x ∈ SL(2). Since σ0 is an automorphism and therefore
surjective, the condition is

(6.2d) gσ0(g)−1 ∈ Z(SL(2)) = ± Id .

There are two cases here. If gσ0(g)−1 = Id, then g is fixed by σ0,
so g ∈ SL(2,R). In this case g · π is the action of a group on its
own representations, which is always trivial on equivalence classes: the
operator π(g) provides an intertwining operator from π to g · π.
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The interesting case is gσ0(g)−1 = − Id. In our case there is an
example of such an element:

g =

(
i 0
0 −i

)
.

Conjugation by g normalizes SL(2,R). This particular choice of g also
normalizes SO(2), acting by inversion there; so g · τm = τ−m for any
m ∈ Z (notation as in (6.2b). Using the characterizations (6.2c), we
deduce immediately that

(6.2e) g · π(1) = π(−1).

So that is the problem. The heart of the matter is (6.2d): in the ac-
tion ofG on real forms, the stabilizer of a real form σ ∈ Aut(G)BAR may
be larger than G(R, σ). The reason is that the mapping G → Int(G)
has a kernel, namely Z(G). The solution is to replace Aut(G)BAR
(or rather the group Aut(G)Gal in which it lies) by a group extension,
containing the extension G of Aut(G). Here is how.

Definition 6.3. Suppose G is a complex connected reductive algebraic
group, and

P = (B,H, {φα∨ | α∨ ∈ Π∨}
is a pinning. Write Rb for the based root datum attached to P. Recall
from Corollary 4.30 the natural isomorphisms

Aut(G) ' Int(G) o Out(Rb)

and
Out(Rb) ' Aut(G,P).

Now we make an abstract copy Autstrong(G,P) of this outer automor-
phism group. Elements of this copy just carry a label “strong” to remind
us of where they are:

Autstrong(G,P) = {θstrong
1 | θ1 ∈ Autstrong(G,P)}.

The strong automorphism group of G with respect to P) is the semidi-
rect product

Autstrong(G) = Go Autstrong(G,P),

with the first factor normal and the second acting by the indicated alge-
braic automorphisms. This is a complex Lie group with identity com-
ponent G. There is a natural exact sequence

1→ Z(G)→ Autstrong(G)→ Aut(G)→ 1.

Let σc be the compact real form attached to P (Definition 4.35).
Define an abstract copy {1, σstrong

c } of Z/2Z, and make it act on G
by σc. Notice that σc commutes with all the automorphisms of G in
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Aut(G,P). The strong Galois-extended group of G with respect to P
is the semidirect product

Autstrong(G)Gal = Go (Aut(G,P)× {1, σstrong
c }).

If we make σstrong
c act trivially on the factor Aut(G,P), then we can

write
Autstrong(G)Gal = Aut(G)strong o {1, σstrong

c }
By analogy with the notation of Corollary 4.15, we write

Autstrong(G)bar = Autstrong(G)σstrong
c

for the coset inducing conjugate-linear automorphisms of G. There is
a natural exact sequence

1→ Z(G)→ Autstrong(G)Gal → Aut(G)Gal → 1.

A strong real form of G is an element σstrong ∈ Autstrong(G)bar map-
ping to an element σ of order 2 in Aut(G)bar. Equivalently, the re-
quirement is

(σstrong)2 ∈ Z(G).

Two strong real forms are strongly equivalent if they are conjugate by
G. (This implies strong equivalence of the corresponding real forms
(Definition 4.8) but the converse is not true.

A strong involution of G is an element θstrong ∈ Autstrong(G) mapping
to an element θ of order 2 in Aut(G). Equivalently, the requirement is

(θstrong)2 ∈ Z(G).

Two strong involutions are called strongly equivalent if they are conju-
gate by G.

Fix now an inner class of real forms of G (Definition 4.8); equiva-
lently (Corollary 4.40) an element θ1 ∈ Aut(G,P) of order (1 or) 2.
Write σ1 = θ1σc for a real form corresponding to θ1 (Theorem 4.38;
this is the unique real form in the inner class preserving P. (We might
call it the quasicompact inner form since in some sense it is the most
compact form in the inner class.) We define the extended group of G
with respect to P and the inner class represented by θ1 as

GΓ =def Go {1, θstrong
1 } ⊂ Autstrong(G).

Here Γ stands for the group {1, θstrong
1 }; it is playing a role precisely

parallel to the Galois group, but we prefer to give it a different name
since θstrong

1 is acting by an algebraic (not conjugate-algebraic) auto-
morphism. Thus GΓ is a complex reductive algebraic group with two
connected components. Strong involutions in the inner class of θ1 are
elements

x ∈ GΓ \G = Gθstrong
1
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such that x2 ∈ Z(G).
The Galois-extended group of G with respect to P and the inner class

represented by σ1 is

GGal =def Go {1, σstrong
1 } ⊂ Autstrong(G)Gal.

This is a Lie group with two connected components; it is not a com-
plex Lie group, because the nonidentity component acts on the identity
component by conjugate-algebraic (that is, antiholomorphic) automor-
phisms. Strong real forms in the inner class of σ1 are elements

γ ∈ GGal \G = Gσstrong
1

such that γ2 ∈ Z(G).

There is a small lie or abuse of notation at the end of this definition.
If θ1 = 1, we really do intend that Γ should be a two-element group
{1, 1strong}. Then GΓ is not a subgroup of Autstrong(G): the map from
GΓ to Autstrong(G) has kernel {1, 1strong}.

The atlas software always works with a single inner class of real
forms, and therefore with the group GΓ (which has just two connected
components) rather than with Autstrong(G) (which has |Out(G)| con-
nected components). The underlying mathematics is set out in [1],
which works instead with the extended group GGal. We should there-
fore record the precise correspondence between strong involutions and
strong real forms, extending Theorem 4.38.

Theorem 6.4. Suppose G is a complex connected reductive algebraic
group endowed with a pinning P; use notation as in Definition 6.3.
Suppose σstrong ∈ Autstrong(G)bar is a strong real form of G. Then
there is a G conjugate (σstrong

c )′ of σstrong
c that commutes with σstrong;

this conjugate is unique up to conjugation by G(R). We therefore get
a strong involution

θstrong = σstrong(σstrong
c )′

in the same inner class as σstrong, and defined up to conjugation by
G(R); it is called a strong Cartan involution attached to σstrong. We
have also

(σstrong)2 = (θstrong)2 ∈ Z(G).

Conversely, suppose θstrong ∈ Autstrong(G) is a strong involution;
write K = Gθstrong

for the (complex reductive algebraic) group of fixed
points. Then there is a G conjugate (σstrong

c )′ of σstrong
c that commutes

with θstrong; this conjugate is unique up to conjugation by K. We there-
fore get a strong real form

σstrong = θstrong(σstrong
c )′
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in the same inner class as θstrong, and defined up to conjugation by K.

Corollary 6.5. Suppose G is a complex connected reductive algebraic
group. Then the correspondence of Theorem 6.4 establishes a bijection

{strong real forms of G}/(conjugation by G)

↔ {strong involutions for G}/(conjugation by G).

This corollary allows for translating between the statements about
group representations and real forms in [1] and the statements about
Harish-Chandra modules and involutions with which the atlas soft-
ware works.

With these definitions in hand, we can repair the difficulties ex-
plained at the beginning of this section. A better version of the basic
question is this:

Definition 6.6. Suppose G is a complex connected reductive algebraic
group. A representation of a strong real form of G is a pair (σstrong, π),
with σstrong a strong real form of G (Definition 6.3 and (π, V ) an irre-
ducible quasisimple (to be defined in Definition 7.4 below) representa-
tion (π, V ) of G(R, σstrong). We impose on this set of representations an
equivalence relation to be defined below in (6.7); the set of equivalence

classes is called Ĝ(R).

Here is the definition of “equivalence.” We say that (σstrong, π) is
equivalent to ((σstrong)′, π′) if there is an element g ∈ G with the fol-
lowing two properties. First, we require

(6.7a) (σstrong)′ = gσstrongg−1.

This means in particular that conjugation by g carries the centralizer
of σstrong in G (which is precisely G(R, σ)) to the centralizer of (σstrong)′

(which is G(R, σ′)). We can therefore define a representation g · π of
G(R, σ′) on the space V of π by the formula

(6.7b) (g · π)(x) = π(g−1xg) (x ∈ G(R, σ′)).

Then the second requirement is that g ·π is infinitesimally equivalent to
π′ as a representation of G(R, σ). (We will define infinitesimal equiva-
lence in Definition 7.9 below.)

Here is the result that makes everything good (and which failed in
the example of (6.2)), when we were using real forms instead of strong
real forms).

Lemma 6.8. Suppose (σstrong, π) and (σstrong, π′) are two representa-
tions of strong real forms of G that are equivalent in the sense of (6.7).
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Then π and π′ are (infinitesimeally) equivalent as representations of
G(R, σ).

Proof. Suppose g ∈ G implements the equivalence. According to (6.7a)
this means first of all that g commutes with σstrong; that is, that

g ∈ Gσstrong

= G(R, σ).

As we have already remarked, it follows that g · π is equivalent to π in
any definition of equivalence; the operator π(g) provides the required
intertwining operator to prove this. By the definition of the equivalence
relation, g · π is also (infinitesimally) equivalent to π′. Putting these
two equivalences together, we find that π is infinitesimally equivalent
to π′, as we wished to show. �

For each strong real form σstrong
0 , the lemma provides a one-to-one

map

(6.9) equivalence classes of irreducibles of G(R, σstrong
0 )

↪→ equivalence classes of pairs (σstrong, π)

by sending π to the equivalence class of (σstrong
0 , π). It is now clear that

(6.10) Ĝ(R) =
⊔

equiv classes of σstrong

̂G(R, σstrong).

7. Harish-Chandra modules

At last we can begin to describe Harish-Chandra’s algebraic frame-
work for studying infinite-dimensional representations of a real reduc-
tive group. Perhaps the most fundamental fact about finite-dimensional
irreducible representations is Schur’s lemma.

Theorem 7.1 (Schur’s lemma). Suppose (π, V ) is an irreducible finite-
dimensional representation of G, and T ∈ EndG(V ) is a linear operator
on V that commutes with all the operators π(g). Then T = λ Id for
some λ ∈ C.

Proof. If V = 0, the theorem is true with any value of λ. If V 6= 0, then
by linear algebra T must have an eigenvalue λ ∈ C. The eigenspace

Vλ = {v ∈ V | Tv = λv}
is then a non-zero closed subspace of V . It is G-invariant since T
commutes with all the operators π(g). Since V is irreducible, a non-
zero closed invariant subspace must be all of V ; so V = Vλ, as we
wished to show. �
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In infinite-dimensional representations V , of course there need not
be an eigenvalue of T , so we cannot imitate this proof precisely. Nev-
ertheless there are many versions of “spectral theorems,” providing
something like eigenspaces for sufficiently nice continuous linear opera-
tors. One can therefore prove versions of Schur’s lemma with additional
hypotheses on T ; for example, if π is an irreducible unitary represen-
tation, then the theorem is true for any bounded T commuting with
π.

The point of view in Harish-Chandra’s work is that Schur’s lemma is
a hallmark of nice representations; he makes the truth of the theorem
(for some particular T ) part of his definition of the right class of rep-
resentations to consider. To see how that works, we need to construct
some operators T .

Definition 7.2. Suppose G is a real Lie group, with Lie algebra g0 and
complexified Lie algebra g (the left-invariant complex vector fields on
G). Then the universal enveloping algebra U(g) may be identified with
linear differential operators on G that commute with left translation.
The group G acts on U(g) by algebra automorphisms Ad(g). Define

Z(g) = U(g)Ad(G),

the algebra of common fixed points of all the automorphisms Ad(g).
Evidently

Z(g) ⊂ U(g)Ad(G0) = center of U(g);

so in any case Z(g) is a commutative subalgebra of U(g).

Lemma 7.3. Suppose (π, V ) is a representation of the Lie group G,
and (π∞, V ∞) is the corresponding representation on smooth vectors
(see (3.19)). For u ∈ U(g and g ∈ G, we always have

π∞(g)π∞(u) = π∞(Ad(g)(u))π∞(g).

In particular, if z ∈ Z(g), then

π∞(z) ∈ EndG(V ∞)

is an intertwining operator for π∞.

Definition 7.4 (see [5], page 225). A representation (π, V ) of a Lie
group G is called quasisimple if there is an algebra homomorphism

χπ : Z(g)→ C
with the property that

π∞(z) = χπ(z) IdV

for all z ∈ Z(g).
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That is, we are asking that the conclusion of Schur’s lemma should
hold for each of the intertwining operators π∞(z) on V ∞.

Theorem 7.5 (Segal [12]). Suppose (π, V ) is an irreducible unitary
representation of a Lie group G. Then π is quasisimple (Definition
7.4).

Harish-Chandra’s representation theory concerns only quasisimple
irreducible representations. According to the theorem of Segal, this
includes all the irreducible unitary representations; so it is a good class
to work with for harmonic analysis. Schur’s lemma says that any finite-
dimensional irreducible representation is quasisimple; so the class in-
cludes a lot of familiar examples. Inspection of the proof of Schur’s
lemma shows that a non-quasisimple irreducible representation has to
be “pathological,” in the sense that the operator π∞(z) should have
no non-trivial spectral decomposition. Such representations do exist:
Wolfgang Soergel in [13] gave an example of an irreducible Banach rep-
resentation of SL(2,R) that is not quasisimple. (Soergel’s construction
begins with the examples, due to Enflo and Read, of bounded operators
on Banach spaces having no non-trivial closed invariant subspaces.)

For the balance of this section we (change notation and) fix a com-
plex connected reductive algebraic group G (secretly endowed with a
pinning P); and a strong real form

(7.6a) σstrong ∈ Autstrong(G)bar

(Definition 6.3). The real Lie group that we will consider is the group
of real points

(7.6b) G(R) = Gσstrong

.

We fix also a strong Cartan involution

(7.6c) θstrong ∈ Autstrong(G)

corresponding to σstrong in the sense of Theorem 6.4. Write

(7.6d) K = Gθ, K(R) = G(R)θ.

Recall that K is a complex reductive algebraic group, with compact
real form K(R). In order to discuss the polar decomposition of G(R),
we recall from Corollary 5.3 the notation

(7.6e) s = −1 eigenspace of θ on g.

We can now begin the definition of Harish-Chandra modules. Supp-
pose (π, V ) is a representation of G(R). Write

(7.7a) (π∞, V ∞) = smooth vectors in V
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for the smooth representation defined in (3.19). For any irreducible
representation τ of K(R), recall from Definition 3.13 the τ -isotypic
subspace V (τ) ⊂ V . We define the space of K(R)-finite vectors

(7.7b) VK(R) = {v ∈ V | dim〈π(k)v | k ∈ K(R)〉 <∞}.
It is easy to check that

(7.7c) VK(R) =
∑

τ∈K̂(R)

V (τ),

an algebraic direct sum. The corresponding spaces of G-smooth vectors
are

(7.7d) V ∞K(R) = VK(R) ∩ V ∞ =
∑

τ∈K̂(R)

V ∞(τ).

The action of G does not preserve the property of being K(R)-finite:
VK(R) (and V ∞K(R)) are not G-invariant subspaces. It turns out (Lemma

7.8 below) that the Lie algebra representation π∞ does preserve V ∞K(R):

(7.7e) π∞(u)V ∞K(R) ⊂ V ∞K(R).

Lemma 7.8. Suppose (π, V ) is a representation of the real reductive
group G(R). On the space V ∞K(R), we have two structures:

(1) a representation of the compact group K(R) that is locally fi-
nite (that is, every vector belongs to a finite-dimensional K(R)-
invariant subspace); and

(2) a representation of the real Lie algebra g(R).

These two representations are connected by two compatibility condi-
tions:

(1) the differential of the action of K(R) is equal to the restriction
to k(R) of the action of g(R); and

(2) for any k ∈ K(R) and X ∈ g(R), we have

π(k)π(X)π(k−1) = π(Ad(k)X).

The only part of this lemma requiring a little thought is the fact that
the action of g on V ∞ preserves the subspace V ∞K(R). The reason for
this is that the Lie algebra action defines a linear map

a : g⊗ V ∞ → V ∞.

This map sends the tensor product representation Ad⊗π of K(R) to
π (which also gives the last assertion of the lemma). Now if v ∈ V ∞K(R),

then v belongs to a finite-dimensional K(R-invariant subspace V1. It
follows that π(X)v belongs to the finite-dimensional K(R)-invariant
subspace a(g⊗ V1).
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Definition 7.9. A (g(R), K(R))-module is a complex vector space Y
endowed with two structures:

(1) a representation of the compact group K(R) that is locally fi-
nite (that is, every vector belongs to a finite-dimensional K(R)-
invariant subspace); and

(2) a representation of the real Lie algebra g(R).

These two actions are required to satisfy the two compatibility condi-
tions written in Lemma7.8. A morphism of (g(R), K(R))-modules is a
linear map respecting the two actions. With this definition the category
M(g(R), K(R)) of (g(R), K(R))-modules is an abelian category.

An invariant Hermitian form on a (g(R), K(R))-module Y is a Her-
mitian form

〈, 〉 : Y × Y → C
subject to the following two requirements:

(1) the action of K(R) preserves the form; and
(2) the real Lie algebra ð(R) acts by skew-Hermitian operators.

That is,

〈X · y1, y2〉 = −〈y1, X · y2〉 (X ∈ g(R), yj ∈ Y ).

The (g(R), K(R))-module Y is called unitary if it is endowed with a
positive-definite invariant Hermitian form.

If (π, V ) is any representation of G(R), then the Harish-Chandra
module of π is the (g(R), K(R))-module V ∞K(R) constructed in Lemma
7.8.

Representations (π, V ) and (π′, V ′) are called infinitesimally equiva-
lent if the (g(R), K(R))-modules V ∞K(R) and (V ′)∞K(R) are isomorphic.

Here is the picture. According to the Cartan decomposition of Corol-
lary 5.3, G(R) is smoothly a product of the compact group K(R) and a
Euclidean space. It is therefore reasonable to hope that nice objects on
G(R) (like representations) can be specified by giving their restrictions
to K(R), and appropriate differential equations describing how they
evolve away from K(R).

The Harish-Chandra module of a representation is exactly such a de-
scription of the representation: we are keeping its restriction to K(R),
and the Lie algebra representation of g(R) (as differential equations
for the rest of the group action). The niceness of the Cartan decom-
position allows one to hope (first) that the Harish-Chandra module
of π more or less determines π; and (second) that given an abstract
(g(R), K(R))-module, we can solve the differential equations to recon-
struct a corresponding representation of G(R).
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Harish-Chandra’s basic theorems say that these hopes are realized.
Here are the statements.

Theorem 7.10 (Harish-Chandra [5]). In the setting of (7.6) and (7.7),
suppose (π, V ) is an irreducible quasisimple representation of G(R).
Then V ∞K(R) is an irreducible (g(R), K(R))-module. If π is unitary,

then V ∞K(R) is unitary (Definition 7.9).

Conversely, if Y is an irreducible (g(R), K(R))-module, then there is
an irreducible quasisimple representation (π, V ) such that V ∞K(R) ' Y .
It is always possible to choose V to be a Hilbert space. If Y is unitary,
we may choose π to be unitary.

This bijection

{infinitesimal equiv classes of irreducible quasisimple reps of G(R)}
↔ {equiv classes of irreducible (g(R), K(R))-modules}

includes a bijection

{equiv classes of irreducible unitary reps of G(R)}
↔ {equiv classes of irreducible unitary (g(R), K(R))-modules}.

We will take this theorem as formulating the problem we want to
consider: the irreducible representations we want to study are the qua-
sisimple ones, and the notion of equivalence is infinitesimal equivalence.
To be explicit,

Ĝ(R) =def {infinitesimal equiv classes of irr quasisimple reps}
' {equivalence classes of irreducible (g(R), K(R))-modules}.

(7.11)

The point of Harish-Chandra’s Theorem 7.10 is to express the an-
alytic problem of understanding group representations in an algebraic
way. Once we are in the algebraic world of Definition 7.9, we should
take full advantage of it, bringing to bear the linear algebra tool of
complexification. If h0 is any real Lie algebra and h = h0 ⊗R C is
its complexification, then representations of h0 (on a complex vector
space) are exactly the same thing as complex-linear representations of
h. In the definition of (g(R), K(R))-modules, we can therefore replace
the (somewhat subtle) real Lie algebra ð(R) by the (more elementary)
complex Lie algebra ð. Theorem 4.5 allows us to do the same thing
with the group action: we can replace the locally finite continuous ac-
tion of the compact group K(R) by an algebraic action of the complex
reductive algebraic group K. If we do both of those things, here is
what we get.
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Definition 7.12. Suppose G is a complex connected reductive algebraic
group, and θstrong ∈ Autstrong(G) is a strong involution (Definition 6.3.
Write K = Gθ for the (complex reductive algebraic) group of fixed
points. A (g, K)-module is a complex vector space Y endowed with two
structures:

(1) an algebraic representation of K; and
(2) a complex-linear representation of the Lie algebra g.

These two actions are required to satisfy the compatibility conditions

(1) the differential of the action of K is equal to the restriction to
k of the action of g; and

(2) for any k ∈ K and X ∈ g, we have

π(k)π(X)π(k−1) = π(Ad(k)X).

A morphism of (g, K)-modules is a linear map respecting the two
actions. With this definition the category M(g, K) of (g, K)-modules
is an abelian category.

Proposition 7.13. In the setting of Definitions 7.9 and 7.12, the ob-
vious forgetful functor

M(g, K)→M(g(R), K(R))

is an equivalence of categories.

As indicated in the discussion before Definition 7.12, the content is in
Theorem 4.5. From now on we will use this proposition without explicit
mention, speaking of the (g, K)-module attached to a representation
of G(R). (In particular, we may write V ∞K instead of V ∞K(R).)

An interesting point is that the real form σ has disappeared in Def-
inition 7.12; all that we need is the (algebraic) Cartan involution. But
one of the fundamental goals of representation theory is to understand
unitary representations, so we do not want to lose track of invariant
Hermitian forms. Complexification does not behave so well with re-
spect to invariant Hermitian forms, because i times a skew-Hermitian
operator is Hermitian (rather than skew-Hermitian). The result is that
a discussion of forms requires bringing the real form back into view.
Here is the definition.

Definition 7.14. In the setting of Definition 7.12, fix also a strong
real form σstrong corresponding to θstrong in the sense of Theorem 6.4.
An invariant Hermitian form on a (g, K-module Y is a Hermitian form

〈, 〉 : Y × Y → C

subject to the following two requirements:



62 DAVID A. VOGAN, JR.

(1) 〈k · y1, y2〉 = 〈y1, σ(k)−1 · y2〉 (k ∈ K, yj ∈ Y ); and
(2) 〈X · y1, y2〉 = −〈y1, σ(X) · y2〉 (X ∈ g, yj ∈ Y ).

Proposition 7.15. In the setting of Definitions 7.9 and 7.12, the
equivalence of categories in Proposition 7.13 identifies invariant Her-
mitian forms (Definition 7.14).

We leave the proof as an exercise for the reader; what is needed is
to extend Theorem 4.5 to include invariant forms.
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