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Introduction

These talks are an introduction to an algorithm for computing the admissible
dual of a real reductive group. This algorithm forms the basis of the atlas

software. These talks are being given at the Atlas workshop at the University
of Utah, July 20-24, 2009. Frequent reference will be made to the concurrent
lectures by Peter Trapa and David Vogan. The notes are available on the
workshop web page www.math.utah.edu/realgroups.

Here is an outline of the lectures. We begin with an overview of root
data and conected complex reductive algebraic groups. In Lecture II we turn
to our primary class of groups: real forms of connected complex reductive
algebraic groups. We discuss these from two points of view: anti-holomorphic
involutions and holomorphic, or Cartan, involutions. In what follows we work
exclusiely with the latter.

In Lecture III we discuss the group Out(G) of outer automorphism of G,
and inner classes of real forms, This leads to the extended group GΓ, and
strong real forms in Lecture IV. With this machinery in place we desribe the
space of K orbits on the flag variety G/B.

In lecture V apply the preceding construction to the dual group G∨. This
leads directly to our main result, a computable set Z which parametrizes the
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admissible dual of real forms of G.
There will be informal evening sessions where Annegret Paul and Scott

Crofts will do some examples, answer questions, and do some computer
demonstrations. These notes include a number of exercises which they will
be available to discuss.

Some illustrations using the atlas software discussed in the Appendix
(currently being written).

ndWe assume the reader is familiar with the basic theory of Lie groups,
and has some familiarity with root systems and algebraic groups. There are
a number of references at the end of these notes. In particular we recommend
Springer’s Linear Algebraic Groups [11] for background on algebraic groups,
and his Corvallis article [10] for a succint introduction. Guide to the Atlas
Software: Computational Representation Theory of Real Reductive Groups [2]
has a number of examples and is intended to be reasonably accessible. Details
and proofs of the results sketched here are in Algorithms for representation
theory of real reductive groups [3]. Much more information is available in the
papers section of the atlas web site www.liegroups.org.
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Lecture I: Root Data and Complex Groups

1 Root Data

1.1 Coxeter Groups

A Coxeter group is a group W defined by generators S, subject only to
relations

(1.1) (st)m(s,t) = 1 (s, t ∈ S)

where m(s, s) = 1 and m(s, t) = m(t, s) ≥ 2 for all s 6= t ∈ S.
A Coxeter group W is efficiently described by a Coxeter graph: this is an

undirected graph with each edge labelled by an integer ≥ 3 or ∞. Such a
graph defines a Coxeter group, with one generator for each vertex, m(s, t) = 2
unless s and t are joined by an edge, in which case m(s, t) is the label on the
edge. By convention the label 3 is omitted.

The Coxeter matrix of W is the matrix {m(s, t) | s, t ∈ S}. This is sym-
metric, with 1′s on the diagonal.

Example 1.2

(1.3) · · · . . . · · ·

With n vertices this is the group generated by {s1, . . . sn} subject to s2
i = 1,

(sisi+1)
3 = 1. This is the symmetric group Sn+1.

(1.4) ·

PPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnn

· · · . . . · · ·

This the Coxeter matrix for the infinite, affine Weyl group of type An.

Example of Coxeter groups include: symmetric groups, finite reflection
groups, Weyl groups, and affine reflection groups

1.2 Root Data

Just as a large collection of interesting groups (Coxeter groups) are concisely
parametrized by a small set of combinatorial data (Coxeter graphs), complex
reductive groups are parametrized by root data.
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1.3 Root Data of GL(n)

Let G = GL(n,C), the n × n invertible complex matrices. Let T ≃ C∗n be
the usual Cartan subgroup T = {diag(z1, . . . , zn | zi 6= 0)}. Let X∗(T ) be the
set of algebraic characters of T : the group homomorphisms T → C∗ which
can be expressed as a polynomial in z±1

1 , . . . , z±1
n .

Exercise 1.5 X∗(T ) ≃ Zn: the character diag(z1, . . . , zn) → zi goes to the
standard basis element ei.

Consider the action of T on V = Mn(C) by conjugation. View this as a
representation of T , and decompose it into one-dimensional representations.
Thus V has a basis {Xi,j | 1 ≤ i, j ≤ n} where Xi,j has a 1 in the ith row and
jth column. These are eigenvectors for the action of T ; if t = diag(z1, . . . , zn)
then

(1.6) t.Xi,j = (zi/zj)Xi,j.

In other words let αi,j ∈ X
∗(T ) be the character

(1.7) αi,j(diag(z1, . . . , zn)) = zi/zj .

Lemma 1.8 V decomposes, as a representation of T , into the direct sum of
{αi,j | 1 ≤ i 6= j ≤ n}, together with the trivial representation of multiplicity
n.

Under the isomorphism X∗(T ) ≃ Zn, the set of characters αi,j goes to

(1.9) ∆ = {ei − ej | 1 ≤ i 6= j ≤ n}.

Definition 1.10 X∗(T ) is the set of algebraic group homomorphisms C∗ →
T .

Exercise 1.11 X∗(T ) ≃ Zn; the map z → (1, . . . , z, . . . , 1) (z in the ith

place) goes to the standard basis vector ei.

Define α∨
i,j ∈ X∗(T ):

(1.12) α∨
i,j(z) = diag(1, . . . , z, . . . , z−1, . . . , 1)

with z in the ith place and z−1 in the jth, and

(1.13) ∆∨ = {α∨
i,j} ⊂ X∗(T ).
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Using the isomorphism X∗(T ) ≃ Zn we have:

(1.14) ∆∨ = {ei − ej | 1 ≤ i 6= j ≤ n}.

Exercise 1.15 There is a natural pairing 〈 , 〉 : X∗(T )×X∗(T )→ Z: define
〈χ, φ〉 = k if χ(φ(z)) = zk for all z ∈ C∗. This is a perfect pairing, and gives
an isomorphism X∗(T ) ≃ Hom(X∗(T ),Z).

Using the isomorphisms X∗(T ) ≃ Zn and X∗(T ) ≃ Zn the pairing 〈 , 〉 :
X∗(T )×X∗(T )→ Z becomes the standard dot product.

For α = αi,j ∈ ∆ define sα ∈ Hom(X∗(T ), X∗(T )):

(1.16) sα(γ) = γ − 〈γ, α∨〉α (γ ∈ X(T )).

Define sα∨ ∈ Hom(X∗(T ), X∗(T )) similarly.

Exercise 1.17 For all α, β ∈ ∆:
(1) 〈α, β∨〉 ∈ Z,

(2) sα(∆) = ∆

(2) sα∨(∆
∨) = ∆∨.

The quadruple

(1.18) (X∗(T ),∆, X∗(T ),∆∨)

is an example of a root datum.

1.4 Root Datum of SL(n)

LetG = SL(n,C) = {g ∈ GL(n,C) | det(g) = 1}. There is an exact sequence

(1.19) 1 −→ SL(n,C) −→ GL(n,C)
det
−→ C∗ −→ 1.

Let T = {diag(z1, . . . , zn) | z1z2 . . . zn = 1}. Consider the action on V =
{X ∈Mn(C) | trace(X) = 0}.

A simliar calculation to the one forGL(n) gives a root datum for SL(n,C):

(1.20) (X∗(T ),∆, X∗(T ),∆∨).

Here X∗(T ), X∗(T ) are lattices of rank n− 1, and ∆,∆∨ are as before.
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Exercise 1.21 The lattices for SL(n,C) are:

(1.22)(a) X∗(T ) ≃ Zn/{(k, k, . . . , k) | k ∈ Z}

and

(1.22)(b) X∗(T ) ≃ Zn
0 = {(a1, . . . , an) ∈ Zn |

∑
ai = 0}.

Exercise 1.23 Let R = Z〈∆〉. Then R is a lattice of rank n − 1, R ≃ Zn
0 ,

and X∗(T )/R ≃ Z/nZ.

1.5 Root Data

Here is the abstract definition of root data.
Fix a pair X,X∨ of free abelian groups of finite rank, together with a

perfect pairing 〈 , 〉 : X×X∨ → Z. (In other words we can find isomorphism
X ≃ Zn, X∨ ≃ Zn such that 〈 , 〉 becomes the dot product).

A root datum is a quadruple

(1.24) D = (X,∆, X∨,∆∨)

where ∆ ⊂ X and ∆∨ ⊂ X∨ are finite subsets, equipped with a bijection
α→ α∨ such that for all α ∈ ∆:

(1.25) 〈α, α∨〉 = 2, sα(∆) = ∆, sα∨(∆
∨) = ∆∨.

Here

(1.26)
sα(γ) = γ − 〈γ, α∨〉α (γ ∈ X∗(T ))

sα∨(γ
∨) = γ∨ − 〈α, γ∨〉α∨ (β∨ ∈ X∗(T )).

We say (Xi,∆i, X
∨
i ,∆

∨
i ) are isomorphic if there is an isomorphism φ :

X1 ≃ X2 taking ∆1 to ∆2, and so that φt takes ∆∨
1 to ∆∨

2 .
The rank of a root datum D = (X,∆, X∨,∆∨) is defined to be the rank

of X, and and the semisimple rank of D is defined to be the rank of the root
lattice R = Z〈∆〉.
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Remark 1.27 (Important Point) The roots ∆ are a subset of the real
vector space V = X ⊗ R, and ∆∨ ⊂ X∨ ⊗ R, which is naturally isomorphic
to V ∗ = Hom(V,R). It is (almost) never a good idea to identify V with V ∗,
and α∨ with 2α/(α, α) (for some non-canonical bilinear form ( , )). The roots
and coroots live in different places. Writing 〈α, β∨〉 is natural, while writing
(α, β) is almost always a bad idea.

Example 1.28 The root datum ofGL(n,C) has rank n and semisimple rank
n−1. Both the rank and semisimple rank of the root datum of SL(n,C) are
n− 1.

Root data are an extraordinarly compact way to encode reductive groups.
If we fix isomorphisms of X and X∨ with Zn, then ∆ and ∆∨ each become
a set of m integral column vectors.

Exercise 1.29 Define an equivalence relation on ordered pairs of integral
matrices with n rows and m columns as follows: (A,B) ∼ (gtAP, g−1BP ) for
g ∈ GL(n,Z) and P and m×m permutation matrix.

There is a natural bijection between isomorphism classes of root data
and:

{(A,B) | integral matrices of the same size, AtB is a Cartan matrix}/ ∼ .

A Cartan matrix is the matrix of 〈αi, α
∨
j 〉 where {α1, . . . , αn} are the

simple roots of a semisimple Lie algebra. It can be defined without reference
to Lie algebras [1], [6, Proposition 2.52].

In the setting of Exercise 1.29 n is the rank and m ≤ n is the semisimple
rank.

Remark 1.30 The matrices A and B are given by the rootdatum command
of the atlas software.

Exercise 1.31 Up to equivalence there are 3 root data of rank n = 2 and
semisimple rank m = 1. The only 1 × 1 Cartan matrix is (2), and the
possibilities are (A,B) =

(1.32) (

(
1
0

)
,

(
2
0

)
), (

(
2
0

)
,

(
1
0

)
), (

(
1
1

)
,

(
1
1

)
)
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2 Complex Reductive Groups

We are interested in representations of reductive Lie groups. Examples of
such groups are:

1. GL(n,R): all n× n invertible real matrices,

2. SL(n,R): all n× n real matrices with determinant 1,

3. O(p, q): all real matrices satisfying gJgt = J where J = diag(Ip, Iq)

4. SO(p, q) the subgroup (of index 2) of O(p, q) of matrices with determi-
nant 1

5. SO0(p, q): the identity component of SO(p, q) (of index 1 or 2),

6. Sp(2n,R): the set of all 2n×2n real matrices preserving a non-degnerate
symplectic form,

7. S̃p(2n,R): the metaplectic group, the unique non-trivial two-fold cover
of Sp(2n,R)

Examples 1,2,4 and 6 share a special property: G is a “real form” of a
connected, complex Lie group G(C): GL(n,C), SL(n,C), SO(p + q,C) and
Sp(2n,C), respectively. (We discuss real forms in the next section). Exam-
ples 3 and 5 differ in trivial ways from such a group: SO0(p, q) ⊂ SO(p, q) ⊂
O(p, q) with each containment of index 2 (the first containment is equality if
pq = 0). In particular these are all matrix groups, i.e. can be realized as a
closed subgroup of GL(n,R) for some n. The final example is more serious:

S̃p(2n,R) is not a matrix group.
Note that the complex Lie groups we just listed are in fact algebraic

groups: given by a set of polynomial equations. It turns out this is the best
class of groups to consider. So we begin by describing connected, complex,
reductive, algebraic groups, and then their real points.

Definition 2.1 A connected complex algebraic group is a subgroup G of
GL(n,C) satisfying the following conditions:

1. G is the set of zeros of a finite set of polynomial functions on Mn×n(C),

2. G is connected (in the Zariski topology),
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Such a group is reductive if:

3. the Lie algebra g of G, a Lie subalgebra of Lie(GL(n,C)) = Mn×n(C),
is reductive, i.e. the direct sum of simple and abelian factors,

4. every element of the center of g is diagonalizable.

Remark 2.2

1. We may view G is a Lie group, i.e. as a complex manifold with smooth
group operations.

2. Condition (2) is equivalent to: G is connected as a Lie group, i.e. as a
complex manifold.

3. Conditions (3) and (4) are equivalent to: the only normal subgroup
consisting of unipotent elements of GL(n,C) is trivial.

Remark 2.3 A (connected, complex) Lie group is reductive if its Lie alge-
bra is reductive. The relationship between (connected, complex) reductive
Lie groups and reductive algebraic groups is a bit subtle. For example the

additive group C is a reductive Lie group, but as an algebraic group

(
1 z
0 1

)

is nilpotent and not algebraic.

We attach root data to a complex connected reductive algebraic group
G as follows. Choose a Cartan subgroup T of G: T ≃ C∗n and is maximal
with respect to this property. There is a natural pairing between X∗(T ) =
Hom(T,C∗) and X∗(T ) = Hom(C∗, T ) (algebraic homomorphisms), given by
〈φ, ψ〉 = k if φ(ψ(z)) = zk for z ∈ C∗.

Let ∆ ⊂ X∗(T ) be the set of non-zero eigencharacters of the adjoint
action of T on g = Lie(G). That is α ∈ ∆ if and only if there exists X ∈ g

such that Ad(t)(X) = α(t)X for all t ∈ T .
A tricky part of the theory is the construction of ∆∨ ⊂ X∗(T ). This

reduces to SL(2,C) and PSL(2,C). We obtain ∆∨ ⊂ X∗(T ), and a bijection
∆ ∋ α → α∨ ∈ ∆∨ so that (X∗(T ),∆, X∗(T ),∆∨) is a root datum. See [11,
Section 7.4]. Let D(G, T ) be the root data defined by G and T .

The main theorem is that connected complex algebraic groups are classi-
fied by root data.
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Theorem 2.4 Suppose D = (X,∆, X∨,∆∨) is a root datum. Then there
exists a connected complex algebraic group G and Cartan subgroup T such
that D ≃ D(G, T ).

Suppose φ : D(G, T ) → D(G′, T ′) is an isomorphism. Then there is an
isomorphism ψ : G→ G′ such that ψ(T ) = T ′ which induces φ.

In the last statment, an isomorphism ψ taking G to G′ and T to T ′ naturally
induces an isomorphism D(G, T ) ≃ D(G′, T ′).

It is very helpful to keep the following picture in mind. Associated to the
root datum D(G, T ) are the following lattices:

1. X∗(T ), X∗(T ), the character and cocharacter lattices,

2. the root lattice R = Z〈∆〉,

3. the coroot lattice R∨ = Z〈∆∨〉,

4. the weight lattice P = {γ ∈ X∗(T )⊗Q | 〈γ, α∨〉 ∈ Z for all α∨ ∈ ∆∨,

5. the coweight lattice P ∨ = {γ∨ ∈ X∗(T )⊗Q | 〈α, γ∨〉 ∈ Z} for all α ∈ ∆.

The weight and coweight “lattices” are in fact lattices only in the semisimple
case. In any event we have the following diagram:

(2.5)

P P ∨

∪ ∪

X∗(T ) X∗(T )

∪ ∪

R R∨

The lattices P, P ∨, R and R∨ only depend on the Lie algebra (are independent
of “isogeny”); the position of X∗(T ) and X∗(T ) within the diagram is more
subtle. In particular:

1. G is (semisimple and) simply connected if and only if X∗(T ) = P (iff
X∗(T ) = R∨)

2. G is adjoint if and only if X∗(T ) = R (iff X∗(T ) = P ∨)

Remark 2.6 Because of the connection with root data, we will always view
G as being equipped with a fixed Cartan subgroup T of G, and sometimes
also a Borel subgroup B containing T .
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2.1 Relation with compact groups

In the setting of Lie groups, the connected compact Lie groups play a special
role. It turns out that the classification of compact connected Lie groups is
equivalent to the classification of connected complex reductive groups and
also root data.

If K is a compact Lie group, there is associated to it a connected, complex
algebraic group, the envelope of K, denoted E(K).

Conversely if G is a connected complex algebraic group, there is a unique
connected, compact Lie group C(G), the compact real form of G.

Theorem 2.7 The maps E and C are inverses, and give a bijection between

(2.8) {connected compact Lie groups}/isomorphism

and

(2.9) {connected complex reductive groups}/isomorphism

In particular compact connected Lie groups are parametrized up to iso-
morphism by root data.

See [8, Section 7.2].

2.2 Defining a complex group

A complex reductive Lie algebra is a direct sum of simple and abelian factors.
The corresponding statement for groups is:

Lemma 2.10 Suppose G is a connected, complex, reductive algebraic group.
Then the derived group Gd is connected and semisimple, and G contains a
connected, complex, central torus Z so that G = GdZ.

The simply connected cover of Gd is a product of simple, simply connected
groups; the center of such a group is finite. The following theorem follows
easily from the lemma.

Theorem 2.11 Suppose G is a connected, complex, reductive algebraic group.
Then there exist:

1. simple, simply connected, connected groups G1, . . . , Gn,
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2. a connected torus T ,

3. a finite central subgroup A of G1 × · · · ×Gn × T

such that

(2.12) G ≃ G1 × · · · ×Gn × T/A.

We may as well assume A ∩ T = 1. Here is how to define an arbitrary G:

1. choose n irreducible root systems, each specified by a type An, . . . , G2,

2. choose a non-negative integer m, giving a torus of rank m,

3. choose elements a1, . . . , ak of Z(G1 × · · · ×Gn × T )

Then G is defined to be G1 × · · · ×Gn × T modulo the group generated by
a1, . . . , ak.

Example 2.13 The center of Spin(2n,C) is Z/2Z × Z/2Z if n is even, or
Z/4Z if n is odd. Thus SO(2n,C) = Spin(2n,C)/A where (with a natural
choice of coordinates) A = ±(1, 1) if n is even, or the unique subgroup of the
center of order 2 is n is odd. For example if n = 3, Spin(6,C) ≃ SL(4,C),
and SO(6,C) ≃ SL(4,C)/± I.

The center of every simple, simply connected group is cyclic, except the
center of Spin(2n,C) is Z/2Z×Z/2Z if n is even. Therefore a central element
of G1×· · ·×Gn can be specified by choosing the order of a generator for each
simple factor, or 2 such in type Deven. Similarly an element of C∗ of finite
order is given by n elements of Q/Z: p/q gives the element exp(2πip/q) ∈ C∗

of finite order.

Example 2.14 GL(n,C) = SL(n,C)D where D = diag(z, . . . , z) ≃ C∗.
The intersection SL(n,C)∩D is {diag(z, . . . , z) | zn = 1}. Choose a primitive
nth root of unity ζ . Then

(2.15) GL(n,C) ≃ SL(n,C)× C∗/〈ζIn, ζ
−1〉.

In the notation of the previous paragraph the generator of A is written
(1,−1/n), meaning (generator of Z(SL(n,C)))1 × exp(−2πi/n).
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Exercise 2.16 Suppose F is an arbitrary field. Show that

(2.17) GL(n, F )/SL(n, F )D ≃ F ∗/F ∗n.

By Theorem 2.7 the analogue of Theorem 2.11 holds almost word for
word for compact groups.

Theorem 2.18 Suppose G is a connected, compact group. Then there exist:

1. simple, simply connected, connected compact groups G1, . . . , Gn,

2. a connected compact torus T ,

3. a finite central subgroup A of G1 × · · · ×Gn × T

such that

(2.19) G ≃ G1 × · · · ×Gn × T/A.
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Lecture II: Real Groups

3 Real Groups

We now turn to the study of real groups. As discussed in Section 2 we are
interested in general Lie groups, but restrict ourselves to groups which appear
as the “real form” or “real points” of a connected, complex algebraic group.

Rather than appeal to the general theory of rational forms of algebraic
groups (see [11, Section 12]), we utilize some of the special properties of R.

Example 3.1 Let G(C) = GL(n,C). This is a complex manifold of dimen-
sion n2. The group GL(n,R) is a real manifold of dimension n2. It is the
fixed points of the automorphism σ0 : g → g where (ai,j) = (ai,j). This is a
real form of GL(n,C).

Example 3.2 Fix x ∈ GL(n,C) and let H = xGL(n,R)x−1. Obviously
H ≃ GL(n,R), and H = GL(n,C)σ where σ = int(x) ◦ σ0 ◦ int(x−1) (int(x)
is the automorhism g → xgx−1). There is no point in distinguishing this
from the real form GL(n,R).

Example 3.3 Fix p + q = n and let Jp,q = diag(Ip,−Iq). Define an auto-
morphism σ of GL(n,C) by

(3.4) σp,q(g) = Jp,q(
tg−1)J−1

p,q

where tg denotes the transpose of g.
Let G = GL(n,C)σ, the fixed points of σ. It is easy to see this is a

subgroup of GL(n,C). It is a real manifold (because of the g), of dimension
n2.

Exercise 3.5 Show that the group defined in Example 3.3 is U(p, q), the
group of complex linear automorphisms of Cn preserving a Hermitian form
of signature (p, q). In particular if p = n, q = 0

(3.6) U(n) = {g ∈ GL(n,C) | gtg = I}.

This is the well known compact unitary group.
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Exercise 3.7 Let H be the quaternions, let V = Hn, and let G be the set of
invertible, left H-linear maps from V to V . That is T (v+w) = T (v) + T (w)
and T (λv) = λT (v) for all v, w ∈ V, λ ∈ H.

Identify H with C2, V with C2n, and therefore G with a subgroup of
GL(2n,C). Show thatG is the fixed points of an automorphism ofGL(2n,C),
and G is a real manifold of dimension (2n)2. This group is denoted GL(n,H).

We say the real forms of GL(n,C) are GL(n,R), U(p, q) (p ≥ q, p+q = n)
and (if n is even) GL(n/2,H). Keeping in mind Example 3.2 we define:

Definition 3.8 A real form of a connected complex reductive group G is
a G-conjugacy classes of subgroups, each of which is the fixed points of an
anti-holomorphic involution of G.

We usually refer to a single group GR = Gσ as a real form; we identify
conjugate subgroups so the set of real forms is finite, and to avoid having to
say “equivalance (or conjugacy) classes of real forms”.

Remark 3.9 There is a subtle distinction between this notion of real form
and the traditional one: it is standard to identify two involutions if they are
conjugate by Aut(G), not just Int(G). For simple groups these two notions
are the same in almost all cases (see the next example).

Example 3.10 Let G = SO(2n,C) with n even. The real form SO∗(2n)
has maximal complexified compact subgroup K = GL(n,C). Thus K is the
fixed points of an involution θ of G. (In fact θ is inner).

The outer automorphism of G takes K to an isomorphic subgroup K ′,
and θ to θ′. In fact K is not G-conjugate to K ′. Thus SO(2n,C) has two real
forms, denoted SO∗(2n)±. In terms of real groups these two real algebraic
groups are isomorphic, but not conjugate in SO(2n,C).

In the standard literature this distinction is not made, there is only a
single real form SO∗(2n).

Exercise 3.11 Let G = SO(2n,C) with n odd. There exist inner automor-
phisms θ such that Gθ = GL(n,C), corresponding to the real form SO∗(2n).
Show that any two such automorphisms are conjugate by Int(G) (not just
Out(G)). So in this cases there is only one real form SO∗(2n).

The use of the antiholomorphic involution σ takes us out of the world
of complex groups. A special property of R is that, thanks to the compact
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real form (see Theorem 2.7) we can discuss real forms of complex groups in
terms of holomorphic involutions. (In the language of algebraic groups, we
can work with algebraic involutions in place of Galois cohomology.)

Suppose GR is a real form of the connected, complex reductive group G.
Let KR be a maximal compact subgroup of GR (any two such groups are
conjugate by GR). Then KR is the fixed points of an involution θ of GR.
Furthermore θ extends to a holomorphic involution of G, so let K = Gθ, and
K is a complex reductive algebraic group (not necessarily connected).

Example 3.12 LetG = GL(n,C) andGR = GL(n,R). A maximal compact
subgroup of GL(n,R) is O(n) = {g ∈ GL(n,R) , g tg = I}, This is the fixed
point of the involution θ(g) = tg−1 of GL(n,R). The same formula defines an
involution θ of GL(n,C), with fixed point O(n,C) = {g ∈ GL(n,C) | gtg =
I}.

Example 3.13 LetG = GL(n,C) andGR = U(p, q) = GL(n,C)σp,q (cf. Ex-
ercise 3.3). A convenient maximal compact subgroup ofGR is {diag(A,B) |A ∈
U(p), B ∈ U(q)} ≃ U(p) × U(q). This is the fixed points of the automor-
phism θp,q(g) = Jp,qgJ

−1
p,q of U(p, q). The same formula defines an involution

of GL(n,C), with fixed points GL(p,C)×GL(q,C).

This illustrates that a real form of GL(n,C) may be described by any of
the following:

1. an anti-holomorphic involution σ0 (Example 3.1) or σp,q (Example 3.3);

2. a maximal compact subgroup KR O(n) or U(p)× U(q);

3. a complexified maximal compact subgroup K = O(n,C) or GL(p) ×
GL(q);

4. a holomorphic (Cartan) involution θ0 or θp,q.

(If n is even there is also the real form GL(n/2,H).)

Real forms of GL(n,C)

G(R): GL(n,R) U(p, q) GL(n/2,H)
σ: σ0(g) = g σp,q(g) = Jp,q

tg−1J−1
p,q *

θ: θ0(g) = tg−1 θp,q(g) = Jp,qgJ
−1
p,q *

KR: O(n) U(p)× U(q) *
K: O(n,C) GL(p,C)×GL(q,C) *
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Exercise 3.14 Fill in the last column of the table.

This is a special case of the general situation.

Definition 3.15 By involution of a connected, complex reductive group G
we mean a holomorphic involution.

Suppose σ is an antiholomorphic involution of G and GR = Gσ. A Cartan
involution for GR is an involution θ of G such that (GR)θ is a maximal
compact subgroup of GR.

Theorem 3.16 The map taking an antiholomorphic involution σ to a Car-
tan involution θ for Gσ induces a bijection from

(3.17) {antiholomorphic involutions σ}/G←→ {involutions θ}/G.

The left hand side parametrizes real forms of G, so there is a natural bijection

(3.18) {real forms of G} ←→ {involutions θ}/G.

Using this result we almost entirely ignore anti-holomorphic involutions
from now on, in favor of (holomorphic) involutions, and call an involution θ
(or more precisely a conjugacy class of such involutions) a real form.

This shows that studying real forms is the same as studying symmetric
subgroups:

Definition 3.19 A symmetric subgroup of G is the fixed points of an invo-
lution.

This is the point of view taken in Peter Trapa’s lectures.

The conjugacy classes of involutions of G is a natural object of study, and
not hard to compute in many examples.

An obvious place to look for involutions of G is the automorphisms int(g)
where the element g of G is an involution, i.e. g2 = 1. It is usually not hard
to classify the conjugacy classes of these elements.

Exercise 3.20 Consider the conjugacy classes of elements g of GL(n,C)
satisfying g2 = 1. The eigenvalues of any such conjugacy class are ±1,
and these determine it. There are n such conjugacy classes, represented by
Jp,q = diag(Ip,−Iq) (p+ q = n).
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Now consider inner involutions: those of the form int(g) for g ∈ G. Note
that int(g) is an involution if and only if g2 ∈ Z(G).

Definition 3.21 An involution of G is inner if it is of the form int(g) for
some g ∈ G; necessarily g ∈ Z(G).

Remark 3.22 (Dangerous Bend 1) An involution in G is, of course, an
element g satisfying g2 = 1. There is an important difference between

{inner involutions of G}

and
{int(g) | g ∈ G is an involution}.

The first set may be bigger: it is equal to {int(g) | g2 ∈ Z(G)}, while the
second set is {int(g) | g2 = 1}.

Exercise 3.23 LetG = SL(2,C) act by conjugation on its inner involutions.
Let θs = int(diag(i,−i)), θc = Id, and show that

{inner involutions of G}/G = {θc, θs}

Show that only Id is of the form int(g) for g an involution of G.

Remark 3.24 (Dangerous Bend 2) There is a difference between conju-
gacy classes of elements g with g2 ∈ Z(G), and conjugacy classes the corre-
sponding involutions int(g). For example ±I ∈ GL(n,C) are not conjugate,
but both give the trivial automorphism of GL(n,C).

Example 3.25 Continuing with the previous example, G = GL(n,C) has
n + 1 conjugacy classes of involutions g ∈ G, {Jp,q | 0 ≤ p ≤ n}. Let θp,q =
int(Jp,q), i.e. θp,q(g) = Jp,qgJ

−1
p,q . Then Jp,q is conjugate to −Jq,p, so θp,q

is conjugate to θq,p. Therefore GL(n,C) has [n
2
] + 1 conjugacy classes of

involutions: {θp,q | p ≥ q} = {θp,q | 0 ≤ q ≤ [n
2
]}. The corresponding real

forms of GL(n,C) are U(p, q) with p ≥ q.

Example 3.26 The following sets are closely related, but not equal.

(3.27)

A = {g ∈ G | g2 = 1}/G

B = {g ∈ G | g2 =∈ Z(G)}/G

C = {int(g) | g2 ∈ Z(G)}/G
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There are maps A
α
։ B

β
→֒ C.

For example suppose G = SL(2,C). Then

(3.28)

A = {I,−I)}

B = {I,−I, diag(t,−t)}

C = {θc, θs}

The map from A to B is not surjective, and the map from B to C takes ±I
to θc, so is not injective. (cf. Example 3.23).

Dangerous Bends 1 and 2 only arise if Z(G) is nontrivial. Here is an example
where this doesn’t arise.

Exercise 3.29 Let G = SO(2n + 1,C). Show that G has n + 1 conju-
gacy classes of elements g satisfying g2 = 1, and n + 1 conjugacy classes of
involutions. The corresponding real forms are

(3.30) {SO(2p, 2q + 1) | p+ q = n}

with complexified maximal compact subgroups

(3.31) {SO(2p,C)× SO(2q + 1) | p+ q = n}

These are all of the real forms of SO(2n+ 1,C).

We return to GL(n,C) for a moment, and consider all involutions of the
form int(g) with g2 ∈ Z(G).

Exercise 3.32 For G = GL(n,C), suppose θ is an inner involution, i.e.
θ = int(g) with g2 ∈ Z(G). Show that there exists h with h2 = 1 so that
θ = int(h). Therefore all real forms appear in Example 3.25.

Example 3.33 Let G = SL(2,C). Show that there are three conjugacy
classes of elements g satisfying g2 ∈ Z(G): I,−I and diag(i,−i). These give
two conjugacy classes of involutions, i.e. real forms of G: ±I give θ = Id
and the compact real form SU(2), and diag(i,−i) gives K = C∗, KR = S1,
and GR = SL(2,R). Note that only the compact real form comes from an
element g with g2 = 1.
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Exercise 3.34 This generalizes the previous example. Let G = Sp(2n,C).
Show that G has n+ 2 conjugacy classes of elements g satisfying g2 ∈ Z(G):

{Kp,q = diag(Ip,−Iq, Ip,−Iq) (p+ q = n, 0 ≤ p ≤ n)}

and
Ks = diag(iIn,−iIn).

The fixed points of these involutions are Sp(2n,C)×Sp(2q,C) and GL(n,C).
The corresponding real forms are Sp(p, q) and Sp(2n,R), and maximal com-
pact subgroups are Sp(p)× Sp(q) and U(n).

Note that int(Kp,q) = int(Kq,p), so Sp(p, q) and Sp(q, p) are the same real
form, so the real forms can be written

{Sp(p, q) | p ≥ q} and Sp(2n,R).

See Exercise 5.22.

This shows that to classify real forms of G it is natural to consider all
element g satisfying g2 ∈ Z(G). In fact there is a bijection between the
real forms of G and those of the adjoint group, so this isn’t necessary when
classifying real forms. However for our purposes we definitely do need to
consider these elements: this leads to the notion of strong real form in Section
5.1.
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Lecture III: Real Groups Continued

Mostly missing from the discussion in the preceding section are the groups
GL(n,R) and GL(n/2,H). This is because their Cartan involutions are not
inner.

Exercise 3.35 Show that the involution g → tg−1 is not an inner automor-
phism of GL(n,C). Show that it is an inner automorphism of SL(n,C) if
and only if n = 2.

Example 3.36 Every inner involution of GL(n,C) is conjugate to int(Jp,q)
for some p, q (see Example 3.25). Every non-inner involution of GL(n,C) is
conjuate to g → tg−1, or the Cartan involution of GL(n/2,H) if n is even.
See Exercises 3.7 and 3.14.

One of the nice things about using holomorphic involutions is it makes
some real forms “obvious”. For example the compact real form is simply
the identity. The Chevalley involution is another example, of which Example
3.35 is a special case.

Example 3.37 Fix a Cartan subgroup T of G. The involution t→ t−1 of T
extends to an involution of G (the Chevalley involution). The corresponding
real form of G is the split real form. It contains the real form R∗n of T .

4 Inner Classes

Example 3.36 shows that the real forms of G can be grouped according to
the outer automorphisms: the Cartan involutions of U(p, q) are inner, while
those of GL(n,R) and GL(n/2,H) are not. Here is the general situation.

Let Aut(G) be the group of (holomorphic) automorphisms of G. The
map g → int(g) embeds G in Aut(G), and the quotient is the group Out(G)
of outer automorphisms.

(4.1) 1→ Int(G)→ Aut(G)
p
→ Out(G)→ 1

Definition 4.2 Two involutions θ1, θ2 are said to be inner to each other or
in the same inner class if they have the same image in Out(G). Explicitly if
there exists x ∈ G such that θ2 = int(x) ◦ θ1, i.e.

(4.3) θ2(g) = xθ1(g)x
−1 for all g ∈ G.
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We say two real forms of G are inner to each other or in the same inner
class, if their Cartan involutions are in the same inner class.

This decomposes the set of real forms into subsets (inner classes), which
are parametrized by involutions in Out(G); associated to an involution γ ∈
Out(G) are the Cartan involutions θ such the p(θ) = γ.

Example 4.4 Let G = GL(n,C) with n > 2. See Example 3.36. The two
inner classes are:

(4.5)
γ = 1 : {U(p, q) | p+ q = n, p ≥ q}

γ 6= 1 : {GL(n,R), GL(n/2,H)}.

Also note Out(G) = Z/2Z (cf. Exercise 4.11).

In practice the question of how to group the real forms of G into inner
classes is made much easier by the following result.

Lemma 4.6 A real form θ of G is inner if and only if rank(Gθ) = rank(G).
This is known as the inner or equal rank inner class. The corresponding
groups G(R) are those which contain a compact Cartan subgroup. This in-
cludes the compact real form of G.

In example 4.4 the groups U(p, q) contain compact Cartan subgroups,
while GL(n,R) and GL(n/2,H) do not.

This makes it clear it is important to understand the group Out(G), or
at least the involutions in it.

Exercise 4.7 Suppose T is a torus of rank n, i.e. T ≃ (C∗)n. Show that
Aut(T ) ≃ Out(T ) ≃ GL(n,Z).

Exercise 4.8 Show that every involution in GL(n,Z) is conjugate to a prod-

uct of terms 1, −1 or

(
0 1
1 0

)
on the diagonal (this is not trivial). Thus (up

to outer automorphism) the real forms of T = C∗n are parametrized by or-
dered triples (a, b, c) with a + b + 2c = n, corresponding to the real group
S1a×R∗b×C∗c. (Strictly speaking we only identify real forms if they are con-
jugate by an inner automorphism; in practice we allow outer automorphisms
in the case of tori.)

Here is the group Out(G) in the opposite case.
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Lemma 4.9 Suppose G is semisimple. Then Out(G) is a subgroup of the
automorphism group of its Dynkin diagram, and these groups are equal if G
is simply connected or adjoint.

See Lemma 5.28.
For example Out(G) = 1 for any simple group of type A1, Bn, Cn, E7, E8, F4

or G2.

Exercise 4.10 Show that Out(Spin(2n,C)) is Z/2Z for all n 6= 4, and S3

for n = 4. Show that for n ≥ 5

Out(Spin(2n,C)) = Out(SO(2n,C)) = Out(PSO(2n,C)) = Z/2Z.

If n is even find a quotient G of Spin(2n,C) so that Out(G) = 1. (See the
diagram after Theorem 2.4, and Section 4.2).

Exercise 4.11 Show that Out(SL(2,C)) = 1 and Out(SL(n,C)) = Z/2Z

for all n ≥ 3. Show that Out(GL(n,C)) ≃ Z/2Z for all n. See Exercise 3.35.
(Hint: use Exercise 2.14).

In general Out(G) is built out of Example 4.7 and Lemma 4.9. We dis-
cuss this in more detail in Section 5.2. In practice we can ignore the issue
of GL(n,Z) in Examples 4.7 and 4.8 and find essentially all involutions in
Out(G) as follows.

4.1 Basic Inner Classes

Every complex group has several canonical inner classes, which may coincide:

1. The compact inner class: involutions in the same inner class as the
Cartan involution of the compact group, i.e the identity. These are the
inner involutions.

2. The split inner class of Example 3.37.

3. If G = G1 ×G1 then there is the complex inner class: this is the inner
class of the involution θ(g, h) = (h, g). The corresponding real form
of G(C) is G(R) = G1(C), the complex group G1(C) viewed as a real
group.
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This gives almost every inner class of a semisimple group. There is one
exception:

Exercise 4.12 Let G = SO(2n,C) with n ≥ 5. Recall (Exercise 4.10)
Out(G) ≃ Z/2Z.

The group SO(2n,C) has a family of real forms SO(p, q) with p+q = 2n.
(It also has a real form SO∗(2n).) Two real forms SO(p, q) and SO(r, s) are
inner to each other if and only if p ≡ q (mod 2). The group SO(n, n) is split
and SO(2n, 0) is compact.

Use these facts to show that SO(2n,C) has two inner classes of real forms.
If n is odd these are the compact and split inner classes. If n is even the
compact and inner classes coincide, and there is one other inner class.

In addition to the inner split, compact and complex inner classes the atlas
software also uses

4. The unequal rank inner class, which does not exists in all cases, and
often coincides with the split or complex inner class.

Exercise 4.13 Suppose G is semisimple. Show that the split and compact
inner classes coincide if and only if −1 ∈W . If this holds show that Z(G) is
a two-group.

4.2 Defining an inner class of real forms

Suppose we’ve defined G′ = G1 × · · · ×Gn × T , and G = G′/A as in Section
2.2. Here is how to define an inner class of real forms of G, i.e. an involution
in Out(G).

First assume A = 1. Then for each Gi we may specify the compact, split,
or (in some cases the) unequal rank inner class. For any pair Gi×Gi we may
also specify the complex inner class of the product. Similarly we choose the
compact, split, or complex inner for each C∗ or C∗ × C∗ factor of T . This
defines an involution γ in Out(G).

Example 4.14 G = SL(n,C) × C∗ (n ≥ 2). There are four inner classes:
[split or compact]×[split or compact].

Now suppose A is not necessarily trivial. Choose θ′ ∈ Aut(G′) mapping
to γ ∈ Out(G′) by the exact sequence (4.1). Then θ′ gives an element
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θ ∈ Aut(G) if and only if θ′(A) = A. If this holds define γ to be the
image of θ in Out(G). This is independent of the choice of θ.

Example 4.15 Recall (Example 2.14)GL(n,C) = SL(n,C)×C∗/〈(ζIn, ζ
−1)〉.

The split inner class (containing the real group GL(n,R) and the compact
inner class (containing U(n)) are well defined. However [split inner class of
SL(n,C)]× [compact inner class of C∗] does not preserve A, and so does not
define a real form of GL(n,C) (unless n = 2). See Exercise 4.11.
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Lecture IV:
Extended Groups and Strong Real Forms

5 Extended Groups

When studying the representation theory of a real form of G, it is natural to
consider other real forms at the same time. In fact the natural setting is a
set of inner forms of G.

Definition 5.1 Basic data is a pair (G, γ) where:

1. a complex, connected, reductive algebraic group G,

2. an involution γ ∈ Out(G).

Recall we have an exact sequence (4.1):

(5.2) 1→ Int(G)→ Aut(G)
p
→ Out(G)→ 1.

Associated to (G, γ) is the set of real forms in this inner class: i.e. the
involutions θ ∈ Aut(G) satisfying to p(θ) = γ in (5.2). In practice we specify
G as in Section 2.2, and γ as in Section 4.2.

It is very helpful to package all of this information into a single extended
group. For this we need a splitting of the exact sequence (5.2).

Lemma 5.3 There is a canonical choice of G-conjugacy class of splittings
of (5.2).

We refer to the splittings of the Lemma as distinguished.

Example 5.4 Obviously if γ = 1 then s(γ) = 1. The corresponding real
form is the compact one, and this is the class of inner, or equal rank, forms
of G. See Lemma 4.6.

To avoid too much terminology we defer a more careful explanation of
these splittings to Section 5.2. In the mean time the following Remark is
useful.
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Remark 5.5 Suppose γ ∈ Out(G) is an involution. Associated to γ is the
inner class of real forms: {θ ∈ Out(G) | p(θ) = γ}. Then s(γ) = θ0 where θ0
is the most compact real form in this inner class.

Exercise 5.6 Suppose G = SO(2n,C) and γ 6= 1. Then s(γ)(g) = ǫgǫ−1

where ǫ = diag(1, 1, . . . , 1,−1) ∈ O(2n,C)\SO(2n,C).

Exercise 5.7 Let G = GL(n,C) for n odd. Recall (4.11) Out(G) = Z/2Z.
Suppose 1 6= γ ∈ Out(G). Then we can take s(γ) to be the Cartan involution
of GL(n,C), i.e. s(γ)(g) = tg−1. What is s(γ) for n even?

Let Γ = {1, δ} = Gal(C/R).

Definition 5.8 Given basic data (G, γ) define

(5.9) GΓ = G⋊ Γ

where δ acts by s(γ) for some distinguished splitting s.

By the Lemma the isomorphism class of G is independent of the choice of
distinguished splitting s.

Here is another way to think of this definition. We can write

(5.10) GΓ = 〈G, δ〉

with relations

(5.11) δ2 = 1, δgδ−1 = s(γ)(g).

Example 5.12 Suppose γ = 1. Then GΓ = G× Γ (direct product).

We encourage the reader to keep the case γ = 1 in mind.

5.1 Strong Real Forms

Fix basic data (G, γ) and define GΓ. Let θδ = int(δ) ∈ Aut(G). In particular
p(θδ) = γ.

Suppose θ ∈ Aut(G) is an involution in the inner class of γ. By definition

(5.13)(a) p(θ) = p(θδ)
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i.e.

(5.13)(b) θ = int(h)θδ for some h ∈ G,

i.e.

(5.13)(c) θ(g) = hθδ(g)h
−1 for all g ∈ G.

Using the fact that θδ = int(δ) we can write this as

(5.13)(d) θ(g) = (hδ)g(hδ)−1 for all g ∈ G.

or in other words

(5.13)(e) θ = int(hδ).

Thus every involution of G in this inner class is conjugation by an element
x of GΓ\G. Note that int(x) is an involution if and only if x2 ∈ Z(G).

Exercise 5.14 Suppose G is adjoint. Then the map x→ int(x) is a bijection

(5.15) {x ∈ GΓ\G | x2 = 1}/G↔ {θ in the inner class of γ}/G.

It turns out to be essential to keep track not just of θ, but of x giving
rise to it.

Definition 5.16 Given (G, γ), a strong involution of G in the inner class of
γ is an element x of GΓ\G satisfying x2 ∈ Z(G). Two strong involutions are
equivalent if they are conjugacte by G. A strong real form of G is a conjugacy
class of strong involutions.

The map x → int(x) takes strong involutions to involutions, and strong
real forms (conjugacy classes of strong involutions) to real forms (conjugacy
classes of involutions).

Definition 5.17 If x is a strong involution let θx = int(x) be the correspond-
ing involution. Let Kx = Gθx.

Lemma 5.18 The map x→ θx induces a canonical surjection

(5.19)(a) {strong real forms in the inner class of γ}

to

(5.19)(b) {real forms in the inner class of γ}.
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Note that if we required x2 = 1 then this map would not necessarily be a
surjection, for example for SL(2,C).

By Exercise 5.14 if G is adjoint the map (5.19) is a bijection.
The notion of strong real form is a refinement of that of real form: we

count some real forms more than once.

Remark 5.20 Suppose γ = 1, so GΓ = G × Γ. Suppose x0 ∈ G satisfies
x2

0 ∈ Z(G). Then x0δ is a strong involution, and this is a bijection between
strong involutions and involutions in G. Thus we may safely drop δ from the
notation in this case.

Example 5.21 LetG = SL(2,C), and (necessarily) γ = 1. The set (5.19)(b)
has 2 elements θc, θs (cf. Exercise 3.23), and (5.19)(a) has three, ±I and
diag(i,−i). The map from strong real forms to real forms is 2 to 1 for
SU(2), and 1 to 1 for SL(2,R). We can think of these strong real forms as
SU(2, 0), SU(1, 1) = SL(2,R) and SU(0, 2).

Exercise 5.22 Let G = Sp(2n,C), which implies γ = 1. Recall (Exercise
3.34) the real forms ofG are Sp(p, q) with p+q = n with p ≥ q and Sp(2n,R).
Also by Exercise 3.34 G has n strong real forms {Kp,q | p+ q = n, 0 ≤ p ≤ n}
and Ks. The map from strong real forms to real forms is 2 to 1 for Sp(p, q)
with p 6= q, and 1 − 1 for Sp(p, p) and Sp(2n,R). Thus we can informally
think of the strong real forms as Sp(p, q) where Sp(p, q) and Sp(q, p) are
distinct strong real forms (for p 6= q).

Example 5.23 Let G = SL(n,C), γ = 1. There is a unique compact real
form, given by (the conjugacy class of) θ = 1. The preimage in (5.19)(a)
consists of the n elements of the center.

In general G has |Z(G)| strong real forms mapping to the compact real
form.

Remark 5.24 The fact that there is a difference between strong real forms
and real forms is not a bug, it’s a feature. In fact it is essential in the
statement of the main result (Theorem 7.5). When working with a single
real form it is possible to minimize the role of strong real forms, but even
here they play a critical role for the dual group.
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5.2 Splittings and Automorphisms

Here is a little more detail on Lemma 5.18 and the relationship with Aut(G)
and Out(G).

To find a splitting of (5.2) we need a subgroup A of Aut(G), mapping
surjectively to Out(G), containing no inner automorphisms. We want to take
A to be the automorphisms of G fixing some extra data.

For starters fix T ⊂ B ⊂ G, Cartan and Borel subgroups of G and let
A = StabG(B, T ). Fix τ ∈ Aut(G). Any two such pairs (B, T ) are conjugate
by G, and therefore int(g) ◦ τ ∈ A for some g ∈ G. Thus A maps onto
Out(G).

On the other hand suppose τ = int(h) ∈ Int(G). The fact that B is
its own normalizer implies h ∈ B, and the normalizer of T in B is trivial,
so h ∈ T . We would like to conclude h ∈ Z(G), so τ = 1. This is not
necessarily the case; we need a little more data to force h ∈ Z(G). The
choice of B defines a set of positive roots, and a set of simple roots. If
α(h) = 1 for all simple roots then h ∈ Z(G). This leads to the definition of
splitting data.

Definition 5.25 A set of splitting data for G or (more poetically) an épinglage,
is a triple (B, T, {Xα}) consisting of T ⊂ B ⊂ G, Cartan and Borel sub-
groups respectively, and a set {Xα} of simple root vectors for the action of T
on Lie(G). (Here simple is with respect to the positive system defined by B).

Let Aut(G,B, T, {Xα}) be the automorphisms ofG preserving (B, T, {Xα}).
Any two splitting data are conjugate by G, and together with the preceding
argument this proves:

Proposition 5.26 Fix splitting data (B, T, {Xα}) for G. Then there is
a splitting s of (5.2) taking Out(G) isomorphically to Aut(B, T, {Xα}) ⊂
Aut(G). Any two such splittings are conjugate by Int(G).

The group Aut(G,B, {Xα}) can be described in a different way.

Definition 5.27 Suppose (X,∆, X∨,∆∨) is a root datum. Choose a set of
positive roots, with corresponding simple root Π and simple coroots Π∨. The
set (X,Π, X∨,Π∨) is called a based root datum.

Given G, choose a Cartan subgroup T and use this to define the root data
D(G, T ) of G. In addition choose a Borel subgroup B containing T . This
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determines a set of positive roots, and therefore defines based root datum
Db(G,B, T ).

Automorphisms of based root data are defined in the obvious way.

Lemma 5.28 Choose pinning data (B, T, {Xα}). Then

Out(G) ≃ Aut(Db(G,B, T )) ≃ Aut(G,B, T, {Xα}).

See [10, 2.13].
Write Db(G,B, T ) = (X,Π, X∨,Π∨). Restricting an automorphism φ of

this to the second factor gives an automorphism of the Dynkin diagram D. If
G is semisimple Π is a basis of X⊗Q, and φ is determined by this restriction.
An automorphism of Π extends to an automorphisms of the root lattice R
and weight lattice P . Recall X = R if G is adjoint, and P if G is simply
connected (2.5). This proves

Lemma 5.29 There is a surjective map

(5.30) Aut(Db(G,B, T ))→ Aut(D).

This is an injection if G is semisimple, and a bijection if G is also simply
connected or adjoint.

5.3 K orbits on G/B

As discussed in Peter Trapa’s lectures, a fundamental role is played by the
space of K-orbits on the flag variety G/B. The extended group provides a
convenient description of this space, for all (strong) real forms simultaneously.

Fix basis data (G, γ). As usual we encourage the reader to first consider
the case γ = 1, in which case GΓ = G × Γ, and we can safely drop the
extension.

We fix as usual Cartan and Borel subgroups T ⊂ B. We start with an
elementary definition:

(5.31) P(G, γ) = {(x,B′)}

consisting of a strong involution x (Definition 5.16) and a Borel subgroup
B′. Let G act diagonally by conjuation on P(G, γ), and consider the space
P(G, γ)/G. When (G, γ) are understood we write P = P(G, γ).

Recall a strong real form is a conjugacy class of strong involutions. We
make repeated use of the following.
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Definition 5.32 Let

(5.33) {xi | i ∈ I}

be a set of representatives of strong real forms. Thus each xi ∈ GΓ\G,
x2

i ∈ Z(G), and every such element is G-conjugate to a unique xi. For i ∈ I
let θi = int(xi) and Ki = Gθi.

Remark 5.34 If Z(G) is finite then I is a finite set. In fact this holds if
Z(G)δ = {z ∈ Z(G) | δzδ−1 = z} is finite. If the set is infinite it causes
annoying but not serious book-keeping problems, which can be avoided by
passing to the reduced parameter space [3, ?]. The reader is encouraged to
think of this set as being finite.

On the other hand all Borel subgroups are G-conjugate. There are two
ways to understand P/G: by conjugating each x to some xi, or B′ to B. We
do these one at a time.

Conjugate B′ to B:
Given (x,B′) ∈ P, choose g so that gB′g−1 = B. A basic fact is that any

strong involution, in particular gxg−1, normalizes some Cartan subgroup of
B [, ?], and after conjugating by b ∈ B we may assume it normalizes T .

Therefore we can find g ∈ G so that g(x,B′)g−1 = (gxg−1, B) with
gxg−1 ∈ NormGΓ\G(T ). The only other such choice would be (tg)(x,B′)(tg)−1 =
(t(gxg−1)t−1, B) for some t ∈ T . This motivates the primary combinatorial
definition of the atlas project.

Definition 5.35 Given (G, γ), and T fixed as usual, let

(5.36) X (G, γ) = {x ∈ NormGΓ\G(T ) | x2 ∈ Z(G)}/T

where the quotient is by the conjugation action. When (G, γ) are understood
we write X = X (G, γ).

Here NormGΓ\G(T ) are the elements of GΓ\G = Gδ normalizing T .
Then (x,B)→ gxg−1 as above gives well defined bijection

(5.37) P/G←→ X .

Conjugate x to xi:
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Given (x,B′) ∈ P, choose g so that gxg = xi for i ∈ I. Note that (xi, B
′)

and (xj, B
′′) are G-conjugate if and only if i = j and kB′k−1 = B′′ for some

k ∈ Ki = Gθi (Definition 5.32).

(5.38) P ≃
∏

i∈I

{(xi, B
′)}/Ki

Clearly {(xi, B
′)}/Ki is simply Ki conjugacy classes of classes of Borel sub-

groups. Every Borel subgroup is G-conjugate to B, and the map gBg−1 →
KigB is a bijection between this space and Ki\G/B:

(5.39) P/G←→
∐

i∈I

Ki\G/B.

Putting together (5.37) and (5.39) we obtain the main result.

Theorem 5.40 Given (G, γ), choose a set of representatives {xi | i ∈ I} of
the strong real forms (Defintion 5.32). Define X = X (G, γ) as in Definition
5.35. There is a canonical bijection

(5.41)
∐

i∈I

Ki\G/B ←→ X .

Remark 5.42 A version of this, for one real form at a time, is in [9].

The set X is finite if Z(G)δ is finite (cf. Remark 5.34). It is a combinato-
rial object, which may be computed explicitly using the Tits group. See [3,
Section 15] for details.

Example 5.43 Let G = SL(2,C). Then γ = 1, and as usual we can drop
the extension. For x ∈ R∗ let

(5.44) w(x) =

(
x 0
0 1/x

) (
0 1
−1 0

)
=

(
0 x
− 1

x
0

)
.

Then

(5.45)
{x ∈ NormG(T ) | x2 ∈ Z(G)}/T = {±I,±diag(i,−i), w(x)}/T

= {±I,±diag(i,−i), w(1)}.

The elements ±I correspond to the compact form, i.e. K = G, so K\G/B is
a point. This occurs twice, for the two corresponding strong real forms (cf.
Example 5.21). The elements ±diag(i,−i) and w(1) are all G-conjugate, so
they give the three K orbits on G/B for the split real form. The orbits given
by ±(diag(i,−i)) are points, and the orbit corresponding to w(1) is the open
orbit.
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5.4 Cross Action and Cayley Transforms

It is important to understand the structure of the set of K-orbits on G/B,
which becomes a combinatorial problem about the set X . Here are the basics,
sweeping some details under the rug (cf. Remark 5.46).

There is an obvious action of W on X : if w ∈W , choose a representative
gw ∈ NormG(T ), and define w × x = gwxg

−1
w . We refer to this as the cross

action.
There is also a less obvious operation we can perform on X . Fix an

element x ∈ X , and let σα be a representative in G of the reflection sα ∈W .
It is natural to ask if σαx ∈ X , and whether this is independent of all choices.

Suppose θx(α) = α and θx(gα) = g−α, where g±α denotes the ±α weight
spaces for the action of T on g = Lie(G). In conventional terminology we
say α is a non-compact imaginary root. Associated to α is a subgroup Gα

of G isomorphic to SL(2) or PSL(2), and we can choose a representative
σα of the reflection sα in Gα. It turns out that with this choice σαx is a
well defined element of X , independent of the choices. See refer to the map
x→ σαx as the Cayley transform of x via α.

Remark 5.46 We are glossing over some significant technical details in the
preceding discussion. First of all x ∈ X is not an element of G, but a T -
conjugacy class of such elements. Strictly speaking θx is not well defined,
althought it is not hard to make sense of the equalities involving θx(α) and
θx(gα). Similarly to make the definition of σαx precise requires some care;
see [3, Section 14] for details.

Remarkably, the cross action and Cayley transforms are enough to gener-
ate the subset of X corresponding to K orbits on G/B for a fixed K, starting
with a single element x ∈ X. Here is the precise result.

Lemma 5.47 Fix {xi | i ∈ I} as in Definition 5.32. Recall θi = int(xi) and
Ki = Gθi. Without loss of generality we may assume that for all i, xi = tiδ
for some ti ∈ T . Given i, let Xi be the subset of X generated by the cross
action and Cayley transforms. Then Xi ≃ Ki\G/B.

In other words Xi is the set of elements of the form T1T2 . . . Tnxi where
each operation Ti is either a cross action x→ sαi

× x, for some root αi or a
Cayley transform x→ σαi

x (it is enough to take each αi simple). The atlas

software implements this computation using the Tits group. See [3, Section
15].
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Lecture V
Parametrizing Admissible Representations

6 The Dual Group

Root data D = (X,∆, X∨,∆∨) has an obvious symmetry; the dual root
datum is D∨ = (X,∆, X∨,∆∨). This induces a map G→ G∨ on connected,
complex reductive groups. In particular G∨ has a Cartan subgroup T∨, and
identifications X∗(T ) = X∗(T

∨) and X∗(T ) = X∗(T∨). Langlands brought
the role of the dual group to the for in studying representation theory.

There is also a notion of duality for inner classes of real forms. Suppose
(G, γ) is basic data, defining an inner class of real forms, and let GΓ = 〈G, δ〉
be the extended group. Then τ = int(δ) normalizes T , and can be viewed as
an automorphism of X∗(T ), and of D.

Definition 6.1 Let τ∨ = −τ t. This is an automorphism of X∗(T ), and in-
duces an automorphism of D∨. By Theorem 2.4 we obtain an automorphism
of G∨. Let γ∨ be the image of this automorphism in Out(G∨).

The minus sign in the definition is important. Because of it the map
Out(G) ∋ γ → γ∨ ∈ Out(G∨) is not necessarily a group homomorphism.

Exercise 6.2 If γ = 1 then γ∨ is the image of −w0 in Out(G) where w0 is
the long element of the Weyl group. This is trivial if and only if −1 ∈W .

Example 6.3 Suppose G = GL(n,C) and γ = 1. Recall Out(G) ≃ Z/2Z.
Then G∨ ≃ GL(n,C), and γ∨ 6= 1.

Example 6.4 In general if γ = 1 then γ∨ is the inner class of the split real
form of G∨, and vice versa.

Thus given basic data (G, γ) we obtain dual basic data (G∨, γ∨), and the
setup is entirely symmetric. Define the extended group G∨Γ = G∨ ⋊ Γ using
γ∨.

Example 6.5 If γ is the inner class of the split real form, then by Example
6.4 G∨Γ = G∨ × Γ.
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Let LG be the L-group of (G, γ) [5]. Recall LG = G∨ ⋊ Γ, and this is a
direct product if γ is the inner class of the split real form. By Example 6.4
this suggests:

Lemma 6.6 G∨Γ ≃ LG.

Because of our emphasis on the Cartan involution this is not entirely
obvious; see [4, Definition 9.6 and (9.7)(a-d)].

We interrupt our program for a word from our sponsor.

6.1 Representations

As discussed in David Vogan’s lectures we work in the context of (g, K)-
modules. We will be considering multiple real, and even strong real, forms
simultaneously. So given basic data (G, γ), choose representatives {xi | i ∈
I} of the strong real forms (cf. Definition 5.32) with associated Cartan
involutions θi and subgroups Ki = Gθi. Out basic object of study is the
collection of (g, Ki) modules for i ∈ I.

Also recall from Vogan’s lectures that a basic invariant of an admissible
representation is its infinitesimal character, which we can identify via the
Harish-Chandra homomorphism with (the W -orbit of) an element λ of t∗.
We say λ is regular (resp. integral) if 〈λ, α∨〉 6= 0 (resp. is in Z) for all roots.
The set of irreducible admissible representations with a given infinitesimal
character is finite.

An important special case is ρ, the infinitesimal character of the trivial
representation.

The Zuckerman translation principle asserts that there is a bijection be-
tween the irreducible representations with infinitesimal character λ and λ′

provided λ, λ′ are regular and λ− λ′ ∈ X∗(T ). For this reason it is natural
to work with representations modulo translation. In order to avoid the extra
machinery required to say things this way, we resort to the following simpler,
but less natural, construction.

Lemma 6.7 Let P ⊂ t∗ be the weight lattice: P = {λ | 〈λ, α∨〉 ∈ Z} for all
roots α. Recall t∗ = X∗(T )⊗C = X∗(T

∨)⊗C = t∨. Using this idenification
the map λ→ exp(2πiλ) is an isomorphism P/X∗(T )→ Z(G∨).

This is a slight variant on fairly standard facts in algebraic groups.
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Definition 6.8 Fix a set Λ ⊂ t∗ = X∗(T ) ⊗ C of representatives of the
quotient P/X∗(T ). If G is semisimple this is a finite set. We assume that
the elements λ of Λ are regular: 〈λ, α∨〉 6= 0. Write λ→ z∨(λ) = exp(2πiλ)
for the isomorphism Λ→ Z(G∨).

For example supposeG is semisimple and simply connected. Then Z(G∨) =
1 and P = X∗(T ). The obvious choice of representatives of P/X∗(T ) is {0},
but 0 is not regular. Any regular weight will do, the standard choice is
Λ = {ρ}.

Note that if λ is regular and integral then the representations with in-
finitesimal character are in bijection with those of infinitesimal character
λ′ for some λ′ ∈ Λ. For this reason we consider only representation with
infinitesimal character in Λ.

We can now define various set of representations. For K the fixed points
of an involution let

(6.9)(a) Π(G,K, λ)

be the set of irreducible admissible (g, K)-modules with infinitesimal char-
acter λ. This is a finite set. Let

(6.9)(b) Π(G,K,Λ) =
∐

λ∈Λ

Π(G,K, λ),

the representations with infinitesimal character an element of Λ. With I as
in Definition 5.32 let

(6.9)(c) Π(G, γ, λ) =
∐

i∈I

Π(G,Ki, λ)

and

(6.9)(d) Π(G, γ,Λ) =
∐

i∈I

Π(G,Ki,Λ),

the corresponding sets of representations of all strong real forms in the inner
class γ.

Example 6.10 SupposeG is semisimple and simply connected, and as above
take Λ = {ρ}, the infinitesimal character of the trivial representation. If G
is also adjoint the strong real forms and real forms coincide, and (6.9)(d)
becomes the collection of representations of real forms of G, in this innner
class, with infinitesimal character ρ.
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Remark 6.11 We are going to parametrize the set (6.9)(d). Roughly speak-
ing you can think of this as representations of real forms of G in this inner
class, with infinitesimal character ρ. It differs from this in two ways: we need
strong real forms in place of real forms, and more than one (regular, inte-
gral) infinitesimal character. These technicalities are crucial for obtaining a
natural bijection with an explicit combinatorial object.

6.2 L-homomorphisms

Returning to our regularly scheduled program, the Langlands classification
describes representations of real forms of G in a given inner class in terms of
homomorphisms of the Weil group in LG. We briefly describe this in terms
convenient for us.

Definition 6.12 The Weil group WR of R is 〈C∗, j〉 with relations jzj−1 = z
and j2 = −1.

An admissible homomorphism φ : WR → G∨Γ is a continuous homomor-
phism such that φ(C∗) consists of semisimple elements, and φ(j) ∈ G∨Γ\G∨.

Theorem 6.13 (Langlands [7]) Fix a real form θ in the inner class of γ,
and set K = Gθ. Asociated to an admissible homomorphism φ is a finite set
Πφ of irreducible (g, K)-modules (possibly empty), called the L-packet of φ,
depending only on the G∨-conjugacy class of φ. The irreducible admissible
(g, K)-modules are a disjoint union of L-packets Πφ, as φ runs over G∨-
conjugacy classes of admissible homomorphisms.

Here is how to define admissible homomorphisms explicitly. Suppose λ ∈
X∗(T )⊗C. Identifying this with X∗(T

∨)⊗C we can define exp(2πiλ) ∈ T∨.
Suppose y ∈ G∨Γ\G∨ normalizes T∨, and satisfies y2 = exp(2πiλ).

Exercise 6.14 Define

(6.15)
φ(z) = zλzAd(y)λ

φ(j) = exp(−πiλ)y.

The first line is shorthand for φ(ez) = exp(zλ + zAd(y)λ). Show that φ
is an admissible homomorphism, and every admissible homomorphism is G-
conjugate to one of this form.
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Suppose for the moment that y2 ∈ Z(G∨). Then y is in (the numerator
of) the space of definition 5.35, applied to G∨, call it X ∨:

(6.16) X ∨ = {y ∈ NormG∨Γ\G∨(T∨) | y2 ∈ Z(G∨)}/T∨.

Conversely suppose y ∈ X ∨. Then we can find λ ∈ X∗(T ) ⊗ C such that
exp(2πiλ) = y2. The kernel of X → exp(2πiX) from X∗(T

∨) ⊗ C to T∨ is
precisely X∗(T

∨) = X∗(T ), so λ is well defined up translation by X∗(T ).
The infinitesimal character of Πφ is λ; the condition that exp(2πiλ) ∈

Z(G∨) is precisely that λ is integral.
Let

Homadm,int(WR, G
∨Γ)/G∨

be the admissible Weil group homomorphisms such that the infinitesimal
character of Πφ is integral. Define an equivalence relation ∼ on this space,
given by conjugation by G∨ and translation, replacing λ with λ + µ for
µ ∈ X∗(T ). Putting this all together, it is not hard to prove:

Lemma 6.17 There is a canonical bijection between

(6.18) X ∨ ←→ Homadm,int(WR, G
∨Γ)/ ∼ .

7 Parametrizing the Admissible Dual

At the end of the previous Section we have observed a remarkable fact: X =
X(G, γ) (Definition 5.35) parametrizes the space of K orbits on G/B, for all
the different K simultaneously (Theorem 5.40), while the same construction
when applied to G∨ parametrizes conjuacy class of integral, admissible Weil
group homomorphisms, up to translation.

Of course the situation is completely symmetric, and we can view X ∨ as
giving the K∨ orbits on G∨/B∨ (for various K∨). This is a very fruitful point
of view, but for now we think of X and X ∨ differently.

7.1 R-packets and L-packets

We now have two ways of decomposing admissible representations into a
disjoint union of finite sets.
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On the one hand as discussed in Section 6.2 associated to an φ : WR →
G∨Γ is an L-packet Πφ. Thus by Lemma 6.17 X ∨ parametrizes integral L-
packets of representations (up to translation), simultaneously for all strong
real forms of G.

On the other hand, fix a real form θ of G, with K = Gθ. As described
in the lectures of Peter Trapa, associated to a K-orbit O on G/B is a finite
set of representations, all with trivial infinitesimal character, parametrized
by K-equivariant local systems on the orbit.

By the translation principle (Section 6.1) we can view an R-packet as
being a set of representations with infinitesimal character λ for any λ ∈
ρ+X∗(T ). This does not hold if λ is (integral but) not in ρ+X∗(T ). Suffice
it to say that it is possible to generalize Trapa’s construction, and associate
to any orbit O and integral infinitesimal character λ a set of representations
with infinitesimal character λ; this is a finte set, and may be empty.

We refer to this (possibly empty) set as an R-packet, defined by a K
orbits on G/B and an infinitesimal character.

We would like to refine one or the other of these results to give data
parametrizing individual representations. The key to this is:

Proposition 7.1 (Vogan [12] Propositioin 8.3) The intersection of an
R-packet and L-packet is at most one element.

Roughly speaking, this says the admissible representation of all strong
real forms of G, with integral infinitesimal character, up to translation, are
parametrized by a subset of X × X ∨ as follows. Given y ∈ X ∨ recall y2 ∈
Z(G∨) ≃ Λ (Definition 6.8); choose λ ∈ Λ so that z(λ∨) = y2. Then take
the intersection of the R-packet defined by x ∈ X and λ with the L-packet
defined by y ∈ X ∨ (if non-empty).

The entire machinery was set up to make a very precise version of this
statement true. To define the main parameter space we need one more defi-
nition.

Suppose x ∈ X . Then θx = int(x) is a well defined involution of T or
t = Lie(T ). (To be careful int(x) is not necessarily a well-defined involution
of G, since x is only defined up to conjugation by T ). Its transpose θT

x can
be viewed as an involution of t∨ = Lie(T∨).

Definition 7.2 Given basic data (G, γ), define the dual data (G∨, γ∨) as in
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Section 6, and define X = X (G, γ), X ∨ = X (G∨, γ∨). let

(7.3) Z(G, γ) = {(x, y) ∈ X × X ∨ | θy = −(θx)
t}.

If (G, γ) are understood we write Z = Z(G, γ).

Recall we have fixed a set Λ of infinitesimal characters in Section 6.1.

Definition 7.4 Suppose (x, y) ∈ Z. Choose λ ∈ Λ so that z∨(λ) = y2 ∈
Z(G∨) (Definition 6.8). Define φ : WR → G∨Γ by Exercise 6.14, and let
ΠL(x, y) be the L-packet of (g, Kx)-modules defined by φ.

Let ΠR(x, y) be the set of (g, Kx)-modules obtained by taking all local sys-
tems on the Kx orbit on G/B corresponding to x, with infinitesimal character
λ (see Peter Trapa’s lectures).

We’re being cavalier about one technical point here. Each element x ∈ X
is a T -conjugacy class of elements of GΓ. In fact for each x we need to choose
one such ξ, and Kx is really Kξ.

Theorem 7.5 The intersection ΠR(x, y) ∩ ΠL(x, y) is non-empty, and is
therefore a single representation of this real form.

This defines a bijection

(7.6) Z ←→
∐

i

Π(G,Ki,Λ),

from Z to the set of the representations of strong real forms of G, with
infinitesimal character contained in Λ.

See [3, Theorem 10.3].
Recall by Theorem 5.40 we may view Z as a subset of

(7.7)
∐

i∈I

Ki\G/B ×
∐

j∈I∨

K∨
j \G

∨/B∨

where I, I∨ are the strong real forms of G and G∨ as in Definition 5.32.

Example 7.8 Suppose G is semisimple and simply connected. Then

(7.9) Z ←→
∐

i

Π(G,Ki, ρ),

the representations of strong real forms of G with trivial central character.
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Example 7.10 Representations of SL(2) and PGL(2).
Here is a table from [3, Section 12], discussed in more detail in [2]. For

notation see the references; here is a sketch.
Note that PGL(2,C) = PSL(2,C), the adjoint group of type A1. For

both SL(2) and PGL(2) we can drop δ from the notation since γ = 1. Let

t = diag(i,−i) and n =

(
0 1
−1 0

)
, considered in SL(2) or PGL(2).

If K = C∗ ⊂ SL(2, ) there are three orbits of K on G/B, labelled
O0,O∞,O∗ (O∗ is open). For PGL(2) there are two orbits, O′

+ and O′
∗.

At infinitesimal character ρ SL(2,R) has three irreducible representa-
tions: DS± (discrete series) and the trivial representation. It also has a
unique irreducible principal series representation PSodd.

At infinitesimal character ρ PGL(2,R) has three irreducible representa-
tions: DS (discrete series), the trivial representation and the sgn represen-
tation. At infinitesimal character 2ρ it also has a two irreducible principal
series representation PS±.

Table of representations of SL(2) and PGL(2)

Orbit x x2 θx Gx(R) λ rep Orbit y y2 θy G∨
y (R) λ rep

O2,0 Id Id 1 SU(2, 0) ρ C O′
∗ n Id -1 SO(2, 1) 2ρ PS+

O0,2 -Id Id 1 SU(0, 2) ρ C O′
∗ n Id -1 SO(2, 1) 2ρ PS−

O0 t -Id 1 SU(1, 1) ρ DS+ O′
∗ n Id -1 SO(2, 1) ρ C

O∞ -t -Id 1 SU(1, 1) ρ DS− O′
∗ n Id -1 SO(2, 1) ρ sgn

O∗ n -Id -1 SU(1, 1) ρ C O′
+ t Id 1 SO(2, 1) ρ DS

O∗ n -Id -1 SU(1, 1) ρ PSodd O′
3,0 Id Id 1 SO(3) ρ C

7.2 Vogan Duality

Recall basic data (G, γ) determine basic data (G∨, γ∨). The parameter space
Z(G, γ) ⊂ X ×X ∨ has an obvious symmetry. The map (x, y)→ (y, x) takes
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Z is a bijection

(7.11) Z(G, γ)←→ Z(G∨, γ∨).

This is Vogan duality in our setting. As originally defined in [12] Vogan
duality is a bijection between representation of real forms of G and represen-
tations of real forms of G∨. This is a stronger version of that result, in that
it treats all (strong) real forms simultaneously.

7.3 Blocks

Theorem 7.5 says that Z parametrizes representations of all strong real forms
of G simultaneously. Fix I as in Definition 5.32, xi ∈ I with corresponding
Ki. The subset of Z parametrizing (g, Ki)-modules is those (x, y) such that
x is G-conjugate to xi. This set of x is isomorphic to Ki\G/B.

By symmetry it is natural to do the same on the dual side. So let {yj | j ∈
I∨} be a choice of representatives of strong real forms of G∨, fix j and K∨

j =
CentG∨(yj). Then the y ∈ X ∨ which are G∨-conjugate to yj is isomorphic to
K∨

j \G
∨/B∨.

So fix i, j and consider

(7.12) {(x, y) ∈ Z |, x ∼G xi, y ∼G∨ yj} ⊂ Ki\G/B ×K
∨
j \G

∨/B∨.

By Theorem 7.5 this parametrizes a set of (g, Ki) modules: this set is a
block. By the symmetry of the situation it also parametrizes the dual block
of (g∨, K∨

j )-modules.
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8 Appendix: Atlas Examples

This appendix is under construction as of July 14.
We illustrate some of the ideas of the notes using the atlas software.

8.1 Section 1: Root Data

Here are some examples of the matrices A and B of Remark 1.30.

Example 8.1 Here is the root datum for SL(3,C):

main: type

Lie type: A2 sc s

main: rootdatum

Name an output file (return for stdout, ? to abandon):

cartan matrix :

2 -1

-1 2

root basis :

2 -1

-1 2

coroot basis :

1 0

0 1

For more on the type command see Section 8.2. The matrices A and B are
the root basis and coroot basis matrices, respectively.

Example 8.2 Here is the root datum for PSL(3,C):

empty: type

Lie type: A2 ad s

main: rootdatum

Name an output file (return for stdout, ? to abandon):

cartan matrix :

2 -1

-1 2
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root basis :

1 0

0 1

coroot basis :

2 -1

-1 2

Note that A and B are switched.

Exercise 8.3 Show that the following three root data are isomorphic:
Case 1:

root basis :

2 -3

-1 2

coroot basis :

1 0

0 1

Case 2:

root basis :

1 0

0 1

coroot basis :

2 -1

-3 2

Case 3:

root basis :

-1 2

0 1

coroot basis :

-2 1

1 0

See Example 8.12.
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8.2 Section 4: Inner Classes

Here are some examples of groups and inner forms defined using the atlas

software.
The cyclic group of order n is specified as Z/n. We view this as the group

1

n
Z/Z = {

0

n
,
1

n
, . . . ,

n− 1

n
}

An element of finite order of C∗ is given by an element of Q.
The type command defines a complex group and an inner class. The

user enters a product of simple groups and tori, and a finite subgroup of the
center (cf. Section 2.2). The arguments sc and ad give the simply connected
and adjoint groups. The arguments s, c, C and u give the split, compact,
complex and unequal rank inner classes.

Example 8.4 (Example 1: unique inner class of SL(2,C))

empty: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): s

Example 8.5 (Example 2: unique inner class of PSL(2,C))

main: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2

enter inner class(es): s

Example 8.6 (Example 3: split inner class of GL(6,C))
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main: type

Lie type: A5.T1

elements of finite order in the center of the simply connected group:

Z/6.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/6,1/6

enter inner class(es): ss

main: showrealforms

(weak) real forms are:

0: sl(3,H).gl(1,R)

1: sl(6,R).gl(1,R)

Example 8.7 (Example 4: compact inner class of GL(6,C))

main: type

Lie type: A5.T1

elements of finite order in the center of the simply connected group:

Z/6.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/6,1/6

enter inner class(es): cc

main: showrealforms

(weak) real forms are:

0: su(6).u(1)

1: su(5,1).u(1)

2: su(4,2).u(1)

3: su(3,3).u(1)

Example 8.8 (Example 5: compact=split inner class of SO(10,C))

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line
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(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): s

main: showrealforms

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): c

main: showrealforms

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): u
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main: showrealforms

(weak) real forms are:

0: so(11,1)

1: so(9,3)

Example 8.9 (Example 6: illegal inner class)

main: type

Lie type: A1.A1

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): C

sorry, that inner class is not compatible with the weight lattice

Example 8.10 (Example 7: illegal inner class of type D4)

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): u

sorry, that inner class is not compatible with the weight lattice

enter inner class(es):

Example 8.11 (Example 8: inner class of complex group)

main: type

Lie type: E8.E8

elements of finite order in the center of the simply connected group:

enter kernel generators, one per line

49



(ad for adjoint, ? to abort):

enter inner class(es): C

main: showrealforms

(weak) real forms are:

0: e8(C)

Example 8.12 There are three ways to define G2 (and its unique inner
class).

empty: type

Lie type: G2 sc s

or

main: type

Lie type: G2 ad s

or

main: type

Lie type: G2

elements of finite order in the center of the simply connected group:

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): s

Since G2 is both simply connected and adjoint, these are isomorphic. The
software makes different choices for them, leading to the superficially differ-
ent, but isomorphic, root data of Exercise 8.3.

8.3 Section 5.3: K orbits on G/B

Example 8.13 Here is K\G/B for SL(2,R):
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empty: kgb

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

kgbsize: 3

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n] 1 2 e

1: 0 0 [n] 0 2 e

2: 1 1 [r] 2 * 1

There are 3 elements, two closed orbits and one open. The third column gives
the cross action of the simple reflection, and the fourth the Cayley transform.

Example 8.14 Here is K\G/B for PGL(2,R), which has two elements.

real: type

Lie type: A1 ad s

main: kgb

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

kgbsize: 2

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n] 0 1 e

1: 1 1 [r] 1 * 1

If you just want the number of orbits of K on G/B use kgborder.

Example 8.15 real: type

Lie type: E8 sc s

main: kgborder

(weak) real forms are:

0: e8

1: e8(e7.su(2))

2: e8(R)

enter your choice: 2

kgbsize: 320206
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Also kgborder gives the order relation on orbits.

Example 8.16 The Bruhat order for S3.
If G is complex then K\G/B ≃W and the order is the Bruhat order.

real: type

Lie type: A2.A2 sc C

main: kgb

there is a unique real form: sl(3,C)

kgbsize: 6

Name an output file (return for stdout, ? to abandon):

0: 0 0 [C,C,C,C] 2 1 2 1 * * * * e

1: 1 0 [C,C,C,C] 4 0 3 0 * * * * 2,4

2: 1 0 [C,C,C,C] 0 3 0 4 * * * * 1,3

3: 2 0 [C,C,C,C] 5 2 1 5 * * * * 2,1,3,4

4: 2 0 [C,C,C,C] 1 5 5 2 * * * * 1,2,4,3

5: 3 0 [C,C,C,C] 3 4 4 3 * * * * 1,2,1,3,4,3

real: kgborder

kgbsize: 6

Name an output file (return for stdout, ? to abandon):

0:

1: 0

2: 0

3: 1,2

4: 1,2

5: 3,4

The last column gives an element of W embedded diagonally, so ignoring 3, 4
gives W = {e, 2, 1, 21, 12, 121} as products of simple reflections.

8.4 Section 7: Parametrizing the Admissible Dual

The block command gives the block of representations parametrized by pairs
(x, y) corresponding to fixed strong real forms of G and G∨.

Example 8.17 Here is the block of representations of SL(2,R) correspond-
ing to the split real form PGL(2,R) of G∨.

empty: type
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Lie type: A1 sc s

main: block

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

0(0,1): 0 0 [i1] 1 (2,*) e

1(1,1): 0 0 [i1] 0 (2,*) e

2(2,0): 1 1 [r1] 2 (0,1) 1

There are three representations, two discrete series and one principal series.
See Example 7.10.

Example 8.18 Here is the block of PGL(2,R), consisting of the trivial, sgn
and discrete series representations at ρ, dual to the previous one.

block: type

Lie type: A1 ad s

main: block

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

0(0,2): 0 0 [i2] 0 (1,2) e

1(1,0): 1 1 [r2] 2 (0,*) 1

2(1,1): 1 1 [r2] 1 (0,*) 1

Example 8.19 Here is the unique block of the SL(3,C) (viewed as a real
group), parametrized by W = S3.
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block: type

Lie type: A2.A2 sc C

main: block

there is a unique real form: sl(3,C)

there is a unique dual real form choice: sl(3,C)

Name an output file (return for stdout, ? to abandon):

0(0,5): 0 0 [C+,C+,C+,C+] 2 1 2 1 (*,*) (*,*) (*,*) (*,*) e

1(1,4): 1 0 [C+,C-,C+,C-] 4 0 3 0 (*,*) (*,*) (*,*) (*,*) 2,4

2(2,3): 1 0 [C-,C+,C-,C+] 0 3 0 4 (*,*) (*,*) (*,*) (*,*) 1,3

3(3,2): 2 0 [C+,C-,C-,C+] 5 2 1 5 (*,*) (*,*) (*,*) (*,*) 2,1,3,4

4(4,1): 2 0 [C-,C+,C+,C-] 1 5 5 2 (*,*) (*,*) (*,*) (*,*) 1,2,4,3

5(5,0): 3 0 [C-,C-,C-,C-] 3 4 4 3 (*,*) (*,*) (*,*) (*,*) 1,2,1,3,4,3

You can find out the sizes of all of the blocks using the blocksizes

command. The rows and columns are parametrized by real forms of G and
G∨, which are available from the showrealforms and showdualrealforms

commands.

Example 8.20 Here are the blocks of real forms of E8.

block: type

Lie type: E8 sc s

main: blocksizes

0 0 1

0 3150 73410

1 73410 453060

main: showrealforms

(weak) real forms are:

0: e8

1: e8(e7.su(2))

2: e8(R)

main: showdualforms

(weak) dual real forms are:

0: e8

1: e8(e7.su(2))

2: e8(R)

The block of size 453, 060 is the block of the trivial representation of the
split real form, which is self-dual. There are two blocks which are singletons:
the trivial representation of the compact real form, and its dual, the unique
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irreducible principal series of the split real form with infinitesimal character
ρ.
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