Unitary representations of reductive groups

David Vogan

University of Utah July 10–14, 2017

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Outline

- 1. Why study unitary representations
- 2. Langlands classification: big picture
- 3. Introduction to Harish-Chandra modules
- 4. (\mathfrak{h}, L) -modules as ring modules
- 5. Cartan subgroups and characters
- 6. Lie algebra cohomology
- 7. Langlands classification: some details
- 8. Hermitian forms
- 9. Case of $SL(2, \mathbb{R})$
- 10. Calculating signatures of invariant Hermitian forms
- 11. Unitarity algorithm

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

What's a representation?

Definition. Representation of group *G* on vec space V_{ρ} is group homomorphism

 $\rho\colon G\to GL(V_{\rho}).$

Equivalently: action of G on V_{ρ} by linear maps.

Main example. $G \curvearrowright X$, V_{ρ} = functions on X.

Definition. Hilbert space is cplx vec space \mathcal{H} with form \langle, \rangle :

1.
$$\langle v, w \rangle = \overline{\langle w, v \rangle} \quad \langle av_1 + bv_2, w \rangle = a \langle v_1, w \rangle + b \langle v_2, w \rangle;$$

2. $\langle v, v \rangle > 0 \quad (0 \neq v \in \mathcal{H});$

3. \mathcal{H} complete in metric $d(v, w) =_{def} \langle v - w, v - w \rangle^{1/2}$.

Definition. Unitary representation of *G* on Hilbert space \mathcal{H}_{π} is a group homomorphism

 $\pi\colon G\to U(\mathcal{H}_{\pi}).$

Equiv: action of *G* on \mathcal{H}_{π} by unitary linear maps. Main example. $G \curvearrowright (X, dx), \mathcal{H}_{\pi} = L^{2}(X)$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

^{5.} Cartan subgroups and characters

^{6.} Lie algebra cohomology

^{7.} Langlands classification B

Abstract harmonic analysis for dummies

Group *G* acts on *X*, have questions about *X*.

Step 1. Attach to *X* vector space *V* of functions on *X*. Questions about *X* \rightsquigarrow questions about *V*. **Step 2.** Find finest *G*-eqvt decomp $V = \bigoplus_{\rho} V_{\rho}$. Questions about *V* \rightsquigarrow questions about each V_{ρ} . Each V_{ρ} is irreducible representation of *G*. **Step 3.** Understand \widehat{G} = all irreducible representations of *G*.

Step 4. Answers about irr reps \rightsquigarrow answers about X.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.

Step 1. Attach to *X* Hilbert space \mathcal{H} (e.g. $L^2(X)$). Questions about $X \rightsquigarrow$ questions about \mathcal{H} . **Step 2.** Find finest *G*-eqvt decomp $\mathcal{H} = \bigoplus_{\pi} \mathcal{H}_{\pi}$. Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{π} . Each \mathcal{H}_{α} is irreducible unitary representation of *G*. **Step 3.** Understand \widehat{G}_u = all irreducible unitary representations of *G*: unitary dual problem. **Step 4.** Answers about irr reps \rightsquigarrow answers about *X*.

Topic for these lectures: Step 3 for reductive G.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

Case of $SL(2, \mathbb{R})$

10. Signature algorithm

Why are unitary representations better?

Why Gelfand's unitary rep $\rightarrow \oplus$ irr unitary >> dummies' any rep $\rightarrow \oplus$ irr reps? Programs seek $V = \bigoplus_{\rho} V_{\rho}$, $\mathcal{H} = \bigoplus_{\pi} \mathcal{H}_{\pi}$. *«* eigenspace decomp of lin op = spectral theory. Spectral theory of unitary ops on Hilb spaces >> spectral theory of linear ops on top vec spaces. Easy: $\mathcal{H}_1 \subset \mathcal{H}_\pi$ *G*-invt closed $\implies \mathcal{H}_\pi = \mathcal{H}_1 \oplus \mathcal{H}_1^{\perp}$. → 1ST: get direct integral decomposition $\mathcal{H} = \oplus_{\pi \in \widehat{G}_{\mu}} M_{\pi} \otimes \mathcal{H}_{\pi}$ arb unitary ~> irr unitary under weak hyps. 2ND: ∃ plenty of unitary (e.g. *G*-invt msres). 3RD: non-Hilb space questions (e.g. Schwartz space for \mathbb{R}) can be studied using unitary reps:

FT(Schwartz space) = Schwartz space.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Why study nonunitary representations?

 $\widehat{G} =$ all irr reps =cplx alg variety.

Reason: Hom_{groups}(G, GL(V)) \approx alg variety.

Reason for the reason: if G has N generators, then

 $Hom(G, GL(n, \mathbb{C})) = N$ -tuples of matrices (alg variety) satisfying relations of G (alg subvariety).

Alg varieties can admit beautiful descriptions.

Langlands classif is beautiful description of $\widehat{G(\mathbb{R})}$

 $\widehat{G(\mathbb{R})}_h$ = reps with invt Herm form = real form of $\widehat{G(\mathbb{R})}$ (Knapp-Zuckerman). $\widehat{G(\mathbb{R})}_u$ = reps with pos invt form defined by inequalities: less beautiful.

Our plan this week: $G(\mathbb{R})$ real reductive Lie...

- 1. Langlands classification of $\widehat{G}(\mathbb{R})$;
- 2. Knapp-Zuckerman identification $\widehat{G}(\mathbb{R})_h \subset \widehat{G}(\mathbb{R});$
- 3. signature of invt Herm form on each $\rho \in \widehat{G}(\mathbb{R})_h$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Moral of the story

Aiming at atlas classification of $G(\mathbb{R})_u$, equiv classes of irr unitary reps of real reductive $G(\mathbb{R})$.

First: Langlands classification of $\widehat{G}(\mathbb{R})$, "all" irr reps of $G(\mathbb{R})$, as cplx alg variety.

Second: Knapp-Zuckerman classification of $\widehat{G}(\mathbb{R})_h$, irr Hermitian reps of $G(\mathbb{R})$, as real points of $\widehat{G}(\mathbb{R})$.

Third: atlas computation of signature of any invt Herm form.

Fourth: inspect answers to signature computations: unitary reps ww definite signatures.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

What can we ask about representations?

Start with a reasonable category of representations... Example: cplx reductive $\mathfrak{g} \supset \mathfrak{b} = \mathfrak{h} + \mathfrak{n}$; BGG category \mathcal{O} consists of $U(\mathfrak{g})$ -modules V subject to

- 1. fin gen: $\exists V_0 \subset V$, dim $V_0 < \infty$, $U(\mathfrak{g})V_0 = V$.
- 2. b-locally finite: $\forall v \in V$, dim $U(\mathfrak{b})v < \infty$.
- 3. h-semisimple: $V = \sum_{\gamma \in \mathfrak{h}^*} V_{\gamma}$.

Want precise information about reps in the category. Example: V in category O

- 1. dim V_{γ} is almost polynomial as function of γ .
- 2. *V* has a formal character $\left[\sum_{\lambda \in \mathfrak{h}^*} a_V(\lambda) e^{\lambda}\right] / \Delta$.

Want construction/classification of reps in the category. Example: $\lambda \in \mathfrak{h}^* \rightsquigarrow I(\lambda) =_{def} U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} = Verma module.$

- 1. (STRUCTURE THM): $I(\lambda)$ has highest weight $\mathbb{C}_{\lambda} \hookrightarrow I(\lambda)^{n}$.
- 2. (QUOTIENT THM): $I(\lambda)$ has unique irr quo $J(\lambda)$.
- 3. (CLASSIF THM): Each irr in \mathcal{O} is $J(\lambda)$, unique $\lambda \in \mathfrak{h}^*$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

Description: 0. Case of SL(2, ℝ)

10. Signature algorithm

How do you do that?

 $\mathfrak{g} \supset \mathfrak{b} = \mathfrak{h} + \mathfrak{n}, \Delta = \Delta(\mathfrak{g}, \mathfrak{h}) \subset \mathfrak{h}^*$ roots, Δ^+ roots in \mathfrak{n} .

 \rightsquigarrow partial order on \mathfrak{h}^* : $\mu' \leq \mu \iff \mu$

$$\mathcal{L} \leq \mu \iff \mu' \in \mu - \mathbb{N}\Delta^+$$

 $\iff \mu' = \mu - \sum_{\alpha \in \Delta^+} n_{\alpha} \alpha, \quad (n_{\alpha} \in \mathbb{N})$

Proposition. Suppose $V \in \mathcal{O}$.

1. If $V \neq 0, \exists maximal \mu \in \mathfrak{h}^*$ subject to $V_{\mu} \neq 0$. 2. If $\mu \in \mathfrak{h}^*$ is maxl subj to $V_{\mu} \neq 0$, then $V_{\mu} \subset V^n$. 3. If $V \neq 0, \exists \mu$ with $0 \neq V_{\mu} \subset V^n$. 4. $\forall \lambda \in \mathfrak{h}^*, \operatorname{Hom}_{\mathfrak{g}}(I(\lambda), V) \simeq \operatorname{Hom}_{\mathfrak{h}}(\mathbb{C}_{\lambda}, V^n)$.

Parts (1)–(3) guarantee existence of "highest weights;" based on formal calculations with lattices in vector spaces, and $n \cdot V_{\mu'} \subset \sum_{\alpha \in \Delta^+} V_{\mu'+\alpha}$.

Sketch of proof of (4):

 $\operatorname{Hom}_{U(\mathfrak{g})}(U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda},V)\simeq\operatorname{Hom}_{U(\mathfrak{b})}(\mathbb{C}_{\lambda},V)=\operatorname{Hom}_{U(\mathfrak{h})}(\mathbb{C}_{\lambda},V^{\mathfrak{n}}).$

First isom: "change of rings." Second: $\mathfrak{n} \cdot \mathbb{C}_{\lambda} =_{def} \mathbf{0}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Moral of the story

For category \mathcal{O} , three key ingredients:

- 1. Change of rings $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \cdot \rightsquigarrow$ Verma mods $I(\lambda)$.
- 2. Universality: $\operatorname{Hom}_{\mathfrak{g}}(I(\lambda), V) \simeq \operatorname{Hom}_{\mathfrak{h}}(\mathbb{C}_{\lambda}, V^{\mathfrak{n}}).$
- 3. Highest weight exists: J irr $\implies J^n \neq 0$.

#2 is homological alg, **#3** is comb/geom in \mathfrak{h}^* .

Irrs *J* in $\mathcal{O} \iff \lambda \in \mathfrak{h}^*$; characteristic is $\mathbb{C}_{\lambda} \subset J(\lambda)^n$. Same three ideas apply to (\mathfrak{g}, K) -modules.

Technical problem: change of rings needed is not projective, so \otimes has to be supplemented by Tor.

Parallel problem: replace $J^n = H^0(n, J)$ by some derived functors $H^p(n, J)$.

Irr $G(\mathbb{R})$ -reps $J \leftrightarrow \gamma \in \widehat{H(\mathbb{R})}$, some θ -stable Cartan $H(\mathbb{R}) \subset G(\mathbb{R})$; characteristic is $\mathbb{C}_{\gamma} \subset H^{s}(\mathfrak{n}, J)$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

END OF LECTURE ONE

BEGINNING OF LECTURE TWO

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Principal series for $SL(2, \mathbb{R})$

To understand Harish-Chandra's category of group representations, need a serious example.

Use principal series repns for $SL(2, \mathbb{R}) =_{def} G(\mathbb{R})$. $G(\mathbb{R}) \curvearrowright \mathbb{R}^2$, so get rep of $G(\mathbb{R})$ on functions on \mathbb{R}^2 :

 $[\rho(g)f](v)=f(g^{-1}\cdot v).$

Lie algs easier than Lie gps \rightsquigarrow write $\mathfrak{sl}(2,\mathbb{R})$ action, basis

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

Action on functions on \mathbb{R}^2 is by vector fields:

$$\rho(D)f = -x_1\frac{\partial f}{\partial x_1} + x_2\frac{\partial f}{\partial x_2}, \quad \rho(E) = -x_2\frac{\partial f}{\partial x_1}, \quad \rho(F) = -x_1\frac{\partial f}{\partial x_2}.$$

General principle: representations on function spaces are reducible \iff exist $G(\mathbb{R})$ -invt differential operators.

Euler deg operator $E = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$ commutes with $G(\mathbb{R})$. Conclusion: interesting reps of $G(\mathbb{R})$ on eigenspaces of E.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Principal series for $SL(2, \mathbb{R})$ (continued)

Previous slide: expect interesting reps of $G(\mathbb{R}) = SL(2,\mathbb{R})$ on homogeneous functions on \mathbb{R}^2 .

For $\nu \in \mathbb{C}$, $\epsilon \in \mathbb{Z}/2\mathbb{Z}$, define $W^{\nu,\epsilon} = \{f : (\mathbb{R}^2 - 0) \to \mathbb{C} \mid f(tx) = |t|^{-\nu - 1} \operatorname{sgn}(t)^{\epsilon} f(x)\},$

functions on the plane homog of degree $-(\nu + 1, \epsilon)$.

 $\nu \rightsquigarrow \nu + 1$ simplifies MANY things later...

Study $W^{\nu,\epsilon}$ by restriction to circle {($\cos \theta, \sin \theta$)}:

 $W^{\nu,\epsilon} \simeq \{w: S^1 \to \mathbb{C} \mid w(-s) = (-1)^{\epsilon} w(s)\}, \ f(r,\theta) = r^{-\nu-1} w(\theta).$

Compute Lie algebra action in polar coords using

$$\frac{\partial}{\partial x_1} = -x_2 \frac{\partial}{\partial \theta} + x_1 \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial x_2} = x_1 \frac{\partial}{\partial \theta} + x_2 \frac{\partial}{\partial r}, \\ \frac{\partial}{\partial r} = -\nu - 1, \qquad x_1 = \cos \theta, \qquad x_2 = \sin \theta.$$

Plug into formulas on preceding slide: get

$$\rho^{\nu,\epsilon}(D) = 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (-\cos^2\theta + \sin^2\theta)(\nu+1)$$
$$\rho^{\nu,\epsilon}(E) = \sin^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu+1),$$
$$\rho^{\nu,\epsilon}(F) = -\cos^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu+1).$$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

A more suitable basis

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\begin{split} \rho^{\nu,\epsilon}(D) &= 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (-\cos^2\theta + \sin^2\theta)(\nu+1),\\ \rho^{\nu,\epsilon}(E) &= \sin^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu+1),\\ \rho^{\nu,\epsilon}(F) &= -\cos^2\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)(\nu+1). \end{split}$$

Hard to make sense of. Clear: family of reps analytic (actually linear) in complex parameter ν .

Big idea: see how properties change as function of ν .

Problem: $\{D, E, F\}$ adapted to wt vectors for diagonal Cartan subalgebra; rep $\rho^{\nu,\epsilon}$ has no such wt vectors.

But rotation matrix E - F acts simply by $\partial/\partial \theta$.

Suggests new basis of the complexified Lie algebra:

$$H = -i(E - F), \quad X = \frac{1}{2}(D + iE + iF), \quad Y = \frac{1}{2}(D - iE - iF).$$

$$\rho^{\nu,\epsilon}(H) = \frac{1}{i} \frac{\partial}{\partial \theta}, \ \rho^{\nu,\epsilon}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right), \ \rho^{\nu,\epsilon}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right)$$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Matrices for principal series, bad news

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\rho^{\nu,\epsilon}(H) = \frac{1}{i} \frac{\partial}{\partial \theta}, \ \rho^{\nu,\epsilon}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right), \ \rho^{\nu,\epsilon}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu+1) \right).$$

These one act simply on basis $W_{\nu}(\cos\theta, \sin\theta) = e^{im\theta}$.

ops act simply on basis $W_m(\cos\theta, \sin\theta)$

$$\rho^{\nu,\epsilon}(H)w_{m} = mw_{m},$$

$$\rho^{\nu,\epsilon}(X)w_{m} = \frac{1}{2}(m+\nu+1)w_{m+2},$$

$$\rho^{\nu,\epsilon}(Y)w_{m} = \frac{1}{2}(-m+\nu+1)w_{m-2}$$

Suggests reasonable function space to consider:

 $W^{\nu,\epsilon,\mathcal{K}(\mathbb{R})} =$ fns homog of deg (ν,ϵ), finite under rotation = span({ $w_m \mid m \equiv \epsilon \pmod{2}$ }).

 $W^{\nu,\epsilon,\mathcal{K}(\mathbb{R})}$ has beautiful rep of g: irr for most ν , easy submods otherwise. Not preserved by $G(\mathbb{R}) = SL(2, \mathbb{R})$: exp $(A) \in G(\mathbb{R}) \rightsquigarrow \sum A^k/k!$: $A^k \curvearrowright W^{\nu,\epsilon,K(\mathbb{R})}$, sum not.

David Vogan

3. (α, K) -modules

Structure of principal series: good news

Original question was action of $G(\mathbb{R}) = SL(2, \mathbb{R})$ on

 $W^{\nu,\epsilon,\infty} = \{ f \in C^{\infty}(\mathbb{R}^2 - 0) \mid f \text{ homog of deg } -(\nu + 1, \epsilon) \} :$

what are the closed $G(\mathbb{R})$ -invt subspaces...?

Found nice subspace $W^{\nu,\epsilon,K(\mathbb{R})}$, explicit basis, explicit action of Lie algebra \rightsquigarrow easy to describe \mathfrak{g} -invt subspaces.

Theorem (Harish-Chandra) There is one-to-one corr

 $\mathsf{closed}\ G(\mathbb{R})\mathsf{-invt}\ S\subset W^{\nu,\epsilon,\infty}\nleftrightarrow \mathfrak{g}(\mathbb{R})\mathsf{-invt}\ S^{\mathsf{K}}\subset W^{\nu,\epsilon,\mathsf{K}}$

 $S \rightsquigarrow K$ -finite vectors in $S, S^K \rightsquigarrow \overline{S^K}$. Content of thm: closure carries g-invt to *G*-invt.

Why this isn't obvious: SO(2) acting by translation on $C^{\infty}(S^1)$. Lie alg acts by $\frac{d}{d\theta}$, so closed subspace

 $E = \{f \in C^{\infty}(S^{1}) \mid f(\cos \theta, \sin \theta) = 0, \theta \in (-\pi/2, \pi/2) + 2\pi\mathbb{Z}\}$

is preserved by $\mathfrak{so}(2)$; *not* preserved by rotation.

Reason: Taylor series for in $f \in E$ doesn't converge to f.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Same formalism, general $G(\mathbb{R})$

Lesson of $SL(2, \mathbb{R})$ princ series: vecs finite under SO(2) have nice/comprehensible/meaningful Lie algebra action.

Back to general setting: $G(\mathbb{R})$ real pts of conn reductive complex algebraic group \rightsquigarrow can embed

 $G(\mathbb{R}) \hookrightarrow GL(n, \mathbb{R})$, stable by transpose, $G(\mathbb{R})/G(\mathbb{R})_0$ finite.

Recall polar decomposition:

 $GL(n,\mathbb{R}) = O(n) \times (\text{pos def symmetric matrices})$

 $= O(n) \times \exp(\text{symmetric matrices}).$

Inherited by $G(\mathbb{R})$ as Cartan decomposition for $G(\mathbb{R})$:

 $\mathcal{K}(\mathbb{R}) = \mathcal{O}(n) \cap \mathcal{G}, \quad \mathfrak{s}_0 = \mathfrak{g}_0 \cap (\text{symm mats}), \quad \mathcal{S} = \exp(\mathfrak{s}_0)$

 $G(\mathbb{R}) = K(\mathbb{R}) \times S = K(\mathbb{R}) \times \exp(\mathfrak{s}_0).$

 (ρ, W) rep of *G* on complete loc cvx top vec *W*;

 $W^{\mathcal{K}(\mathbb{R})} = \{ w \in W \mid \operatorname{dim} \operatorname{span}(\rho(\mathcal{K}(\mathbb{R}))w) < \infty \},$

 $W^{\infty} = \{ w \in W \mid G(\mathbb{R}) \to W, g \mapsto \rho(g) w \text{ smooth} \}.$

Definition. The Harish-Chandra-module of *W* is $W^{K(\mathbb{R}),\infty}$: representation of Lie algebra $\mathfrak{g}(\mathbb{R})$ and of group $K(\mathbb{R})$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Category of $(\mathfrak{h}(\mathbb{R}), L(\mathbb{R}))$ -modules

Setting: $\mathfrak{h}(\mathbb{R}) \supset \mathfrak{l}(\mathbb{R})$ real Lie algebras, $L(\mathbb{R})$ compact Lie group acting on $\mathfrak{h}(\mathbb{R})$ by Lie algebra automorphisms Ad. Definition. An $(\mathfrak{h}(\mathbb{R}), L(\mathbb{R}))$ -module is complex vector space W, with reps of $\mathfrak{h}(\mathbb{R})$ and of $L(\mathbb{R})$, subject to

- each w ∈ W belongs to fin-diml L(ℝ)-invt W₀, so that action of L(ℝ) on W₀ continuous (hence smooth);
- 2. differential of $L(\mathbb{R})$ action is $\mathfrak{l}(\mathbb{R})$ action;

3. For
$$k \in L(\mathbb{R}), Z \in \mathfrak{h}(\mathbb{R}), w \in W$$
,
 $k \cdot (Z \cdot (k^{-1} \cdot w)) = [\mathrm{Ad}(k)(Z)] \cdot w$.

Proposition. Passage to smooth $K(\mathbb{R})$ -finite vectors defines a functor

(reps of $G(\mathbb{R})$ on complete locally convex W)

 $\longrightarrow (\mathfrak{g}(\mathbb{R}), \mathcal{K}(\mathbb{R}))$ -modules $W^{\mathcal{K}(\mathbb{R}), \infty}$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Complexified is better

Complex vector spaces >> real vector spaces. Reason: linear maps are (nearly) diagonalizable. Example: Motion of pendulum \leftrightarrow real-valued

$$\phi \colon \mathbb{R}_{\mathsf{time}} \to \mathbb{R}_{\mathsf{displacement}}, \qquad \frac{d^2 \phi}{dt^2} = -\lambda^2 \phi.$$

Solutions $\phi(t) = c_1 \cos(\lambda t) + c_2 \sin(\lambda t)$ $(c_1, c_2 \in \mathbb{R})$.

Easier to study complex-valued

$$\phi \colon \mathbb{R}_{\text{time}} \to \mathbb{C}_{\text{displacement}}, \qquad \frac{d^2 \phi}{dt^2} = -\lambda^2 \phi.$$

· .

Solutions $\phi(t) = a_1 e^{i\lambda t} + a_2 e^{-i\lambda t}$ $(a_1, a_2 \in \mathbb{C})$. If you need to build a clock, real-valued $\iff a_2 = \overline{a_1}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Complexified Lie algebras

real Lie algebra $\mathfrak{h}(\mathbb{R}) \rightsquigarrow \text{complex Lie algebra}$ $\mathfrak{h} = \mathfrak{h}(\mathbb{C}) =_{def} \mathfrak{h}(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ $= \{X + iY \mid X, Y \in \mathfrak{h}(\mathbb{R}).\}$ complexification of $\mathfrak{h}(\mathbb{R}).$

Proposition. Representation (π_0, V) of $\mathfrak{h}(\mathbb{R}) \iff$ representation (π_1, V) of $\mathfrak{h}(\mathbb{C})$:

$$\pi_1(X + iY) = \pi_0(X) + i\pi_0(Y), \qquad \pi_0(X) = \pi_1(X).$$

Identification $\pi_0 \leftrightarrow \pi_1$ is perfect; write π for both.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Complexified compact Lie groups

Same thing works for compact groups...

real compact $L(\mathbb{R}) \subset U(n) \rightsquigarrow$ complex reductive alg

 $L = L(\mathbb{C}) =_{\mathsf{def}} L(\mathbb{R}) \exp(i\mathfrak{l}(\mathbb{R}) \subset GL(n,\mathbb{C}))$

complexification of $L(\mathbb{R})$.

Coordinate-free definition:

reg fns on $L(\mathbb{C}) = L(\mathbb{R})$ -finite \mathbb{C} -valued fns on $L(\mathbb{R})$

Proposition. Fin-diml continuous (π_0, V) of $L(\mathbb{R}) \iff$ fin-diml algebraic representation (π_1, V) of $L(\mathbb{C})$:

 $\pi_1(l \exp(iY)) = \pi_0(l) \exp(id\pi_0(Y)), \qquad \pi_0(l) = \pi_1(l).$

Identification $\pi_0 \leftrightarrow \pi_1$ is perfect; write π for both.

 $L(\mathbb{R})$ -finite cont reps of $L(\mathbb{R})$ = algebraic reps of $L(\mathbb{C})$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Category of (\mathfrak{h}, L) -modules

Now we can complexify Harish-Chandra's category...

Setting: $\mathfrak{h} \supset \mathfrak{l}$ complex Lie algebras, *L* complex reductive algebraic acting on \mathfrak{h} by Lie algebra automorphisms Ad.

Definition. An (\mathfrak{h}, L) -module is complex vector space W, with reps of \mathfrak{h} and of L, subject to

- 1. L action is algebraic (hence smooth);
- 2. differential of *L* action is *l* action;
- 3. For $k \in L, Z \in \mathfrak{h}, w \in W$, $k \cdot (Z \cdot (k^{-1} \cdot w)) = [\operatorname{Ad}(k)(Z)] \cdot w$.

Write $\mathcal{M}(\mathfrak{h}, L)$ for category of (\mathfrak{h}, L) -modules.

Proposition. Smooth K-finite vectors define functor

 $W \in (\text{reps of } G(\mathbb{R}) \text{ on complete locally convex space})$ $\longrightarrow W^{K,\infty} \in \mathcal{M}(\mathfrak{g}, K)$

Definition of $\mathcal{M}(\mathfrak{h}, L)$ makes sense for L algebraic (not necessarily reductive).

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Representations and *R*-modules

Rings and modules familiar and powerful → try to make representation categories into module categories.

Category of reps of $\mathfrak{h}(\mathbb{R})$ = category of $U(\mathfrak{h}(\mathbb{R}))$ -modules. Seek parallel for locally finite reps of compact $L(\mathbb{R})$:

$$\begin{split} R(L(\mathbb{R})) &= \text{conv alg of } \mathbb{R}\text{-valued } L(\mathbb{R})\text{-finite msres on } L(\mathbb{R}) \\ &\simeq_{(\text{Peter-Weyl})} \left[\sum_{(\mu, E_{\mu}) \in \widehat{L(\mathbb{R})}} \text{End}(E_{\mu}) \right] (\mathbb{R}) \end{split}$$

 $1 \notin R(L(\mathbb{R}))$ if $L(\mathbb{R})$ is infinite: convolution identity is delta function at $e \in L(\mathbb{R})$, not $L(\mathbb{R})$ -finite.

 $\alpha \subset \widehat{L(\mathbb{R})} \text{ finite, self-dual} \rightsquigarrow 1_{\alpha} =_{def} \sum_{\mu \in \alpha} Id_{\mu} \in R(L(\mathbb{R})).$ Elements 1_{α} are approximate identity: $\forall r \in R(L(\mathbb{R})) \ \exists \alpha(r)$ finite so $1_{\beta} \cdot r = r \cdot 1_{\beta} = r \text{ if } \beta \supset \alpha(r).$ $R(L(\mathbb{R}))$ -module M is approximately unital if $\forall m \in M \ \exists \alpha(m)$ finite so $1_{\beta} \cdot m = m \text{ if } \beta \supset \alpha(m).$ Loc fin reps of $L(\mathbb{R}) =$ approx unital $R(L(\mathbb{R}))$ -modules. R-mod =_{def} category of approximately unital R-modules.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*h*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

3. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Representations and *R*-modules complexified

Category of reps of cplx \mathfrak{h} = category of $U(\mathfrak{h})$ -modules.

Parallel for locally finite reps of reductive algebraic *L*, O(L) = algebra of regular functions on *L*:

R(L) = L-finite linear functionals $\subset \mathcal{O}(L)^*$

 $\simeq \sum_{(\mu, E_{\mu}) \in \widehat{L}} \mathsf{End}(E_{\mu})$

Algebra structure $R(L) \otimes R(L) \rightarrow R(L)$ is dual to coproduct $\mathcal{O}(L) \rightarrow \mathcal{O}(L) \otimes \mathcal{O}(L)$ (\longleftrightarrow group multiplication $L \times L \rightarrow L$).

$$lpha \subset \widehat{\mathcal{L}}$$
 finite \rightsquigarrow 1 $_{lpha} =_{\mathsf{def}} \sum_{\mu \in lpha} \mathsf{Id}_{\mu^{+}}$

Alg reps of L = approx unital R(L)-modules.

Exercise: define R(L) for any complex algebraic group.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*h*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Hecke algebras

Setting: $\mathfrak{h}\supset\mathfrak{l}$ cplx Lie algs, L reductive alg $\frown\mathfrak{h}$ by Lie alg automorphisms Ad.

Definition. The Hecke algebra $R(\mathfrak{h}, L)$ is

 $R(\mathfrak{h},L)=U(\mathfrak{h})\otimes_{U(\mathfrak{l})}R(L)$

 \simeq [conv alg of $L(\mathbb{R})$ -finite $U(\mathfrak{h})$ -valued msres on $L]/U(\mathfrak{l})$

 $R(\mathfrak{h}, L)$ inherits approx identity from subalgebra R(L).

Proposition. $\mathcal{M}(\mathfrak{h}, L) = R(\mathfrak{h}, L)$ -mod: (\mathfrak{h}, L) modules are approximately unital modules for Hecke algebra $R(\mathfrak{h}, L)$.

Immediate corollary: $\mathcal{M}(\mathfrak{h}, L)$ has projective resolutions, so derived functors...

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Group reps and Lie algebra reps

 $G(\mathbb{R})$ reductive $\supset K(\mathbb{R})$ max cpt, $\mathfrak{Z}(\mathfrak{g}) =$ center of $U(\mathfrak{g})$.

Definition. Representation (π, V) of $G(\mathbb{R})$ on complete locally convex V is *quasisimple* if $\pi^{\infty}(z) =$ scalar, all $z \in \mathfrak{Z}(\mathfrak{g})$. Algebra homomorphism $\chi_{\pi} \colon \mathfrak{Z}(\mathfrak{g}) \to \mathbb{C}$ is the *infinitesimal character of* π .

Theorem (Segal, Harish-Chandra)

- 1. Any irreducible (\mathfrak{g}, K) -module is quasisimple.
- 2. Any irreducible unitary rep of $G(\mathbb{R})$ is quasisimple.
- 3. Suppose *V* quasisimple rep of $G(\mathbb{R})$. Then $W \mapsto W^{K,\infty}$ is bijection between subrepresentations

 $(\mathsf{closed}\ \boldsymbol{W}\subset \boldsymbol{V})\leftrightarrow (\boldsymbol{W}^{\boldsymbol{K},\infty}\subset \boldsymbol{V}^{\boldsymbol{K},\infty}).$

4. (irr quasisimple reps of $G(\mathbb{R})$) \rightsquigarrow (irr (\mathfrak{g}, K) -modules), $W_{\pi} \rightsquigarrow W_{\pi}^{K,\infty}$ is surjective.

Idea of proof: $G(\mathbb{R})/K(\mathbb{R}) \simeq \mathfrak{s}_0$, vector space. Describe anything analytic on $G(\mathbb{R})$ by Taylor expansion along $K(\mathbb{R})$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*h*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

3. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

END OF LECTURE TWO

BEGINNING OF LECTURE THREE

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

So where are we now?

Harish-Chandra's notion of all irreducible representations π of $G(\mathbb{R})$: continuous irreducible on complete loc cvx top vec space W_{π} , quasisimple: center of $U(\mathfrak{g})$ acts by scalars on W_{π}^{∞} .

 $\rightsquigarrow W_{\pi}^{K,\infty}$ irr (\mathfrak{g}, K) -module of $K(\mathbb{R})$ -finite smooth vecs.

 π and π' infinitesimally equivalent if $W_{\pi}^{K,\infty} \simeq W_{\pi'}^{K,\infty}$.

 $\widehat{G}(\mathbb{R}) =_{def}$ infinitesimal equiv classes of irr quasisimple, so $\widehat{G(\mathbb{R})} \simeq_{def}$ simple $R(\mathfrak{g}, K)$ -modules.

Notice right side depends only on atlas data: complex G, involutive automorphism θ , $K = G^{\theta}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*h*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

atlas point of view for Cartans

Complex torus *H* is naturally $H \simeq \mathbb{C}^{\times} \otimes_{\mathbb{Z}} X_*(H)$, Consequently *H* has unique compact real form

$$\begin{split} \sigma_{\boldsymbol{c}}(\boldsymbol{z}\otimes\boldsymbol{\xi}) =_{\mathsf{def}} \overline{\boldsymbol{z}}^{-1}\otimes\boldsymbol{\xi} & (\boldsymbol{z}\in\mathbb{C}^{\times},\boldsymbol{\xi}\in\boldsymbol{X}_{*}(H)), \\ H(\mathbb{R},\sigma_{\boldsymbol{c}}) = \boldsymbol{S}^{1}\otimes_{\mathbb{Z}}\boldsymbol{X}_{*}(H)\simeq(\boldsymbol{S}^{1})^{\mathsf{rk}(H)}. \end{split}$$

Reason is that $S^1 = \{z \in \mathbb{C}^{\times} \mid z = \overline{z}^{-1}\}.$

Proposition.

1. Real form σ of $H \leftrightarrow inv$ aut $\theta \in Aut(H)$:

 $\theta(h) =_{\mathsf{def}} \sigma(\sigma_c(h)).$

2. Unique maximal compact subgroup of $H(\mathbb{R}, \sigma)$ is

 $T(\mathbb{R}) =_{\mathsf{def}} H(\mathbb{R}, \sigma)^{\theta} = H(\mathbb{R}, \sigma) \cap H(\mathbb{R}, \sigma_c).$

3. Complexification of $T(\mathbb{R})$ is $T(\mathbb{C}) = H^{\theta}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

atlas point of view for structure

 $H(\mathbb{R})$ real torus with Cartan involution $\theta \in Aut(H)$. Cartan decomp of $\mathfrak{h}(\mathbb{R})$ is into ± 1 eigenspaces of θ

$$\mathfrak{h}(\mathbb{R}) = \mathfrak{t}(\mathbb{R}) + \mathfrak{a}(\mathbb{R}), \quad \mathfrak{a}(\mathbb{R}) = \{X \in \mathfrak{h}(\mathbb{R}) \mid \theta X = -X\}$$

 $H(\mathbb{R}) \simeq T(\mathbb{R}) \exp(\mathfrak{a}(\mathbb{R})).$

Because $H(\mathbb{R}, \sigma)$ is abelian, this is isomorphism of groups (but not of algebraic groups).

 $exp(\mathfrak{a}(\mathbb{R})) \text{ is just identity component of real algebraic group}$ $A(\mathbb{R}) = \{h \in H(\mathbb{R}) \mid \theta(z) = z^{-1}\}.$ Examples $\theta \qquad H(\mathbb{R}) \qquad T(\mathbb{R}) \qquad exp \mathfrak{a}(\mathbb{R})$ $\theta(z) = z^{-1} \qquad \mathbb{R}^{\times} \qquad \{\pm 1\} \qquad \{e^t \mid t \in \mathbb{R}\} \\ \theta(z) = z \qquad S^1 \qquad \{e^{is} \mid s \in \mathbb{R}\} \qquad \{1\} \\ \theta(z, w) = (w, z) \qquad \mathbb{C}^{\times} \qquad \{(e^{is}, e^{is})\} \qquad \{(e^t, e^{-t})\}$

All real algebraic tori are products of these three.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

atlas point of view for characters

 $H(\mathbb{R}) \simeq T(\mathbb{R}) \exp(\mathfrak{a}(\mathbb{R})).$

Unitary characters of $T(\mathbb{R})$ are restrictions of algebraic characters of $T = H^{\theta}$, namely $X^*/(1 - \theta)X^*$.

Lie algebra chars of $\mathfrak{h}(\mathbb{R})$ are complexified differentials of algebraic characters of H, namely $X^* \otimes_{\mathbb{Z}} \mathbb{C}$.

$$\begin{split} \widehat{H(\mathbb{R})} &= \text{one-dimensional } (\mathfrak{h}, T) \text{-modules} \\ &= \{(\gamma, \phi) \mid \gamma \in X^*(T), \ \phi \in \mathfrak{h}^*, \ \phi|_{\mathfrak{t}} = d\gamma \} \\ &= \{(\overline{\lambda}, \phi) \mid \overline{\lambda} \in X^*/(1-\theta)X^*, \ \phi \in X^* \otimes_{\mathbb{Z}} \mathbb{C}, \\ &\quad (1+\theta)\lambda = (1+\theta)\phi \} \\ &= \{(\overline{\lambda}, \overline{\nu}) \mid \overline{\nu} \in [X^*/(1+\theta)X^*] \otimes_{\mathbb{Z}} \mathbb{C} \} \end{split}$$

Last identification is $\phi = \frac{1+\theta}{2}\lambda + \frac{1-\theta}{2}\nu \in X^* \otimes_{\mathbb{Z}} \mathbb{C}.$

atlas considers only

$$\widehat{H(\mathbb{R})}_{\mathbb{Q}} =_{\mathsf{def}} \{ (\gamma, \phi) \mid \phi \in \mathfrak{h}_{\mathbb{Q}}^* =_{\mathsf{def}} X^* \otimes_{\mathbb{Z}} \mathbb{Q} \}$$

Reason: all interesting rep theory happens in $\widehat{H}(\mathbb{R})_{\mathbb{O}}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Lie algebra cohomology

n Lie alg (e.g. nil radical of a parabolic in reductive \mathfrak{g} .) Study *functor of* \mathfrak{n} *-invts* $V \mapsto V^{\mathfrak{n}}$ on reps of \mathfrak{n} .

Extra: $\mathfrak{n} \triangleleft \mathfrak{b}$, V rep of $\mathfrak{b} \implies V^{\mathfrak{n}}$ is rep of $\mathfrak{b}/\mathfrak{n}$.

Functor left exact; not right exact unless n = 0.

Definition 1. $H^{p}(n, \cdot)$ is the *p*th right derived functor of \cdot^{n} . Definition 2. Suppose

 $0 \to V \to I_0 \to \dots \to I_{p-1} \to I_p \to I_{p+1} \to \dots$ is an injective resolution of V as a $U(\mathfrak{n})$ -module. Then

 $\begin{aligned} H^{p}(\mathfrak{n},V) &= \ker[I_{p}^{\mathfrak{n}} \to I_{p+1}^{\mathfrak{n}}]/\operatorname{im}[I_{p-1}^{\mathfrak{n}} \to I_{p}^{\mathfrak{n}}].\\ \text{Definition 3. } H^{p}(\mathfrak{n},V) &= p \text{th coh of cplx Hom}(\bigwedge^{p}\mathfrak{n},V).\\ \text{Extra structure: } \mathfrak{n} \lhd \mathfrak{b} \implies H^{p}(\mathfrak{n},V) \text{ is } \mathfrak{b}/\mathfrak{n}\text{-module.}\\ 0 \to V_{1} \to V_{2} \to V_{3} \to 0 \text{ exact seq of } \mathfrak{n}\text{-modules} \implies \\ 0 \longrightarrow H^{0}(\mathfrak{n},V_{1}) \longrightarrow H^{0}(\mathfrak{n},V_{2}) \longrightarrow H^{0}(\mathfrak{n},V_{3})\\ \longrightarrow H^{1}(\mathfrak{n},V_{1}) \longrightarrow H^{1}(\mathfrak{n},V_{2}) \longrightarrow H^{1}(\mathfrak{n},V_{3})\\ \vdots & \vdots\\ \longrightarrow H^{d}(\mathfrak{n},V_{1}) \longrightarrow H^{d}(\mathfrak{n},V_{2}) \longrightarrow H^{d}(\mathfrak{n},V_{3}) \longrightarrow 0 \end{aligned}$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Casselman-Osborne theorem

 $K(\mathbb{R}) \subset G(\mathbb{R})$ max compact in real reductive, θ Cartan involution \rightsquigarrow pair (\mathfrak{g}, K).

 $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$ Levi decomp of parabolic subalg; assume $\mathfrak{l} = \theta \mathfrak{l} = \overline{\mathfrak{l}}$. Get $L(\mathbb{R})$, Levi pair $(\mathfrak{l}, L \cap K)$.

Theorem Lie algebra cohomology is a cohomological family of functors $H^p(\mathfrak{u}, \cdot) \colon \mathcal{M}(\mathfrak{g}, K) \to \mathcal{M}(\mathfrak{l}, L \cap K)$. Each carries modules of finite length to modules of finite length.

"Finite length" close to "quasisimple." Proof of thm depends on analyzing $\mathfrak{Z}(\mathfrak{g})$...

$$\begin{split} U(\mathfrak{g}) &= U(\mathfrak{u}) \otimes U(\mathfrak{l}) \otimes U(\mathfrak{u}^{-}) \text{ gives linear projection} \\ \tilde{\xi} \colon U(\mathfrak{g}) \to U(\mathfrak{l}); \quad \tilde{\xi} \colon U(\mathfrak{g})^{\mathfrak{z}(\mathfrak{l})} \to U(\mathfrak{l})^{\mathfrak{z}(\mathfrak{l})} \text{ alg hom.} \end{split}$$

Theorem (Casselman-Osborne) If *V* is a g-module, then $\mathfrak{Z}(\mathfrak{g})$ acts on $H^p(\mathfrak{u}, V)$. This action is related to the \mathfrak{l} action by $z \cdot \omega = \tilde{\xi}(z) \cdot \omega$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Interlude: Chevalley isomorphism

Cplx reductive $\mathfrak{g} \supset \mathfrak{b} = \mathfrak{h} + \mathfrak{n}$; $W = W(\mathfrak{g}, \mathfrak{h}) \frown \mathfrak{h}, \mathfrak{h}^*$.

 $\rho = \text{half sum of pos roots} \in \mathfrak{h}^*. \text{ Twisted action } * \text{ of } W \text{ is } \\ w * \lambda =_{\text{def}} w(\lambda + \rho) - \rho, \quad (w * \rho)(\lambda) =_{\text{def}} \rho(w^{-1} * \lambda) \\ (\lambda \in \mathfrak{h}^*, \rho \in S(\mathfrak{h})).$

Theorem (Chevalley). Algebra hom $\tilde{\xi}: \mathfrak{Z}(\mathfrak{g}) \to S(\mathfrak{h})$ from previous slide is injection with image equal to $S(\mathfrak{h})^{W,*}$, the invts of the twisted W action. Consequently maxl ideals in $\mathfrak{Z}(\mathfrak{g})$ are in one-to-one corr with twisted W orbits on \mathfrak{h}^* .

Here should introduce ρ -twisted version ξ of ξ ,

$$\xi \colon \mathfrak{Z}(\mathfrak{g}) \stackrel{\sim}{\longrightarrow} S(\mathfrak{h})^W$$

Corollary of Thm and Casselman-Osborne: if g-module *V* has infl char $\lambda \in \mathfrak{h}^*$, then $H^p(\mathfrak{u}, V)$ has finite filtration with each level of infl char $w * \lambda$, some $w \in W(\mathfrak{l}, \mathfrak{h}) \setminus W(\mathfrak{g}, \mathfrak{h})$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

END OF LECTURE THREE

BEGINNING OF LECTURE FOUR

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Strategy for Langlands classification

Still aiming at Langlands classification:

 $\widehat{G(\mathbb{R})} = \text{ irr rep of } G(\mathbb{R}) / \text{ infinitesimal equivalence}$ $\longleftrightarrow \text{ irr } (\mathfrak{g}, K) \text{-module}$ $\longleftrightarrow \text{ character of real Cartan } \gamma \in \widehat{H(\mathbb{R})} / G(\mathbb{R})$ $\longleftrightarrow \text{ one-diml } (\mathfrak{h}, T) \text{-module } (\overline{\lambda}, \overline{\nu}) / (K(\mathbb{C}))$

IDEA: start with M irr (g, K)-module.

Find nice-for-*M* Borel subalg $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}, \ \theta \mathfrak{h} = \mathfrak{h}; \rightsquigarrow T = H^{\theta}$.

Find nice cohomology class in $H^*(n, M)$; action of (\mathfrak{h}, T) defines Langlands parameter.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

Case of $SL(2, \mathbb{R})$

10. Signature algorithm

How this works for $SL(2, \mathbb{R})$

 $G(\mathbb{R}) = SL(2, \mathbb{R}), K \simeq \mathbb{C}^{\times}, M \text{ irr } (\mathfrak{g}, K)\text{-module.}$ $\widehat{K} \simeq \mathbb{Z}, \text{ so } M = \sum_{\mu \in \mathbb{Z}} M_{\mu}. \text{ Recall basis } (H, X, Y) \text{ for } \mathfrak{g}:$ $X \cdot M_{\mu} \subset M_{\mu+2}, \quad Y \cdot M_{\mu} \subset M_{\mu-2}, \quad H \cdot v = \mu v \quad (v \in M_{\mu}).$ Lowest *K*-type of *M* is smallest μ_0 such that $M_{\mu_0} \neq 0.$ Case DS+: $\mu_0 > 2$. In this case

1.
$$M_{\mu_0-2} = 0$$
, so $Y \cdot M_{\mu_0} = 0$, so $M_{\mu_0} \subset M^{\mathbb{C}Y}$

2. Define $\mathfrak{n}_Y = \mathbb{C}Y$; get *T* weight μ_0 in $H^0(\mathfrak{n}_Y, M)$.

- 3. *M* is (irreducible) \mathfrak{b}_{Y} -Verma of highest weight μ_{0} .
- 4. Langlands parameter is $(T, \overline{\lambda} = \mu_0 1, \overline{\nu} = 0)$.

Case DS-: $\mu_0 \leq -2$. In this case

- 1. $M_{\mu_0+2}=0,$ so $X\cdot M_{\mu_0}=0,$ so $M_{\mu_0}\subset M^{\mathbb{C}X}$
- 2. Define $\mathfrak{n}_X = \mathbb{C}X$; get T weight μ_0 in $H^0(\mathfrak{n}_X, M)$.
- 3. *M* is (irreducible) \mathfrak{b}_X -Verma of highest weight μ_0 .
- 4. Langlands parameter is $(T, \overline{\lambda} = \mu_0 + 1, \overline{\nu} = 0)$.

Case PS: $\mu_0 = 0$ or ± 1 is something completely different...

David Vogan

1. Why unitary representations?

2. Langlands classification A

8. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

$SL(2,\mathbb{R})$: lowest K-type 0 or ± 1

Suppose *M* irr (g, K)-module containing *K*-type 0 or ± 1 .

(Almost always) $M \rightsquigarrow$ diagonal Cartan H_s : θ = inverse, $T_s = \{\pm I\}, a_s = \mathfrak{h}_s.$

Define $\mathfrak{b}_s = \mathfrak{n}_s + \mathfrak{a}_s =$ upper triangular Borel.

Define $\nu_s(M) = \text{infinitesimal character of } M \text{ in } \mathfrak{a}_s^*$, $\epsilon = \text{parity of } \mu_0$.

Langlands parameter: $(T_s, \overline{\lambda} = \epsilon + 1, \overline{\nu}_s = \nu_s)$,

Proposition.

- *M* is a composition factor of the principal series representation ρ^{ν(M)+1,ε(M)} defined in Lecture 2.
- 2. if $\nu_s < 0$, *M* is unique irr sub of $\rho^{\nu_s+1,\epsilon(M)}$, and $H_0(\mathfrak{n}_s, M)$ has T_s -weight $(\epsilon, \nu_s + 1)$.
- 3. If $\nu_s > 0$, *M* is unique irr quo of $\rho^{\nu_s+1,\epsilon(M)}$.

Case $\nu_s = 0$ causes some complications; ignore for now.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

How this works for $G(\mathbb{R})$

 $G \supset K = G^{\theta}$, *M* irr (\mathfrak{g} , *K*)-module.

Fix maximal torus $T_0 \subset K$; $T_f = G^{T_0} = \theta$ -stable Cartan in *G*, fundamental Cartan.

 $\begin{aligned} X^*(T_f) &\to X^*(T_f^{\theta}) \\ \text{Fix Borel } \mathfrak{b}_{\mathcal{K}} = \mathfrak{t} + \mathfrak{n}_{\mathcal{K}}, \text{ pos roots } \Delta^+(\mathfrak{k}, \mathfrak{t}) \subset X^*(T_f^{\theta}). \\ \text{Write } \mathfrak{b}_{\mathcal{K}}^{\text{op}} = \mathfrak{t} + \mathfrak{n}_{\mathcal{K}}^{\text{op}}, 2\rho_c = \sum_{\alpha \in \Delta^+(\mathfrak{k}, \mathfrak{t})} \alpha, s = \dim(\mathfrak{n}_{\mathcal{K}}). \\ \text{Any irr } (\tau, E_{\tau}) \in \widehat{\mathcal{K}} \rightsquigarrow \text{highest weights } \{\mu_j \in X^*(T_f^{\theta})\}: \\ \mu_i \text{ appears in } H^0(\mathfrak{n}_{\mathcal{K}}, E_{\tau}), \quad \mu_i + 2\rho_c \text{ appears in } H^s(\mathfrak{n}_{\mathcal{K}}^{\text{op}}, E_{\tau}) \end{aligned}$

Given highest weight μ of (τ, E_{τ}) , choose θ -stable $\Delta^+(\mathfrak{g}, \mathfrak{t}_f)$ so that $\langle \mu + 2\rho_c, (1 + \theta)\alpha^{\vee} \rangle \geq 0$ (all $\alpha \in \Delta^+$). Define rough height of $\tau \tilde{h}(\tau) = \sum_{\alpha \in \Delta^+} \langle \mu + 2\rho_c, \alpha^{\vee} \rangle$. Lowest *K*-type of *M* is τ_0 minimizing $\tilde{h}(\tau_0)$ with $M_{\tau_0} \neq 0$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Constructing cohomology

 $T_f(\mathbb{R}) = T_f(\mathbb{R})^{\theta} \exp(\mathfrak{a}_f(\mathbb{R}))$ fundamental Cartan subgroup.

M irr (\mathfrak{g}, K) -module, τ_0 lowest *K*-type, $\mu_0 \in X^*(T_f^\theta)$ highest weight, $\mathfrak{b}_f^{\mathsf{op}} = \mathfrak{t}_f + \mathfrak{n}_K^{\mathsf{op}} + \mathfrak{n}_p^{\mathsf{op}}$ making $\mu_0 + 2\rho_c$ antidominant.

Theorem. Assume $\mu_0 + 2\rho_c - \rho$ regular antidominant.

1. $H^*(\mathfrak{n}, M_f^{op})_{\mu_0+2\rho_c} \neq 0$ only in degree $s = \dim \mathfrak{n}_K^{op}$. 2. $\dim H^s(\mathfrak{n}^{op}, M)_{\mu_0+2\rho_c} = \dim M_{\tau_0}$. 3. $H^s(\mathfrak{n}_f^{op}, M)_{\mu_0+2\rho_c}$ has at least one \mathfrak{a}_f -weight $\nu_f \in \mathfrak{a}_f^*$.

If $\mu_0 + 2\rho_c - \rho$ regular antidominant,

 $\boldsymbol{M} \rightsquigarrow \gamma(\boldsymbol{M}) = (\boldsymbol{T}_f, \overline{\lambda} = \mu_0 + 2\rho_c - \rho, \overline{\nu} = \nu_f(\boldsymbol{M})).$

In this case *M* is unique irreducible quotient of cohomologically induced module

$$I(\gamma) =_{\mathsf{def}} \mathcal{L}^{\mathfrak{b}^{\mathsf{op}}_{f}}_{s}(\mathbb{C}_{\mu+2\rho_{c},\nu_{f}}).$$

Consequence: $I(\mu + 2\rho_c, \nu'_f)$ algebraic in ν'_f . Study by deformation in continuous parameters.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Moral of these stories

M irr (\mathfrak{g}, K) -module \rightsquigarrow Langlands parameter $\gamma = (H, \overline{\lambda}, \overline{\nu})$.

$$T=_{\mathsf{def}} H^{ heta}\subset K,\, \mathfrak{a}=\mathfrak{h}^{- heta}.$$

- 1. Infl char of $M = \frac{(1+\theta)}{2}\overline{\lambda} + \frac{(1-\theta)}{2}\overline{\nu}$.
- 2. Lowest *K*-type(s) of $M \leftrightarrow \overline{\lambda} \in \widehat{H^{\theta}}$
- (Langlands original idea) growth of matrix coefficients of *M* ↔ *v* ∈ a*

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

END OF LECTURE FOUR

BEGINNING OF LECTURE FIVE

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Invariant Hermitian forms

 (π, W_{π}) continuous rep of $G(\mathbb{R})$ on complete locally convex topological vector space W_{π} .

Definition. $G(\mathbb{R})$ -invariant Hermitian form is continuous Hermitian pairing \langle, \rangle_{π} on W_{π} satisfying

$$\langle \pi(g) \textit{w}_1, \pi(g) \textit{w}_2
angle_\pi = \langle \textit{w}_1, \textit{w}_2
angle_\pi \quad (g \in \textit{G}(\mathbb{R})).$$

Definition. Invariant Hermitian form on (\mathfrak{g}, K) -module M is Hermitian pairing \langle, \rangle_M on M satisfying

$$\langle Z \cdot m_1, m_2 \rangle_M + \langle m_1, \sigma(Z) \cdot m_2 \rangle_\pi = 0 \quad Z \in \mathfrak{g}(\mathbb{C})),$$

 $\langle \mathbf{k} \cdot \mathbf{m}_1, \sigma(\mathbf{k}) \cdot \mathbf{m}_2 \rangle_M = \langle \mathbf{m}_1, \mathbf{m}_2 \rangle_M \quad \mathbf{k} \in \mathcal{K}(\mathbb{C})).$

Prop. $G(\mathbb{R})$ -invt $\langle, \rangle_{\pi} \xrightarrow{\text{restrict}} (\mathfrak{g}, K)$ -invt $\langle, \rangle_{\pi}^{K,\infty}$ on $W_{\pi}^{K,\infty}$. Conversely, (\mathfrak{g}, K) -invt \langle, \rangle_{M} on finite length $M \xrightarrow{\text{extend}} G(\mathbb{R})$ -invt $\langle, \rangle_{M_{\min}}$ on Schmid minimal globalization M_{\min} .

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

 Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

). Case of SL(2, ℝ)

10. Signature algorithm

Forms and dual spaces

V cplx vec space (or alg rep of K, or (\mathfrak{g}, K) -module...)

Hermitian dual of V

 $V^h = \{\xi : V \to \mathbb{C} \text{ additive } | \xi(zv) = \overline{z}\xi(v)\}$

(*V* alg *K*-rep \rightsquigarrow require ξ *K*-finite; *V* topolog. \rightsquigarrow require ξ cont.)

Sesquilinear pairings between V and W are

 $\mathsf{Sesq}(V,W) = \{\langle, \rangle \colon V \times W \to \mathbb{C}, \mathsf{lin in } V, \mathsf{conj-lin in } W\}$

 $\operatorname{Sesq}(V,W) \simeq \operatorname{Hom}(V,W^h), \quad \langle v,w \rangle_T = (Tv)(w).$

Complex conjugation of forms is (conj linear) isom $Sesq(V, W) \simeq Sesq(W, V).$

Corresponding (conj lin) isom is Hermitian transpose: $Hom(V, W^{h}) \simeq Hom(W, V^{h}), \quad (T^{h}w)(v) = \overline{(Tv)(w)}.$ $(TS)^{h} = S^{h}T^{h}, \qquad (zT)^{h} = \overline{z}(T^{h}).$ Sesq form \langle, \rangle_{T} on $V \iff T \in Hom(V, V^{h})$ Hermitian if $\langle v, v' \rangle_{T} = \overline{\langle v', v \rangle}_{T} \iff T^{h} = T.$

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (\mathfrak{g}, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

). Case of SL(2, ℝ)

10. Signature algorithm

Defining Herm dual repn(s)

 (π, V) (\mathfrak{g}, K)-module; Recall Herm dual V^h of V. Want to construct functor

cplx linear rep $(\pi, V) \rightsquigarrow$ cplx linear rep (π^h, V^h)

using Hermitian transpose map of operators.

Def REQUIRES twist by conj lin antiaut of g, conjugate linear group antiaut of K. We have one!

Define (\mathfrak{g}, K) -module π^h on V^h ,

 $\pi^h(Z) \cdot \xi =_{\mathsf{def}} \left[\pi(-\sigma_0(Z))\right]^h \cdot \xi \quad (Z \in \mathfrak{g}, \ \xi \in V^h),$

 $\pi^h(k) \cdot \xi =_{\mathsf{def}} [\pi(\sigma_0(k^{-1}))]^h \cdot \xi \quad (k \in K, \ \xi \in V^h).$

Variant: compact real form $\sigma_c = \theta \sigma_0 \rightsquigarrow \pi^{h,c}$,

 $\begin{aligned} \pi^{h,c}(Z) \cdot \xi =_{\mathsf{def}} [\pi(-\sigma_c(Z))]^h \cdot \xi \quad (Z \in \mathfrak{g}, \ \xi \in V^h), \\ \pi^{h,c}(k) \cdot \xi =_{\mathsf{def}} [\pi(\sigma_c(k)^{-1})]^h \cdot \xi \quad (k \in K, \ \xi \in V^h). \end{aligned}$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

). Case of *SL*(2, ℝ)

10. Signature algorithm

c-Invariant Hermitian forms

 $V = (\mathfrak{g}, K)$ -module.

A *c*-invt sesq form on *V* is sesq pairing \langle,\rangle^c such that

 $\langle \boldsymbol{Z} \cdot \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{v}, -\sigma_{c}(\boldsymbol{Z}) \cdot \boldsymbol{w} \rangle, \quad \langle \boldsymbol{k} \cdot \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{v}, \sigma_{c}(\boldsymbol{k}^{-1}) \cdot \boldsymbol{w} \rangle$

Proposition. $(Z \in \mathfrak{g}; k \in K; v, w \in V).$ 1. *c*-invt sesq form on $V \iff (\mathfrak{g}, K)$ -map $T: V \to V^{h,c}:$ $\langle v, w \rangle_T = (Tv)(w).$

2. Form is Hermitian $\iff T^h = T$.

Assume from now on *V* is irreducible.

3. $V \simeq V^{h,c} \iff \exists c$ -invt sesq $\iff \exists c$ -invt Herm 4. *c*-invt Herm form on *V* unique up to real scalar mult.

 $T \to T^h \iff$ real form of cplx line $\operatorname{Hom}_{\mathfrak{g},\mathcal{K}}(V,V^{h,c})$.

Deciding existence of *c*-invt Hermitian form amounts to computing the involution $\pi \mapsto \pi^{h,c}$ on \widehat{G} .

Same conclusion for invariant Hermitian forms.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

Case of $SL(2, \mathbb{R})$

10. Signature algorithm

Hermitian forms and unitary reps

 π rep of *G* on complete loc cvx V_{π} , $(\pi^h V_{\pi}^h)$ (continuous) Hermitian dual representation.

Because infl equiv easier than topol equiv, $V_{\pi} \simeq V_{\pi}^{h,\tau} \implies$ continuous map $V_{\pi} \rightarrow V_{\pi}^{h}$. So invt forms may not exist on topological reps even if they exist on (\mathfrak{g}, K)-modules.

Theorem (Harish-Chandra). Passage to *K*-finite vectors defines bijection from the unitary dual \hat{G}_u onto equivalence classes of irreducible (\mathfrak{g}, K) modules admitting a pos def invt Hermitian form.

Despite warning, get perfect alg param of \widehat{G}_u .

Knapp-Zuckerman computed involution $\pi \mapsto \pi^{h,c}$ on \widehat{G} .

So we know which irr (g, K) modules admit invt forms.

Remaining task: compute signatures of these forms.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

). Case of SL(2, ℝ)

10. Signature algorithm

END OF LECTURE FIVE

BEGINNING OF LECTURE SIX

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. R(h, L)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

Big idea for computing signatures

Here's what theory gives for Hermitian reps...

Comprehensible/computable parameters $\gamma = (x, \overline{\lambda}, \nu)$.

Hermitian parameter $\gamma \rightsquigarrow$

- 1. Standard rep $I^{quo}(\gamma) \twoheadrightarrow J(\gamma)$ unique irr quotient.
- 2. deformation fam $\gamma_t = (\mathbf{x}, \overline{\lambda}, t\nu) \ (\mathbf{0} \le t \le 1)$
- 3. deformation fam of invt Herm forms \langle, \rangle_t on $I^{quo}(\gamma_t)$.

Key properties:

- 1. Rad(\langle, \rangle_t) = ker($I^{quo}(\gamma_t) \twoheadrightarrow J(\gamma_t)$). Consequently
- 2. \langle , \rangle_t descends to nondeg form on $J(\gamma_t)$.
- 3. $J(\gamma_0) = I(\gamma_0)$ tempered irr, so \langle, \rangle_0 pos definite.

Plan for computing signature of \langle, \rangle_t :

- 1. start with known pos def signature at t = 0
- 2. compute changes in signature at reducibility points t_i
- 3. \rightarrow formula for signature at t = 1.

David Vogan

```
1. Why unitary 
representations?
```

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

). Case of SL(2, ℝ)

10. Signature algorithm

Hermitian duals for $SL(2,\mathbb{R})$

Recall ρ^{ν} ($\nu \in \mathbb{C}$) family of reps of $SL(2, \mathbb{R})$ defined on $W = \text{even trig polys on } S^1 = \text{span}(w_m(\theta) = e^{im\theta}, m \in 2\mathbb{Z})$

Rotation by θ in SO(2) acts on w_m by $e^{im\theta}$, Lie alg acts by

$$\begin{split} \rho^{\nu}(H)w_m &= mw_m, & \rho^{\nu,h}(H)w_m &= mw_m, \\ \rho^{\nu}(X)w_m &= \frac{1}{2}(m+\nu+1)w_{m+2}, & \rho^{\nu,h}(X)w_m &= \frac{1}{2}(m-\overline{\nu}+1)w_{m+2}, \\ \rho^{\nu}(Y)w_m &= \frac{1}{2}(-m+\nu+1)w_{m-2} & \rho^{\nu,h}(Y)w_m &= \frac{1}{2}(-m-\overline{\nu}+1)w_{m-2}. \\ \text{If we identify } W &\simeq W^h \text{ by pos def inner product} \\ & \left\langle \sum_r a_r w_r, \sum_s b_s w_s \right\rangle &= \sum_p a_p \overline{b_p}, \end{split}$$

then Hermitian transpose of $T = (t_{ij})$ is $T^h = {}^t\overline{T} = (\overline{t_{ji}})$.

See that $(\rho^{\nu})^h = \rho^{-\overline{\nu}}$. So ν imag $\implies \rho^{\nu}$ Herm; invt form = pos def standard form, so $\nu \in i\mathbb{R} \implies \rho^{\nu}$ unitary. These are (tempered) unitary principal series.

There is more to say!

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

$SL(2,\mathbb{R})$ -invariant forms \langle,\rangle_{ν}

Calculated $(\rho^{\nu})^{h} = \rho^{-\overline{\nu}}$. Know $\rho^{\nu} \approx \rho^{-\nu}$; so expect invariant forms $\langle, \rangle_{\nu}, \quad \nu \in \mathbb{R}$.

Recall basis (H, X, Y), $\sigma_0(H) = -H$, $\sigma_0(X) = Y$. Condition for invariant form is

 $\langle \rho^{\nu}(\boldsymbol{Z})\boldsymbol{w}, \boldsymbol{w}' \rangle_{\nu} + \langle \boldsymbol{w}, \rho^{\nu}(\sigma_{0}(\boldsymbol{Z}))\boldsymbol{w}' \rangle_{\nu} = 0.$ (INVT)

 $\rho^{\nu}(H)w_m = mw_m$; plugging in (INVT) gives

 $\langle \mathbf{w}_m, \mathbf{w}_n \rangle_{\nu} = \mathbf{a}_m(\nu) \delta_{mn} \qquad (\mathbf{a}_m \in \mathbb{R}).$

 $\rho^{\nu}(X)w_{m} = \frac{1}{2}(m+\nu+1)w_{m+2}, \quad \rho^{\nu}(Y)w_{m+2} = \frac{1}{2}(-m+\nu-1)w_{m}.$ Plugging in (INVT) gives

 $(m+1+\nu)a_{m+2}(\nu) = (m+1-\nu)a_m(\nu)$ $(a_m \in \mathbb{R}).$

Proposition. For $\nu \ge 0$, ρ^{ν} has unique invt \langle , \rangle_{ν} char by $\langle w_0, w_0 \rangle_{\nu} = 1$. Each $\langle w_{2m}, w_{2m} \rangle_{\nu}$ is rational in ν :

$$a_{\pm 2}(\nu) = \frac{1-\nu}{1+\nu}, \quad a_{\pm 4} = \frac{(1-\nu)(3-\nu)}{(1+\nu)(3+\nu)}, \dots$$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Signatures for $SL(2, \mathbb{R})$

Recall W^{ν} = even fns homog of deg $-\nu - 1$ on the plane.

Need "signature" of Herm form on this inf-diml space.

Harish-Chandra (or Fourier) idea: use K = SO(2) break into fin-diml subspaces

 $W_{2m}^{\nu} = \{ f \in W^{\nu} \mid \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot f = e^{2im\theta} f \}.$ $W^{\nu} \supset \sum_{m} W_{m}^{\nu}, \quad \text{(dense subspace)}$

Decomp is orthogonal for any invariant Herm form.

Signature is + or – for each *m*. For $3 < |\nu| < 5$

$$\cdots \quad -6 \quad -4 \quad -2 \quad 0 \quad +2 \quad +4 \quad +6 \quad \cdots$$

 $\cdots + + - + - + + \cdots$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Deforming signatures for $SL(2, \mathbb{R})$ Here's how signatures of the reps $I(\nu)$ change with ν .										David Vogan
$\nu = 0$, $I(0)$ " \subset " $L^2(G)$: unitary, signature positive.										
$0 < \nu < 1$, $I(\nu)$ irr: signature remains positive. $\nu = 1$, form finite pos on $J(1) \iff SO(2)$ rep 0.										2. Langlands classification A
$\nu = 1$, form has zero, pos derivative on $I(1)/J(1)$.										 (g, K)-modules <i>R</i>(h, L)-mod
$1 < \nu < 3$, across zero at $\nu = 1$, signature changes. $\nu = 3$, form finite $- + -$ on $J(3)$. $\nu = 3$, form has zero, neg derivative on $I(3)/J(3)$.										5. Cartan subgroups and characters
$3 < \nu < 5$, across zero at $\nu = 3$, signature changes. ETC. Conclude: $J(\nu)$ unitary, $\nu \in [0, 1]$; nonunitary, $\nu \in [1, \infty)$.										 6. Lie algebra cohomology 7. Langlands
	· -6	-4	-2	0	+2	+4	+6		<i>SO</i> (2) reps	classification B 8. Hermitian form
••	· +	+	+	+		+	+		u = 0 $ 0 < v < 1$	9. Case of <i>SL</i> (2, ℝ)
	· + · +	+	+	++	+	+	+		$\nu < \nu < 1$ $\nu = 1$	10. Signature algorithm
	· _	_	_	+	_	_	_		$1 < \nu < 3$	11. Unitarity algorithm
	· _	_	_	+	_	_	_		u = 3	
	• +	+	_	+	_	+	+		3 < u < 5	

L

Formulas for signatures

$$\begin{split} M(\mathfrak{g},K)\text{-module} & \to M = \sum_{\tau \in \widehat{K}} M_{\tau} \otimes E_{\tau}, \ m_{M}(\tau) = \dim M_{\tau}. \\ \text{FIX positive } K\text{-invariant form } \langle, \rangle_{\tau} \text{ on each } K\text{-irr}(\tau, E_{\tau}) \dots \\ \text{invariant Hermitian form } \langle, \rangle_{M} & \to \text{Hermitian forms } \langle, \rangle_{M_{\tau}}. \\ \text{Define signature functions from } \widehat{K} \text{ to } \mathbb{N}, \\ (p_{M}(\tau), q_{M}(\tau), z_{M}(\tau)) = \text{signature of } \langle, \rangle_{M_{\tau}}. \\ M \text{ is unitary } & \Leftrightarrow \text{ function } q_{M} = 0. \\ \text{Recall from Annegret: lowest } K\text{-type is bijection} \\ (\text{ parameters with } \nu = 0) =_{\text{def}} \mathcal{T}_{\mathbb{R}} \longrightarrow \widehat{K} \end{split}$$

Nate interior and the second s

$$p_M = \sum_{\gamma \in \mathcal{T}_{\mathbb{R}}} a(\gamma) m_{l(\gamma)}$$

of K-mult fns for tempered reps of real infl char.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of $SL(2, \mathbb{R})$

10. Signature algorithm

Signature formulas for $SL(2,\mathbb{R})$

Here's what deformation says about signatures on $I(\nu)$. $\nu = 0$, I(0) unitary, signature positive:

 $p_{J(0)} = m_{I(0)}, \quad q_{J(0)} = 0, \quad z_{J(0)} = 0.$

 $0 < \nu < 1$, $I(\nu)$ irr: signature remains positive:

 $p_{J(\nu)} = m_{I(0)}, \quad q_{J(\nu)} = 0, \quad z_{J(\nu)} = 0.$

$$\begin{split} \nu &= 1: \text{ form has simple zero on radical} = DS_+(1) + DS_-(1): \\ p_{J(1)} &= m_{I(0)} - m_{DS_+(1)} - m_{DS_-(1)}, \quad q_{J(1)} = 0, \\ z_{J(1)} &= m_{DS_+(1)} + m_{DS_-(1)}. \end{split}$$

 $1 < \nu < 3$, across zero at $\nu = 1$, signature changes: $p_{J(\nu)} = m_{I(0)} - m_{DS_{+}(1)} - m_{DS_{-}(1)}$ $q_{J(\nu)} = m_{DS_{+}(1)} + m_{DS_{-}(1)}, \quad Z_{J(\nu)} = 0.$

 $\nu = 3: \text{ form form has simple zero on radical} = DS_{+}(3) + DS_{-}(3):$ $p_{J(\nu)} = m_{J(0)} - m_{DS_{+}(1)} - m_{DS_{-}(1)},$ $q_{J(3)} = m_{DS_{+}(1)} + m_{DS_{-}(1)} - m_{DS_{+}(3)} - m_{DS_{-}(3)},$ $z_{J(3)} = m_{DS_{+}(3)} + m_{DS_{-}(3)}.$

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

B. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Invariant forms on standard reps

Recall multiplicity formula

 $l(x) = \sum_{y \le x} m_{y,x} J(y) \qquad (m_{y,x} \in \mathbb{N})$ for standard (g, K)-mod l(x).

Want parallel formulas for invt Hermitian forms. Need forms on standard modules.

Form on irr $J(x) \xrightarrow{\text{deformation}} \text{Jantzen filt } I^k(x)$ on std, nondeg forms \langle, \rangle^k on I^k/I^{k+1} .

Details (proved by Beilinson-Bernstein):

 $I(x) = I^0 \supset I^1 \supset I^2 \supset \cdots, \qquad I^0/I^1 = J(x)$ I^k/I^{k+1} completely reducible

$$[J(y) \colon I^k/I^{k+1}] = \text{coeff of } q^{(\ell(x)-\ell(y)-k)/2} \text{ in KL poly } Q_{y,x}$$

Hence $\langle , \rangle_{I(x)} \stackrel{\text{def}}{=} \sum_{k} \langle , \rangle^{k}$, nondeg form on gr I(x). Restricts to original form on irr J(x).

David Vogan

```
    Why unitary
representations?
    Langlands
classification A
    (g, K)-modules
    R(h, L)-mod
    Cartan
subgroups and
characters
    Lie algebra
cohomology
```

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Virtual Hermitian forms

 $\mathbb{Z} =$ Groth group of vec spaces.

These are mults of irr reps in virtual reps.

 $\mathbb{Z}[G(\mathbb{R})] =$ Groth grp of finite length reps.

For invariant forms...

 $\mathbb{W} = \mathbb{Z} \oplus \mathbb{Z} = \frac{\text{Grothendieck group of}}{\text{finite-dimensional forms.}}$

Ring structure

$$(p,q)(p',q')=(pp'+qq',pq'+q'p).$$

Mult of irr-with-forms in virtual-with-forms is in \mathbb{W} : $\mathbb{W}[\widehat{G(\mathbb{R})}_h] \approx$ Groth grp of fin lgth reps with invt forms. Problem: invt form \langle, \rangle_J may not be preferable to

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

 Case of SL(2, ℝ)

10. Signature algorithm

What's a Jantzen filtration?

V cplx, \langle, \rangle_t Herm forms analytic in *t*, generically nondeg.

$$V = V^0(t) \supset V^1(t) = \operatorname{Rad}(\langle, \rangle_t), \quad J(t) = V^0(t)/V^1(t)$$

 $(p^{0}(t), q^{0}(t)) = \text{signature of } \langle, \rangle_{t} \text{ on } J(t).$

Question: how does $(p^0(t), q^0(t))$ change with *t*? First answer: locally constant on open set $V^1(t) = 0$. Refine answer...define form on $V^1(t)$

$$\langle v, w \rangle^{1}(t) = \lim_{s \to t} \frac{1}{t-s} \langle v, w \rangle_{s}, \qquad V_{2}(t) = \operatorname{Rad}(\langle, \rangle^{1}(t))$$

 $(p^{1}(t), q^{1}(t)) = \operatorname{signature of} \langle, \rangle^{1}(t).$

Continuing gives Jantzen filtration

$$V = V^0(t) \supset V^1(t) \supset V^2(t) \cdots \supset V^{m+1}(t) = 0$$

From $t - \epsilon$ to $t + \epsilon$, signature changes on odd levels: $p(t + \epsilon) = p(t - \epsilon) + \sum [-p^{2k+1}(t) + q^{2k+1}(t)].$

David Vogan

 Why unitary representations?
 Langlands classification A
 (g, K)-modules

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Hermitian KL polynomials: multiplicities

Fix invt Hermitian form $\langle, \rangle_{J(x)}$ on each irr having one; recall Jantzen form \langle, \rangle^n on $I(x)^n/I(x)^{n+1}$. MODULO problem of irrs with no invt form, write $(I^n/I^{n+1}, \langle, \rangle^n) = \sum_{y \le x} w_{y,x}(n)(J(y), \langle, \rangle_{J(y)}),$

coeffs $w(n) = (p(n), q(n)) \in \mathbb{W}$; summand means $p(n)(J(y), \langle, \rangle_{J(y)}) \oplus q(n)(J(y), -\langle, \rangle_{J(y)})$

Define Hermitian KL polynomials

$$Q_{y,x}^{h} = \sum_{n} w_{y,x}(n)q^{(l(x)-l(y)-n)/2} \in \mathbb{W}[q]$$

Eval in \mathbb{W} at $q = 1 \leftrightarrow$ form $\langle, \rangle_{l(x)}$ on std.

Reduction to $\mathbb{Z}[q]$ by $\mathbb{W} \to \mathbb{Z} \leftrightarrow \mathsf{KL}$ poly $Q_{y,x}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Hermitian KL polynomials: characters

Matrix $Q_{y,x}^h$ is upper tri, 1s on diag: INVERTIBLE. $P_{x,y}^h \stackrel{\text{def}}{=} (-1)^{l(x)-l(y)}((x, y) \text{ entry of inverse}) \in \mathbb{W}[q].$

Definition of $Q_{x,y}^h$ says $(\operatorname{gr} I(x), \langle, \rangle_{I(x)}) = \sum_{y \leq x} Q_{x,y}^h(1)(J(y), \langle, \rangle_{J(y)});$

inverting this gives

 $(J(x),\langle,\rangle)=\sum_{y\leq x}(-1)^{I(x)-I(y)}\mathcal{P}^h_{x,y}(1)(\operatorname{gr} I(y),\langle,\rangle).$

Next question: how do you compute $P_{x,y}^h$?

David Vogan

1. Why unitary representations?

2. Langlands classification A

8. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

. Case of SL(2, ℝ)

10. Signature algorithm

Herm KL polys for σ_c

 $\sigma_c = \text{cplx conj for cpt form of } G, \sigma_c(K) = K.$

Plan: study σ_c -invt forms, relate to σ_0 -invt forms.

Proposition

Suppose J(x) irr (\mathfrak{g}, K) -module, real infl char. Then J(x) has σ_c -invt Herm form $\langle, \rangle_{J(x)}^c$, characterized by

 $\langle,\rangle_{J(x)}^{c}$ is pos def on the lowest K-types of J(x).

Proposition \implies Herm KL polys $Q_{x,y}^c$, $P_{x,y}^c$ well-def.

Coeffs in $\mathbb{W} = \mathbb{Z} \oplus s\mathbb{Z}$; $s = (0, 1) \leftrightarrow one-diml neg def form.$ ALMOST: $Q_{x,y}^c(q) = s^{\frac{\ell_0(x) - \ell_0(y)}{2}} Q_{x,y}(qs), \quad P_{x,y}^c(q) = s^{\frac{\ell_0(x) - \ell_0(y)}{2}} P_{x,y}(qs).$ Equiv: if J(y) occurs at level k of Jantzen filt of I(x), then Jantzen form is $(-1)^{(I(x) - I(y) - k)/2}$ times $\langle, \rangle_{J(y)}$.

ALMOST is false... but not seriously so. Need an extra power of *s* on the right side.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(𝔥, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

). Case of SL(2, ℝ)

10. Signature algorithm

Orientation number

 $\textbf{ALMOST} \leftrightarrow \textbf{KL polys} \leftrightarrow \textit{integral roots}.$

Simple form of ALMOST *implies* Jantzen-Zuckerman translation across non-integral root walls preserves signatures of (σ_c -invariant) Hermitian forms.

It ain't necessarily so.

 $SL(2, \mathbb{R})$: translating spherical principal series from (real non-integral positive) ν to (negative) $\nu - 2m$ changes sign of form iff $\nu \in (0, 1) + 2\mathbb{Z}$.

Orientation number $\ell_o(x)$ is

- 1. # pairs $(\alpha, -\theta(\alpha))$ cplx nonint, pos on x; PLUS
- 2. # real β s.t. $\langle x, \beta^{\vee} \rangle \in (0, 1) + \epsilon(\beta, x) + 2\mathbb{N}$.

 $\epsilon(\beta, x) = 0$ spherical, 1 non-spherical.

David Vogan

1. Why unitary representations?

2. Langlands classification A

B. (g, K)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Deforming to $\nu = 0$

Have computable ALMOST formula (omitting ℓ_o)

 $(J(x), \langle, \rangle_{J(x)}^{c}) = \sum_{y \leq x} (-1)^{l(x)-l(y)} P_{x,y}^{c}(s)(\operatorname{gr} l(y), \langle, \rangle_{l(y)}^{c})$ for σ^{c} -invt forms in terms of forms on stds, same inf char.

Polys $P_{x,y}^c$ are KL polys, computed by atlas software. Std rep $I = I(\nu)$ deps on cont param ν . Put $I(t) = I(t\nu), t \ge 0$. Apply Jantzen formalism to deform t to 0...

 $\langle,\rangle_J^c = \sum_{l'(0) \text{ std at } \nu' = 0} v_{J,l'}\langle,\rangle_{l'(0)}^c \quad (v_{J,l'} \in \mathbb{W}).$

More rep theory gives formula for $G(\mathbb{R})$ -invt forms:

 $\langle,\rangle_J^0 = \sum_{l'(0) \text{ std at } \nu' = 0} s^{\epsilon(l')} v_{J,l'} \langle,\rangle_{l'(0)}^0.$

I'(0) unitary, so J unitary \iff all coeffs are $(p, 0) \in \mathbb{W}$.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

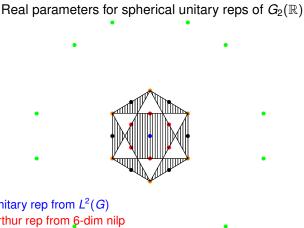
7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Example of $G_2(\mathbb{R})$



David Vogan

- Unitary rep from $L^2(G)$
- Arthur rep from 6-dim nilp
- Arthur rep from 8-dim nilp
- Arthur rep from 10-dim nilp
- Trivial rep

From σ_c to σ_0

Cplx conjs σ_c (compact form) and σ_0 (our real form) differ by Cartan involution θ : $\sigma_0 = \theta \circ \sigma_c$. Irr (\mathfrak{g}, K)-mod $J \rightsquigarrow J^{\theta}$ (same space, rep twisted by θ).

Proposition

J admits σ_0 -invt Herm form if and only if $J^{\theta} \simeq J$. If $T_0: J \xrightarrow{\sim} J^{\theta}$, and $T_0^2 = Id$, then

 $\langle \mathbf{v}, \mathbf{w} \rangle_J^0 = \langle \mathbf{v}, T_0 \mathbf{w} \rangle_J^c.$

 $T \colon J \xrightarrow{\sim} J^{\theta} \Rightarrow T^2 = z \in \mathbb{C} \Rightarrow T_0 = z^{-1/2}T \rightsquigarrow \sigma$ -invt Herm form.

To convert formulas for σ_c invt forms \rightsquigarrow formulas for σ_0 -invt forms need intertwining ops $T_J: J \xrightarrow{\sim} J^{\theta}$, consistent with decomp of std reps.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm

Equal rank case

 $\mathsf{rk} \, \mathcal{K} = \mathsf{rk} \, \mathcal{G} \Rightarrow \text{Cartan inv inner: } \exists \tau \in \mathcal{K}, \, \mathsf{Ad}(\tau) = \theta. \\ \theta^2 = \mathsf{1} \Rightarrow \tau^2 = \zeta \in \mathcal{Z}(\mathcal{G}) \cap \mathcal{K}.$

Study reps π with $\pi(\zeta) = z$. Fix square root $z^{1/2}$.

If ζ acts by z on V, and \langle , \rangle_V^c is σ_c -invt form, then $\langle v, w \rangle_V^0 \stackrel{\text{def}}{=} \langle v, z^{-1/2} \tau \cdot w \rangle_V^c$ is σ_0 -invt form.

$$\langle,\rangle_J^c = \sum_{I'(0) \text{ std at } \nu' = 0} v_{J,I'}\langle,\rangle_{I'(0)}^c \qquad (v_{J,I'} \in \mathbb{W}).$$

translates to

$$\langle,\rangle_J^0 = \sum_{l'(0) \text{ std at } \nu' = 0} v_{J,l'} \langle,\rangle_{l'(0)}^0 \qquad (v_{J,l'} \in \mathbb{W}).$$

I' has LKT $\mu' \Rightarrow \langle, \rangle_{I'(0)}^{0}$ definite, sign $z^{-1/2}\mu'(\tau)$. J unitary \iff each summand on right pos def. Computability of $v_{J,I'}$ needs conjecture about $P_{x,y}^{\sigma_c}$.

David Vogan

 why unitary representations?
 Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of SL(2, ℝ)

10. Signature algorithm

General case

Fix "distinguished involution" δ_0 of *G* inner to θ Define extended group $G^{\Gamma} = G \rtimes \{1, \delta_0\}$. Can arrange $\theta = \operatorname{Ad}(\tau \delta_0)$, some $\tau \in K$. Define $K^{\Gamma} = \operatorname{Cent}_{G^{\Gamma}}(\tau \delta_0) = K \rtimes \{1, \delta_0\}$. Study $(\mathfrak{g}, K^{\Gamma})$ -mods $\longleftrightarrow (\mathfrak{g}, K)$ -mods *V* with $D_0: V \xrightarrow{\sim} V^{\delta_0}, D_0^2 = \operatorname{Id}.$

Beilinson-Bernstein localization: $(\mathfrak{g}, \mathcal{K}^{\Gamma})$ -mods $\leftrightarrow action$ of δ_0 on K-eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig ideas. Not done yet!

Now translate σ_c -invt forms to σ_0 invt forms

$$\langle \mathbf{v}, \mathbf{w} \rangle_{V}^{0} \stackrel{\text{def}}{=} \langle \mathbf{v}, z^{-1/2} \tau \delta_{0} \cdot \mathbf{w} \rangle_{V}^{c}$$

on $(\mathfrak{g}, K^{\Gamma})$ -mods as in equal rank case.

David Vogan

1. Why unitary representations?

2. Langlands classification A

3. (g, *K*)-modules

4. *R*(*b*, *L*)-mod

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification B

8. Hermitian forms

9. Case of *SL*(2, ℝ)

10. Signature algorithm