
David Vogan

1. Why unitary
representations?

2. Langlands
classification A

3. (g, K )-modules

4. R(h, L)-mod

5. Cartan
subgroups and
characters

6. Lie algebra
cohomology

7. Langlands
classification B

8. Hermitian forms

9. Case of
SL(2,R)

10. Signature
algorithm

11. Unitarity
algorithm

Unitary representations of
reductive groups

David Vogan

University of Utah
July 10–14, 2017



David Vogan

1. Why unitary
representations?

2. Langlands
classification A

3. (g, K )-modules

4. R(h, L)-mod

5. Cartan
subgroups and
characters

6. Lie algebra
cohomology

7. Langlands
classification B

8. Hermitian forms

9. Case of
SL(2,R)

10. Signature
algorithm

11. Unitarity
algorithm

Outline

1. Why study unitary representations

2. Langlands classification: big picture

3. Introduction to Harish-Chandra modules

4. (h, L)-modules as ring modules

5. Cartan subgroups and characters

6. Lie algebra cohomology

7. Langlands classification: some details

8. Hermitian forms

9. Case of SL(2,R)

10. Calculating signatures of invariant Hermitian forms

11. Unitarity algorithm



David Vogan

1. Why unitary
representations?

2. Langlands
classification A

3. (g, K )-modules

4. R(h, L)-mod

5. Cartan
subgroups and
characters

6. Lie algebra
cohomology

7. Langlands
classification B

8. Hermitian forms

9. Case of
SL(2,R)

10. Signature
algorithm

11. Unitarity
algorithm

What’s a representation?
Definition. Representation of group G on vec space
Vρ is group homomorphism

ρ : G→ GL(Vρ).

Equivalently: action of G on Vρ by linear maps.
Main example. G y X , Vρ = functions on X .
Definition. Hilbert space is cplx vec space H with form 〈, 〉:

1. 〈v ,w〉 = 〈w , v〉 〈av1 + bv2,w〉 = a〈v1,w〉+ b〈v2,w〉;
2. 〈v , v〉 > 0 (0 6= v ∈ H);
3. H complete in metric d(v ,w) =def 〈v − w , v − w〉1/2.

Definition. Unitary representation of G on Hilbert
space Hπ is a group homomorphism

π : G→ U(Hπ).

Equiv: action of G on Hπ by unitary linear maps.
Main example. G y (X ,dx), Hπ = L2(X ).
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Abstract harmonic analysis for dummies

Group G acts on X , have questions about X .

Step 1. Attach to X vector space V of functions on
X . Questions about X  questions about V .
Step 2. Find finest G-eqvt decomp V = ⊕ρVρ.
Questions about V  questions about each Vρ.
Each Vρ is irreducible representation of G.

Step 3. Understand Ĝ = all irreducible
representations of G.
Step 4. Answers about irr reps answers about X .
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Gelfand’s abstract harmonic analysis

Topological grp G acts on X , have questions about X .

Step 1. Attach to X Hilbert space H (e.g. L2(X )).
Questions about X  questions about H.
Step 2. Find finest G-eqvt decomp H = ⊕πHπ.
Questions about H questions about each Hπ.
Each Hα is irreducible unitary representation of G.
Step 3. Understand Ĝu = all irreducible unitary
representations of G: unitary dual problem.
Step 4. Answers about irr reps answers about X .

Topic for these lectures: Step 3 for reductive G.
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Why are unitary representations better?

Why Gelfand’s unitary rep ⊕ irr unitary>>
dummies’ any rep ⊕ irr reps?
Programs seek V = ⊕ρVρ, H = ⊕πHπ.
! eigenspace decomp of lin op = spectral theory.
Spectral theory of unitary ops on Hilb spaces>>
spectral theory of linear ops on top vec spaces.
Easy: H1 ⊂ Hπ G-invt closed =⇒ Hπ = H1 ⊕H⊥1 .
 1ST: get direct integral decomposition

H = ⊕
π∈Ĝu

Mπ ⊗Hπ
arb unitary irr unitary under weak hyps.
2ND: ∃ plenty of unitary (e.g. G-invt msres).
3RD: non-Hilb space questions (e.g. Schwartz space
for R) can be studied using unitary reps:

FT (Schwartz space) = Schwartz space.
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Why study nonunitary representations?
Ĝ = all irr reps = cplx alg variety.

Reason: Homgroups(G,GL(V )) ≈ alg variety.

Reason for the reason: if G has N generators, then

Hom(G,GL(n,C)) = N-tuples of matrices (alg variety)
satisfying relations of G (alg subvariety).

Alg varieties can admit beautiful descriptions.

Langlands classif is beautiful description of Ĝ(R)

Ĝ(R)h = reps with invt Herm form
= real form of Ĝ(R) (Knapp-Zuckerman).

Ĝ(R)u = reps with pos invt form
defined by inequalities: less beautiful.

Our plan this week: G(R) real reductive Lie. . .

1. Langlands classification of Ĝ(R);
2. Knapp-Zuckerman identification Ĝ(R)h ⊂ Ĝ(R);
3. signature of invt Herm form on each ρ ∈ Ĝ(R)h.
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Moral of the story

Aiming at atlas classification of Ĝ(R)u, equiv
classes of irr unitary reps of real reductive G(R).

First: Langlands classification of Ĝ(R), “all” irr reps of
G(R), as cplx alg variety.

Second: Knapp-Zuckerman classification of Ĝ(R)h,
irr Hermitian reps of G(R), as real points of Ĝ(R).
Third: atlas computation of signature of any invt
Herm form.
Fourth: inspect answers to signature computations:
unitary reps! definite signatures.
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What can we ask about representations?

Start with a reasonable category of representations. . .
Example: cplx reductive g ⊃ b = h + n; BGG category O
consists of U(g)-modules V subject to

1. fin gen: ∃V0 ⊂ V , dim V0 <∞, U(g)V0 = V .
2. b-locally finite: ∀v ∈ V , dim U(b)v <∞.
3. h-semisimple: V =

∑
γ∈h∗ Vγ .

Want precise information about reps in the category.
Example: V in category O

1. dim Vγ is almost polynomial as function of γ.
2. V has a formal character

[∑
λ∈h∗ aV (λ)eλ

]
/∆.

Want construction/classification of reps in the category.
Example: λ ∈ h∗  I(λ) =def U(g)⊗U(b) Cλ = Verma module.

1. (STRUCTURE THM): I(λ) has highest weight Cλ ↪→ I(λ)n.
2. (QUOTIENT THM): I(λ) has unique irr quo J(λ).
3. (CLASSIF THM): Each irr in O is J(λ), unique λ ∈ h∗.
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How do you do that?
g ⊃ b = h + n, ∆ = ∆(g, h) ⊂ h∗ roots, ∆+ roots in n.

 partial order on h∗:
µ′ ≤ µ ⇐⇒ µ′ ∈ µ− N∆+

⇐⇒ µ′ = µ−
∑
α∈∆+

nαα, (nα ∈ N)

Proposition. Suppose V ∈ O.
1. If V 6= 0,∃ maximal µ ∈ h∗ subject to Vµ 6= 0.
2. If µ ∈ h∗ is maxl subj to Vµ 6= 0, then Vµ ⊂ V n.
3. If V 6= 0,∃µ with 0 6= Vµ ⊂ V n.
4. ∀λ ∈ h∗, Homg(I(λ),V ) ' Homh(Cλ,V n).

Parts (1)–(3) guarantee existence of “highest weights;”
based on formal calculations with lattices in vector
spaces, and n · Vµ′ ⊂

∑
α∈∆+ Vµ′+α.

Sketch of proof of (4):
HomU(g)(U(g)⊗U(b) Cλ,V ) ' HomU(b)(Cλ,V ) = HomU(h)(Cλ,Vn).

First isom: “change of rings.” Second: n · Cλ =def 0.
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Moral of the story

For category O, three key ingredients:
1. Change of rings U(g)⊗U(b) · Verma mods I(λ).
2. Universality: Homg(I(λ),V ) ' Homh(Cλ,V n).
3. Highest weight exists: J irr =⇒ Jn 6= 0.

#2 is homological alg, #3 is comb/geom in h∗.
Irrs J in O! λ ∈ h∗; characteristic is Cλ ⊂ J(λ)n.
Same three ideas apply to (g,K )-modules.
Technical problem: change of rings needed is not
projective, so ⊗ has to be supplemented by Tor.
Parallel problem: replace Jn = H0(n, J) by some
derived functors Hp(n, J).

Irr G(R)-reps J ! γ ∈ Ĥ(R), some θ-stable Cartan
H(R) ⊂ G(R); characteristic is Cγ ⊂ Hs(n, J).
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END OF LECTURE ONE

BEGINNING OF LECTURE TWO
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Principal series for SL(2,R)
To understand Harish-Chandra’s category of group
representations, need a serious example.

Use principal series repns for SL(2,R) =def G(R).

G(R) y R2, so get rep of G(R) on functions on R2:

[ρ(g)f ](v) = f (g−1 · v).

Lie algs easier than Lie gps write sl(2,R) action, basis

D =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

Action on functions on R2 is by vector fields:

ρ(D)f = −x1
∂f
∂x1

+ x2
∂f
∂x2

, ρ(E) = −x2
∂f
∂x1

, ρ(F ) = −x1
∂f
∂x2

.

General principle: representations on function spaces are
reducible! exist G(R)-invt differential operators.

Euler deg operator E = x1
∂
∂x1

+ x2
∂
∂x2

commutes with G(R).

Conclusion: interesting reps of G(R) on eigenspaces of E .
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Principal series for SL(2,R) (continued)
Previous slide: expect interesting reps of G(R) = SL(2,R)
on homogeneous functions on R2.

For ν ∈ C, ε ∈ Z/2Z, define
Wν,ε = {f : (R2 − 0)→ C | f (tx) = |t |−ν−1 sgn(t)εf (x)},

functions on the plane homog of degree −(ν + 1, ε).

ν  ν + 1 simplifies MANY things later. . .

Study W ν,ε by restriction to circle {(cos θ, sin θ)}:
Wν,ε ' {w : S1 → C | w(−s) = (−1)εw(s)}, f (r , θ) = r−ν−1w(θ).

Compute Lie algebra action in polar coords using
∂

∂x1
= −x2

∂

∂θ
+ x1

∂

∂r
,

∂

∂x2
= x1

∂

∂θ
+ x2

∂

∂r
,

∂

∂r
= −ν − 1, x1 = cos θ, x2 = sin θ.

Plug into formulas on preceding slide: get
ρν,ε(D) = 2 sin θ cos θ

∂

∂θ
+ (− cos2 θ + sin2 θ)(ν + 1),

ρν,ε(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1),

ρν,ε(F ) = − cos2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1).
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A more suitable basis
Have family ρν,ε of reps of SL(2,R) defined on functions
on S1 of homogeneity (or parity) ε:

ρν,ε(D) = 2 sin θ cos θ
∂

∂θ
+ (− cos2 θ + sin2 θ)(ν + 1),

ρν,ε(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1),

ρν,ε(F ) = − cos2 θ
∂

∂θ
+ (− cos θ sin θ)(ν + 1).

Hard to make sense of. Clear: family of reps analytic
(actually linear) in complex parameter ν.

Big idea: see how properties change as function of ν.

Problem: {D,E ,F} adapted to wt vectors for diagonal
Cartan subalgebra; rep ρν,ε has no such wt vectors.

But rotation matrix E − F acts simply by ∂/∂θ.

Suggests new basis of the complexified Lie algebra:
H = −i(E − F ), X =

1
2

(D + iE + iF ), Y =
1
2

(D − iE − iF ).

ρ
ν,ε(H) =

1

i

∂

∂θ
, ρ

ν,ε(X) =
e2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
, ρ
ν,ε(Y ) =

−e−2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
.
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Matrices for principal series, bad news

Have family ρν,ε of reps of SL(2,R) defined on functions
on S1 of homogeneity (or parity) ε:

ρ
ν,ε(H) =

1

i

∂

∂θ
, ρ

ν,ε(X) =
e2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
, ρ
ν,ε(Y ) =

−e−2iθ

2i

(
∂

∂θ
+ i(ν + 1)

)
.

These ops act simply on basis wm(cos θ, sin θ) = eimθ:
ρν,ε(H)wm = mwm,

ρν,ε(X )wm =
1
2

(m + ν + 1)wm+2,

ρν,ε(Y )wm =
1
2

(−m + ν + 1)wm−2.

Suggests reasonable function space to consider:

W ν,ε,K (R) = fns homog of deg (ν, ε), finite under rotation

= span({wm | m ≡ ε (mod 2)}).

� W ν,ε,K (R) has beautiful rep of g: irr for most ν, easy submods
otherwise. Not preserved by G(R) = SL(2,R):
exp(A) ∈ G(R) 

∑
Ak/k !: Ak y W ν,ε,K (R), sum not.
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Structure of principal series: good news
Original question was action of G(R) = SL(2,R) on

W ν,ε,∞ = {f ∈ C∞(R2 − 0) | f homog of deg −(ν + 1, ε)} :

what are the closed G(R)-invt subspaces. . . ?

Found nice subspace W ν,ε,K (R), explicit basis, explicit
action of Lie algebra easy to describe g–invt
subspaces.

Theorem (Harish-Chandra) There is one-to-one corr

closed G(R)-invt S ⊂W ν,ε,∞! g(R)-invt SK ⊂W ν,ε,K

S  K -finite vectors in S, SK  SK .

Content of thm: closure carries g-invt to G-invt.

Why this isn’t obvious: SO(2) acting by translation on C∞(S1).
Lie alg acts by d

dθ , so closed subspace

E = {f ∈ C∞(S1) | f (cos θ, sin θ) = 0, θ ∈ (−π/2, π/2) + 2πZ}

is preserved by so(2); not preserved by rotation.

Reason: Taylor series for in f ∈ E doesn’t converge to f .
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Same formalism, general G(R)
Lesson of SL(2,R) princ series: vecs finite under SO(2)
have nice/comprehensible/meaningful Lie algebra action.

Back to general setting: G(R) real pts of conn reductive
complex algebraic group can embed

G(R) ↪→ GL(n,R), stable by transpose, G(R)/G(R)0 finite.

Recall polar decomposition:
GL(n,R) = O(n)× (pos def symmetric matrices)

= O(n)× exp(symmetric matrices).

Inherited by G(R) as Cartan decomposition for G(R):
K (R) = O(n) ∩G, s0 = g0 ∩ (symm mats), S = exp(s0)

G(R) = K (R)× S = K (R)× exp(s0).

(ρ,W ) rep of G on complete loc cvx top vec W ;
W K (R) = {w ∈ W | dim span(ρ(K (R))w) <∞},

W∞ = {w ∈ W | G(R)→ W , g 7→ ρ(g)w smooth}.
Definition. The Harish-Chandra-module of W is W K (R),∞:
representation of Lie algebra g(R) and of group K (R).
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Category of (h(R),L(R))-modules

Setting: h(R) ⊃ l(R) real Lie algebras, L(R) compact Lie
group acting on h(R) by Lie algebra automorphisms Ad.
Definition. An (h(R),L(R))-module is complex vector
space W , with reps of h(R) and of L(R), subject to

1. each w ∈W belongs to fin-diml L(R)-invt W0, so that
action of L(R) on W0 continuous (hence smooth);

2. differential of L(R) action is l(R) action;
3. For k ∈ L(R), Z ∈ h(R), w ∈W ,

k · (Z · (k−1 · w)) = [Ad(k)(Z )] · w .

Proposition. Passage to smooth K (R)-finite vectors
defines a functor

(reps of G(R) on complete locally convex W )

−→ (g(R),K (R))-modules W K (R),∞

.
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Complexified is better

Complex vector spaces>> real vector spaces.

Reason: linear maps are (nearly) diagonalizable.

Example: Motion of pendulum! real-valued

φ : Rtime → Rdisplacement,
d2φ

dt2 = −λ2φ.

Solutions φ(t) = c1 cos(λt) + c2 sin(λt) (c1, c2 ∈ R).

Easier to study complex-valued

φ : Rtime → Cdisplacement,
d2φ

dt2 = −λ2φ.

Solutions φ(t) = a1eiλt + a2e−iλt (a1,a2 ∈ C).

If you need to build a clock, real-valued ⇐⇒ a2 = a1.
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Complexified Lie algebras

real Lie algebra h(R) complex Lie algebra
h = h(C) =def h(R)⊗R C

= {X + iY | X ,Y ∈ h(R).}
complexification of h(R).

Proposition. Representation (π0,V ) of h(R)!
representation (π1,V ) of h(C):

π1(X + iY ) = π0(X ) + iπ0(Y ), π0(X ) = π1(X ).

Identification π0 ! π1 is perfect; write π for both.
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Complexified compact Lie groups

Same thing works for compact groups. . .

real compact L(R) ⊂ U(n) complex reductive alg

L = L(C) =def L(R) exp(i l(R) ⊂ GL(n,C)

complexification of L(R).

Coordinate-free definition:

reg fns on L(C) = L(R)-finite C-valued fns on L(R)

Proposition. Fin-diml continuous (π0,V ) of L(R)!
fin-diml algebraic representation (π1,V ) of L(C):

π1(l exp(iY )) = π0(l) exp(idπ0(Y )), π0(l) = π1(l).

Identification π0 ! π1 is perfect; write π for both.

L(R)-finite cont reps of L(R) = algebraic reps of L(C).
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Category of (h,L)-modules
Now we can complexify Harish-Chandra’s category. . .

Setting: h ⊃ l complex Lie algebras, L complex reductive
algebraic acting on h by Lie algebra automorphisms Ad.

Definition. An (h,L)-module is complex vector space W ,
with reps of h and of L, subject to

1. L action is algebraic (hence smooth);
2. differential of L action is l action;
3. For k ∈ L, Z ∈ h, w ∈W ,

k · (Z · (k−1 · w)) = [Ad(k)(Z )] · w .

WriteM(h,L) for category of (h,L)-modules.

Proposition. Smooth K -finite vectors define functor

W ∈ (reps of G(R) on complete locally convex space)

−→W K ,∞ ∈M(g,K )

.
Definition ofM(h,L) makes sense for L algebraic (not
necessarily reductive).
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Representations and R-modules
Rings and modules familiar and powerful try to make
representation categories into module categories.

Category of reps of h(R) = category of U(h(R))-modules.

Seek parallel for locally finite reps of compact L(R):

R(L(R)) = conv alg of R-valued L(R)-finite msres on L(R)

'(Peter-Weyl)

[∑
(µ,Eµ)∈L̂(R)

End(Eµ)
]

(R)

� 1 /∈ R(L(R)) if L(R) is infinite: convolution identity is delta
function at e ∈ L(R), not L(R)-finite.

α ⊂ L̂(R) finite, self-dual 1α =def
∑
µ∈α Idµ ∈ R(L(R)).

Elements 1α are approximate identity:
∀r ∈ R(L(R)) ∃α(r) finite so 1β · r = r · 1β = r if β ⊃ α(r).

R(L(R))-module M is approximately unital if
∀m ∈ M ∃α(m) finite so 1β ·m = m if β ⊃ α(m).

Loc fin reps of L(R) = approx unital R(L(R))-modules.

R -mod =def category of approximately unital R-modules.
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Representations and R-modules complexified

Category of reps of cplx h = category of U(h)-modules.

Parallel for locally finite reps of reductive algebraic L,
O(L) = algebra of regular functions on L:

R(L) = L-finite linear functionals ⊂ O(L)∗

'
∑

(µ,Eµ)∈L̂ End(Eµ)

Algebra structure R(L)⊗R(L)→ R(L) is dual to coproduct
O(L)→ O(L)⊗O(L) (! group multiplication L× L→ L).

α ⊂ L̂ finite 1α =def
∑
µ∈α Idµ.

Alg reps of L = approx unital R(L)-modules.

Exercise: define R(L) for any complex algebraic group.
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Hecke algebras

Setting: h ⊃ l cplx Lie algs, L reductive alg y h by Lie alg
automorphisms Ad.

Definition. The Hecke algebra R(h,L) is

R(h, L) = U(h)⊗U(l) R(L)

' [conv alg of L(R)-finite U(h)-valued msres on L]/U(l)

R(h,L) inherits approx identity from subalgebra R(L).

Proposition. M(h,L) = R(h,L) -mod: (h,L) modules are
approximately unital modules for Hecke algebra R(h,L).

Immediate corollary: M(h,L) has projective resolutions,
so derived functors. . .
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Group reps and Lie algebra reps

G(R) reductive ⊃ K (R) max cpt, Z(g) = center of U(g).

Definition. Representation (π,V ) of G(R) on complete
locally convex V is quasisimple if π∞(z) = scalar, all
z ∈ Z(g). Algebra homomorphism χπ : Z(g)→ C is the
infinitesimal character of π.

Theorem (Segal, Harish-Chandra)
1. Any irreducible (g,K )-module is quasisimple.
2. Any irreducible unitary rep of G(R) is quasisimple.
3. Suppose V quasisimple rep of G(R). Then

W 7→W K ,∞ is bijection between subrepresentations

(closed W ⊂ V )↔ (W K ,∞ ⊂ V K ,∞).

4. (irr quasisimple reps of G(R)) (irr (g,K )-modules),
Wπ  W K ,∞

π is surjective.

Idea of proof: G(R)/K (R) ' s0, vector space. Describe anything
analytic on G(R) by Taylor expansion along K (R).
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So where are we now?

Harish-Chandra’s notion of all irreducible representations
π of G(R): continuous irreducible on complete loc cvx top
vec space Wπ, quasisimple: center of U(g) acts by
scalars on W∞

π .

 W K ,∞
π irr (g,K )-module of K (R)-finite smooth vecs.

π and π′ infinitesimally equivalent if W K ,∞
π 'W K ,∞

π′ .

Ĝ(R) =def infinitesimal equiv classes of irr quasisimple, so

Ĝ(R) 'def simple R(g,K )-modules.

Notice right side depends only on atlas data: complex
G, involutive automorphism θ, K = Gθ.
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atlas point of view for Cartans

Complex torus H is naturally H ' C× ⊗Z X∗(H),

Consequently H has unique compact real form

σc(z ⊗ ξ) =def z−1 ⊗ ξ (z ∈ C×, ξ ∈ X∗(H)),

H(R, σc) = S1 ⊗Z X∗(H) ' (S1)rk(H).

Reason is that S1 = {z ∈ C× | z = z−1}.

Proposition.

1. Real form σ of H ! inv aut θ ∈ Aut(H):
θ(h) =def σ(σc(h)).

2. Unique maximal compact subgroup of H(R, σ) is

T (R) =def H(R, σ)θ = H(R, σ) ∩ H(R, σc).

3. Complexification of T (R) is T (C) = Hθ.



David Vogan

1. Why unitary
representations?

2. Langlands
classification A

3. (g, K )-modules

4. R(h, L)-mod

5. Cartan
subgroups and
characters

6. Lie algebra
cohomology

7. Langlands
classification B

8. Hermitian forms

9. Case of
SL(2,R)

10. Signature
algorithm

11. Unitarity
algorithm

atlas point of view for structure
H(R) real torus with Cartan involution θ ∈ Aut(H).

Cartan decomp of h(R) is into ±1 eigenspaces of θ

h(R) = t(R) + a(R), a(R) = {X ∈ h(R) | θX = −X}

H(R) ' T (R) exp(a(R)).

Because H(R, σ) is abelian, this is isomorphism of groups
(but not of algebraic groups).

� exp(a(R)) is just identity component of real algebraic group

A(R) = {h ∈ H(R) | θ(z) = z−1}.

Examples
θ H(R) T (R) exp a(R)

θ(z) = z−1 R× {±1} {et | t ∈ R}
θ(z) = z S1 {eis | s ∈ R} {1}

θ(z,w) = (w , z) C× {(eis, eis)} {(et , e−t )}

All real algebraic tori are products of these three.
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atlas point of view for characters

H(R) ' T (R) exp(a(R)).

Unitary characters of T (R) are restrictions of algebraic
characters of T = Hθ, namely X ∗/(1− θ)X ∗.

Lie algebra chars of h(R) are complexified differentials of
algebraic characters of H, namely X ∗ ⊗Z C.

Ĥ(R) = one-dimensional (h,T )-modules

= {(γ, φ) | γ ∈ X∗(T ), φ ∈ h∗, φ|t = dγ}

= {(λ, φ) | λ ∈ X∗/(1− θ)X∗, φ ∈ X∗ ⊗Z C,
(1 + θ)λ = (1 + θ)φ}

= {(λ, ν) | ν ∈ [X∗/(1 + θ)X∗]⊗Z C}

Last identification is φ = 1+θ
2 λ+ 1−θ

2 ν ∈ X ∗ ⊗Z C.

atlas considers only

Ĥ(R)Q =def {(γ, φ) | φ ∈ h∗Q =def X ∗ ⊗Z Q}

Reason: all interesting rep theory happens in Ĥ(R)Q.
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Lie algebra cohomology
n Lie alg (e.g. nil radical of a parabolic in reductive g.)
Study functor of n-invts V 7→ V n on reps of n.

Extra: nC b, V rep of b =⇒ V n is rep of b/n.

Functor left exact; not right exact unless n = 0.

Definition 1. Hp(n, ·) is the pth right derived functor of ·n.
Definition 2. Suppose

0→ V → I0 → · · · → Ip−1 → Ip → Ip+1 → · · ·
is an injective resolution of V as a U(n)-module. Then

Hp(n,V ) = ker[Inp → Inp+1]/ im[Inp−1 → Inp ].

Definition 3. Hp(n,V ) = pth coh of cplx Hom(
∧p

n,V ).

Extra structure: nC b =⇒ Hp(n,V ) is b/n-module.
0→ V1 → V2 → V3 → 0 exact seq of n-modules =⇒

0 −→H0(n,V1) −→ H0(n,V2) −→ H0(n,V3)

−→H1(n,V1) −→ H1(n,V2) −→ H1(n,V3)...
...

...
−→Hd (n,V1) −→ Hd (n,V2) −→ Hd (n,V3) −→ 0
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Casselman-Osborne theorem

K (R) ⊂ G(R) max compact in real reductive, θ Cartan
involution pair (g,K ).

q = l + u Levi decomp of parabolic subalg; assume
l = θl = l. Get L(R), Levi pair (l,L ∩ K ).

Theorem Lie algebra cohomology is a cohomological
family of functors Hp(u, ·) : M(g,K )→M(l,L ∩ K ). Each
carries modules of finite length to modules of finite length.

“Finite length” close to “quasisimple.” Proof of thm
depends on analyzing Z(g). . .

U(g) = U(u)⊗ U(l)⊗ U(u−) gives linear projection

ξ̃ : U(g)→ U(l); ξ̃ : U(g)z(l) → U(l)z(l) alg hom.

Theorem (Casselman-Osborne) If V is a g-module, then
Z(g) acts on Hp(u,V ). This action is related to the l action
by z · ω = ξ̃(z) · ω.
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Interlude: Chevalley isomorphism

Cplx reductive g ⊃ b = h + n; W = W (g, h) y h, h∗.

ρ = half sum of pos roots ∈ h∗. Twisted action ∗ of W is
w ∗ λ =def w(λ+ ρ)− ρ, (w ∗ p)(λ) =def p(w−1 ∗ λ)

(λ ∈ h∗,p ∈ S(h)).

Theorem (Chevalley). Algebra hom ξ̃ : Z(g)→ S(h) from
previous slide is injection with image equal to S(h)W ,∗, the
invts of the twisted W action. Consequently maxl ideals in
Z(g) are in one-to-one corr with twisted W orbits on h∗.

Here should introduce ρ-twisted version ξ of ξ̃,

ξ : Z(g)
∼−→ S(h)W .

Corollary of Thm and Casselman-Osborne: if g-module V
has infl char λ ∈ h∗, then Hp(u,V ) has finite filtration with
each level of infl char w ∗ λ, some w ∈W (l, h)\W (g, h).
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Strategy for Langlands classification

Still aiming at Langlands classification:

Ĝ(R) = irr rep of G(R) / infinitesimal equivalence
! irr (g,K )-module

! character of real Cartan γ ∈ Ĥ(R) /G(R)

! one-diml (h,T )-module (λ, ν)/(K (C))

IDEA: start with M irr (g,K )-module.

Find nice-for-M Borel subalg b = h+ n, θh = h; T = Hθ.

Find nice cohomology class in H∗(n,M); action of (h,T )
defines Langlands parameter.
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How this works for SL(2,R)
G(R) = SL(2,R), K ' C×, M irr (g,K )-module.

K̂ ' Z, so M =
∑
µ∈Z Mµ. Recall basis (H,X ,Y ) for g:

X ·Mµ ⊂ Mµ+2, Y ·Mµ ⊂ Mµ−2, H · v = µv (v ∈ Mµ).

Lowest K -type of M is smallest µ0 such that Mµ0 6= 0.

Case DS+: µ0 ≥ 2. In this case

1. Mµ0−2 = 0, so Y ·Mµ0 = 0, so Mµ0 ⊂ MCY

2. Define nY = CY ; get T weight µ0 in H0(nY ,M).
3. M is (irreducible) bY -Verma of highest weight µ0.
4. Langlands parameter is (T , λ = µ0 − 1, ν = 0).

Case DS-: µ0 ≤ −2. In this case

1. Mµ0+2 = 0, so X ·Mµ0 = 0, so Mµ0 ⊂ MCX

2. Define nX = CX ; get T weight µ0 in H0(nX ,M).
3. M is (irreducible) bX -Verma of highest weight µ0.
4. Langlands parameter is (T , λ = µ0 + 1, ν = 0).

Case PS: µ0 = 0 or ±1 is something completely different. . .
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SL(2,R): lowest K -type 0 or ±1

Suppose M irr (g,K )-module containing K -type 0 or ±1.

(Almost always) M  diagonal Cartan Hs: θ = inverse,
Ts = {±I}, as = hs.

Define bs = ns + as = upper triangular Borel.

Define νs(M) = infinitesimal character of M in a∗s ,
ε = parity of µ0.

Langlands parameter: (Ts, λ = ε+ 1, νs = νs),

Proposition.

1. M is a composition factor of the principal series
representation ρν(M)+1,ε(M) defined in Lecture 2.

2. if νs < 0, M is unique irr sub of ρνs+1,ε(M), and
H0(ns,M) has Ts-weight (ε, νs + 1).

3. If νs > 0, M is unique irr quo of ρνs+1,ε(M).

Case νs = 0 causes some complications; ignore for now.
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How this works for G(R)
G ⊃ K = Gθ, M irr (g,K )-module.

Fix maximal torus T0 ⊂ K ; Tf = GT0 = θ-stable Cartan in
G, fundamental Cartan.

X ∗(Tf )� X ∗(T θ
f )

Fix Borel bK = t + nK , pos roots ∆+(k, t) ⊂ X ∗(T θ
f ).

Write bop
K = t + nop

K , 2ρc =
∑
α∈∆+(k,t) α, s = dim(nK ).

Any irr (τ,Eτ ) ∈ K̂  highest weights {µj ∈ X ∗(T θ
f )}:

µj appears in H0(nK ,Eτ ), µj + 2ρc appears in Hs(nop
K ,Eτ )

Given highest weight µ of (τ,Eτ ), choose θ-stable
∆+(g, tf ) so that 〈µ+ 2ρc , (1 + θ)α∨〉 ≥ 0 (all α ∈ ∆+).

Define rough height of τ h̃(τ) =
∑
α∈∆+〈µ+ 2ρc , α

∨〉.

Lowest K -type of M is τ0 minimizing h̃(τ0) with Mτ0 6= 0.
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Constructing cohomology
Tf (R) = Tf (R)θ exp(af (R)) fundamental Cartan subgroup.

M irr (g,K )-module, τ0 lowest K -type, µ0 ∈ X ∗(T θ
f )

highest weight, bop
f = tf + nop

K + nop
p making µ0 + 2ρc

antidominant.

Theorem. Assume µ0 + 2ρc − ρ regular antidominant.

1. H∗(n,Mop
f )µ0+2ρc 6= 0 only in degree s = dim nop

K .
2. dim Hs(nop,M)µ0+2ρc = dim Mτ0 .
3. Hs(nop

f ,M)µ0+2ρc has at least one af -weight νf ∈ a∗f .

If µ0 + 2ρc − ρ regular antidominant,

M  γ(M) = (Tf , λ = µ0 + 2ρc − ρ, ν = νf (M)).

In this case M is unique irreducible quotient of
cohomologically induced module

I(γ) =def L
bop

f
s (Cµ+2ρc ,νf ).

Consequence: I(µ+ 2ρc , ν
′
f ) algebraic in ν′f .

Study by deformation in continuous parameters.
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Moral of these stories

M irr (g,K )-module Langlands parameter γ = (H, λ, ν).

T =def Hθ ⊂ K , a = h−θ.

1. Infl char of M = (1+θ)
2 λ+ (1−θ)

2 ν.
2. Lowest K -type(s) of M ! λ ∈ Ĥθ

3. (Langlands original idea) growth of matrix
coefficients of M ! ν ∈ a∗
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Invariant Hermitian forms

(π,Wπ) continuous rep of G(R) on complete locally
convex topological vector space Wπ.

Definition. G(R)-invariant Hermitian form is continuous
Hermitian pairing 〈, 〉π on Wπ satisfying

〈π(g)w1, π(g)w2〉π = 〈w1,w2〉π (g ∈ G(R)).

Definition. Invariant Hermitian form on (g,K )-module M is
Hermitian pairing 〈, 〉M on M satisfying

〈Z ·m1,m2〉M + 〈m1, σ(Z ) ·m2〉π = 0 Z ∈ g(C)),

〈k ·m1, σ(k) ·m2〉M = 〈m1,m2〉M k ∈ K (C)).

Prop. G(R)-invt 〈, 〉π
restrict−→ (g,K )-invt 〈, 〉K ,∞π on W K ,∞

π .
Conversely, (g,K )-invt 〈, 〉M on finite length M extend−→
G(R)-invt 〈, 〉Mmin on Schmid minimal globalization Mmin.
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Forms and dual spaces
V cplx vec space (or alg rep of K , or (g,K )-module. . . )

Hermitian dual of V
V h = {ξ : V → C additive | ξ(zv) = zξ(v)}

(V alg K -rep require ξ K -finite; V topolog.  require ξ cont.)

Sesquilinear pairings between V and W are

Sesq(V ,W ) = {〈, 〉 : V ×W → C, lin in V , conj-lin in W}

Sesq(V ,W ) ' Hom(V ,W h), 〈v ,w〉T = (Tv)(w).

Complex conjugation of forms is (conj linear) isom
Sesq(V ,W ) ' Sesq(W ,V ).

Corresponding (conj lin) isom is Hermitian transpose:

Hom(V ,W h) ' Hom(W ,V h), (T hw)(v) = (Tv)(w).

(TS)h = ShT h, (zT )h = z(T h).

Sesq form 〈, 〉T on V (! T ∈ Hom(V ,V h)) Hermitian if

〈v , v ′〉T = 〈v ′, v〉T ⇐⇒ T h = T .
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Defining Herm dual repn(s)

(π,V ) (g,K )-module; Recall Herm dual V h of V .

Want to construct functor

cplx linear rep (π,V ) cplx linear rep (πh,V h)

using Hermitian transpose map of operators.

Def REQUIRES twist by conj lin antiaut of g, conjugate
linear group antiaut of K . We have one!

Define (g,K )-module πh on V h,
πh(Z ) · ξ=def [π(−σ0(Z ))]h · ξ (Z ∈ g, ξ ∈ V h),

πh(k) · ξ=def [π(σ0(k−1))]h · ξ (k ∈ K , ξ ∈ V h).

Variant: compact real form σc = θσ0  πh,c ,
πh,c(Z ) · ξ=def [π(−σc(Z ))]h · ξ (Z ∈ g, ξ ∈ V h),

πh,c(k) · ξ=def [π(σc(k)−1)]h · ξ (k ∈ K , ξ ∈ V h).
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c-Invariant Hermitian forms
V = (g,K )-module.

A c-invt sesq form on V is sesq pairing 〈, 〉c such that

〈Z · v ,w〉 = 〈v ,−σc(Z ) · w〉, 〈k · v ,w〉 = 〈v , σc(k−1) · w〉

(Z ∈ g; k ∈ K ; v ,w ∈ V ).Proposition.
1. c-invt sesq form on V ! (g,K )-map T : V → V h,c :

〈v ,w〉T = (Tv)(w).

2. Form is Hermitian ⇐⇒ T h = T .

Assume from now on V is irreducible.

3. V ' V h,c ⇐⇒ ∃ c-invt sesq ⇐⇒ ∃ c-invt Herm
4. c-invt Herm form on V unique up to real scalar mult.

T → T h ! real form of cplx line Homg,K (V ,V h,c).

Deciding existence of c-invt Hermitian form amounts to
computing the involution π 7→ πh,c on Ĝ.

Same conclusion for invariant Hermitian forms.



David Vogan

1. Why unitary
representations?

2. Langlands
classification A

3. (g, K )-modules

4. R(h, L)-mod

5. Cartan
subgroups and
characters

6. Lie algebra
cohomology

7. Langlands
classification B

8. Hermitian forms

9. Case of
SL(2,R)

10. Signature
algorithm

11. Unitarity
algorithm

Hermitian forms and unitary reps

π rep of G on complete loc cvx Vπ, (πhV h
π) (continuous)

Hermitian dual representation.

� Because infl equiv easier than topol equiv, Vπ ' V h,τ
π 6=⇒

continuous map Vπ → V h
π . So invt forms may not exist on

topological reps even if they exist on (g,K )-modules.

Theorem (Harish-Chandra). Passage to K -finite vectors
defines bijection from the unitary dual Ĝu onto
equivalence classes of irreducible (g,K ) modules
admitting a pos def invt Hermitian form.

Despite warning, get perfect alg param of Ĝu.

Knapp-Zuckerman computed involution π 7→ πh,c on Ĝ.

So we know which irr (g,K ) modules admit invt forms.

Remaining task: compute signatures of these forms.
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BEGINNING OF LECTURE SIX
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Big idea for computing signatures

Here’s what theory gives for Hermitian reps. . .

Comprehensible/computable parameters γ = (x , λ, ν).

Hermitian parameter γ  

1. Standard rep Iquo(γ)� J(γ) unique irr quotient.
2. deformation fam γt = (x , λ, tν) (0 ≤ t ≤ 1)
3. deformation fam of invt Herm forms 〈, 〉t on Iquo(γt ).

Key properties:

1. Rad(〈, 〉t ) = ker(Iquo(γt )� J(γt )). Consequently
2. 〈, 〉t descends to nondeg form on J(γt ).
3. J(γ0) = I(γ0) tempered irr, so 〈, 〉0 pos definite.

Plan for computing signature of 〈, 〉t :
1. start with known pos def signature at t = 0
2. compute changes in signature at reducibility points ti
3.  formula for signature at t = 1.
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Hermitian duals for SL(2,R)

Recall ρν (ν ∈ C) family of reps of SL(2,R) defined on
W = even trig polys on S1 = span(wm(θ) = eimθ,m ∈ 2Z)

Rotation by θ in SO(2) acts on wm by eimθ, Lie alg acts by

ρν(H)wm = mwm, ρν,h(H)wm= mwm,

ρν(X)wm =
1
2

(m + ν + 1)wm+2, ρν,h(X)wm=
1
2

(m − ν + 1)wm+2,

ρν(Y )wm =
1
2

(−m + ν + 1)wm−2 ρν,h(Y )wm =
1
2

(−m − ν + 1)wm−2.

If we identify W 'W h by pos def inner product〈∑
r ar wr ,

∑
s bsws

〉
=
∑

p apbp,

then Hermitian transpose of T = (tij ) is T h = tT = (tji ).

See that (ρν)h = ρ−ν . So ν imag =⇒ ρν Herm; invt form
= pos def standard form, so ν ∈ iR =⇒ ρν unitary.
These are (tempered) unitary principal series.

There is more to say!
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SL(2,R)-invariant forms 〈, 〉ν
Calculated (ρν)h = ρ−ν . Know ρν ≈ ρ−ν ; so expect
invariant forms 〈, 〉ν , ν ∈ R.

Recall basis (H,X ,Y ), σ0(H) = −H, σ0(X ) = Y .

Condition for invariant form is

〈ρν(Z )w ,w ′〉ν + 〈w , ρν(σ0(Z ))w ′〉ν = 0. (INVT )

ρν(H)wm = mwm; plugging in (INVT) gives

〈wm,wn〉ν = am(ν)δmn (am ∈ R).

ρν(X)wm =
1
2

(m + ν + 1)wm+2, ρν(Y )wm+2 =
1
2

(−m + ν − 1)wm.

Plugging in (INVT) gives

(m + 1 + ν)am+2(ν) = (m + 1− ν)am(ν) (am ∈ R).

Proposition. For ν ≥ 0, ρν has unique invt 〈, 〉ν char by
〈w0,w0〉ν = 1. Each 〈w2m,w2m〉ν is rational in ν:

a±2(ν) =
1− ν
1 + ν

, a±4 =
(1− ν)(3− ν)

(1 + ν)(3 + ν)
, . . . .
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Signatures for SL(2,R)

Recall W ν = even fns homog of deg −ν − 1 on the plane.

Need “signature” of Herm form on this inf-diml space.

Harish-Chandra (or Fourier) idea:
use K = SO(2) break into fin-diml subspaces

W ν
2m = {f ∈ W ν |

(
cos θ sin θ
− sin θ cos θ

)
· f = e2imθf}.

W ν ⊃
∑

m

W ν
m , (dense subspace)

Decomp is orthogonal for any invariant Herm form.

Signature is + or − for each m. For 3 < |ν| < 5

· · · −6 −4 −2 0 +2 +4 +6 · · ·
· · · + + − + − + + · · ·
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Deforming signatures for SL(2,R)
Here’s how signatures of the reps I(ν) change with ν.

ν = 0, I(0) “⊂” L2(G): unitary, signature positive.
0 < ν < 1, I(ν) irr: signature remains positive.
ν = 1, form finite pos on J(1)! SO(2) rep 0.
ν = 1, form has zero, pos derivative on I(1)/J(1).
1 < ν < 3, across zero at ν = 1, signature changes.
ν = 3, form finite −+− on J(3).
ν = 3, form has zero, neg derivative on I(3)/J(3).
3 < ν < 5, across zero at ν = 3, signature changes. ETC.
Conclude: J(ν) unitary, ν ∈ [0, 1]; nonunitary, ν ∈ [1,∞).
· · · −6 −4 −2 0 +2 +4 +6 · · · SO(2) reps

· · · + + + + + + + · · · ν = 0

· · · + + + + + + + · · · 0 < ν < 1

· · · + + + + + + + · · · ν = 1

· · · − − − + − − − · · · 1 < ν < 3

· · · − − − + − − − · · · ν = 3

· · · + + − + − + + · · · 3 < ν < 5
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Formulas for signatures
M (g,K )-module M =

∑
τ∈K̂ Mτ ⊗Eτ , mM(τ) = dim Mτ .

FIX positive K -invariant form 〈, 〉τ on each K -irr (τ,Eτ ) . . .

invariant Hermitian form 〈, 〉M  Hermitian forms 〈, 〉Mτ .

Define signature functions from K̂ to N,

(pM(τ),qM(τ), zM(τ)) = signature of 〈, 〉Mτ .
M is unitary ⇐⇒ function qM = 0.

Recall from Annegret: lowest K -type is bijection(
parameters with ν = 0

)
=def TR −→ K̂

Notation refers to T empered reps of Real infinitesimal character.Theorem. Each function mM , pM , qM , and zM can be
written uniquely as finite integer combination

pM =
∑
γ∈TR

a(γ)mI(γ)

of K -mult fns for tempered reps of real infl char.
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Signature formulas for SL(2,R)
Here’s what deformation says about signatures on I(ν).
ν = 0, I(0) unitary, signature positive:

pJ(0) = mI(0), qJ(0) = 0, zJ(0) = 0.

0 < ν < 1, I(ν) irr: signature remains positive:

pJ(ν) = mI(0), qJ(ν) = 0, zJ(ν) = 0.

ν = 1: form has simple zero on radical = DS+(1) + DS−(1):
pJ(1) = mI(0) −mDS+(1) −mDS−(1), qJ(1) = 0,

zJ(1) = mDS+(1) + mDS−(1).

1 < ν < 3, across zero at ν = 1, signature changes:
pJ(ν) = mI(0) −mDS+(1) −mDS−(1)

qJ(ν) = mDS+(1) + mDS−(1), zJ(ν) = 0.

ν = 3: form form has simple zero on radical = DS+(3) + DS−(3):
pJ(ν) = mJ(0) −mDS+(1) −mDS−(1),

qJ(3) = mDS+(1) + mDS−(1) −mDS+(3) −mDS−(3),

zJ(3) = mDS+(3) + mDS−(3).
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Invariant forms on standard reps

Recall multiplicity formula

I(x) =
∑

y≤x my ,xJ(y) (my ,x ∈ N)

for standard (g,K )-mod I(x).
Want parallel formulas for invt Hermitian forms. Need
forms on standard modules.
Form on irr J(x)

deformation−−−−−−−→ Jantzen filt Ik (x) on std,
nondeg forms 〈, 〉k on Ik/Ik+1.
Details (proved by Beilinson-Bernstein):

I(x) = I0 ⊃ I1 ⊃ I2 ⊃ · · · , I0/I1 = J(x)

Ik/Ik+1 completely reducible

[J(y) : Ik/Ik+1] = coeff of q(`(x)−`(y)−k)/2 in KL poly Qy,x

Hence 〈, 〉I(x)
def
=
∑

k 〈, 〉k , nondeg form on gr I(x).
Restricts to original form on irr J(x).
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Virtual Hermitian forms

Z = Groth group of vec spaces.

These are mults of irr reps in virtual reps.
Z[Ĝ(R)] = Groth grp of finite length reps.

For invariant forms. . .

W = Z⊕ Z =
Grothendieck group of

finite-dimensional forms.

Ring structure
(p,q)(p′,q′) = (pp′ + qq′,pq′ + q′p).

Mult of irr-with-forms in virtual-with-forms is in W:
W[Ĝ(R)h] ≈ Groth grp of fin lgth reps with invt forms.

Problem: invt form 〈, 〉J may not be preferable to
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What’s a Jantzen filtration?
V cplx, 〈, 〉t Herm forms analytic in t , generically nondeg.

V = V 0(t) ⊃ V 1(t) = Rad(〈, 〉t ), J(t) = V 0(t)/V 1(t)

(p0(t), q0(t)) = signature of 〈, 〉t on J(t).

Question: how does (p0(t),q0(t)) change with t?

First answer: locally constant on open set V 1(t) = 0.

Refine answer. . . define form on V 1(t)

〈v ,w〉1(t) = lim
s→t

1
t − s

< v ,w >s, V2(t) = Rad(〈, 〉1(t))

(p1(t), q1(t)) = signature of 〈, 〉1(t).

Continuing gives Jantzen filtration

V = V 0(t) ⊃ V 1(t) ⊃ V 2(t) · · · ⊃ V m+1(t) = 0

From t − ε to t + ε, signature changes on odd levels:

p(t + ε) = p(t − ε) +
∑

[−p2k+1(t) + q2k+1(t)].
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Hermitian KL polynomials: multiplicities

Fix invt Hermitian form 〈, 〉J(x) on each irr having one;
recall Jantzen form 〈, 〉n on I(x)n/I(x)n+1.
MODULO problem of irrs with no invt form, write

(In/In+1, 〈, 〉n) =
∑
y≤x

wy ,x (n)(J(y), 〈, 〉J(y)),

coeffs w(n) = (p(n),q(n)) ∈W; summand means

p(n)(J(y), 〈, 〉J(y))⊕ q(n)(J(y),−〈, 〉J(y))

Define Hermitian KL polynomials

Qh
y ,x =

∑
n

wy ,x (n)q(l(x)−l(y)−n)/2 ∈W[q]

Eval in W at q = 1↔ form 〈, 〉I(x) on std.
Reduction to Z[q] by W→ Z↔ KL poly Qy ,x .
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Hermitian KL polynomials: characters

Matrix Qh
y ,x is upper tri, 1s on diag: INVERTIBLE.

Ph
x ,y

def
= (−1)l(x)−l(y)((x , y) entry of inverse) ∈W[q].

Definition of Qh
x ,y says

(gr I(x), 〈, 〉I(x)) =
∑
y≤x

Qh
x ,y (1)(J(y), 〈, 〉J(y));

inverting this gives

(J(x), 〈, 〉) =
∑
y≤x

(−1)l(x)−l(y)Ph
x ,y (1)(gr I(y), 〈, 〉).

Next question: how do you compute Ph
x ,y?
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Herm KL polys for σc

σc = cplx conj for cpt form of G, σc(K ) = K .
Plan: study σc-invt forms, relate to σ0-invt forms.

Proposition
Suppose J(x) irr (g,K )-module, real infl char. Then J(x) has
σc-invt Herm form 〈, 〉cJ(x), characterized by

〈, 〉cJ(x) is pos def on the lowest K-types of J(x).

Proposition =⇒ Herm KL polys Qc
x ,y , Pc

x ,y well-def.
Coeffs in W = Z⊕ sZ; s = (0, 1)! one-diml neg def form.

ALMOST: Qc
x,y (q) = s

`o (x)−`o (y)
2 Qx,y (qs), Pc

x,y (q) = s
`o (x)−`o (y)

2 Px,y (qs).

Equiv: if J(y) occurs at level k of Jantzen filt of I(x), then
Jantzen form is (−1)(l(x)−l(y)−k)/2 times 〈, 〉J(y).

ALMOST is false. . . but not seriously so. Need an extra power of
s on the right side.
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Orientation number

ALMOST↔ KL polys↔ integral roots.

Simple form of ALMOST implies Jantzen-Zuckerman
translation across non-integral root walls preserves
signatures of (σc-invariant) Hermitian forms.
It ain’t necessarily so.
SL(2,R): translating spherical principal series from (real
non-integral positive) ν to (negative) ν − 2m changes sign
of form iff ν ∈ (0,1) + 2Z.

Orientation number `o(x) is
1. # pairs (α,−θ(α)) cplx nonint, pos on x ; PLUS
2. # real β s.t. 〈x , β∨〉 ∈ (0,1) + ε(β, x) + 2N.

ε(β, x) = 0 spherical, 1 non-spherical.



David Vogan

1. Why unitary
representations?

2. Langlands
classification A

3. (g, K )-modules

4. R(h, L)-mod

5. Cartan
subgroups and
characters

6. Lie algebra
cohomology

7. Langlands
classification B

8. Hermitian forms

9. Case of
SL(2,R)

10. Signature
algorithm

11. Unitarity
algorithm

Deforming to ν = 0

Have computable ALMOST formula (omitting `o)

(J(x), 〈, 〉cJ(x)) =
∑
y≤x

(−1)l(x)−l(y)Pc
x,y (s)(gr I(y), 〈, 〉cI(y))

for σc-invt forms in terms of forms on stds, same inf char.

Polys Pc
x,y are KL polys, computed by atlas software.

Std rep I = I(ν) deps on cont param ν. Put I(t) = I(tν), t ≥ 0.

Apply Jantzen formalism to deform t to 0. . .

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

More rep theory gives formula for G(R)-invt forms:

〈, 〉0J =
∑

I′(0) std at ν′ = 0

sε(I′)vJ,I′〈, 〉0I′(0).

I′(0) unitary, so J unitary ⇐⇒ all coeffs are (p,0) ∈W.
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Example of G2(R)

Real parameters for spherical unitary reps of G2(R)

r Unitary rep from L2(G)r Arthur rep from 6-dim nilpr Arthur rep from 8-dim nilpr Arthur rep from 10-dim nilpr Trivial rep

r
r

r

r

r

rr
r

r

rrr

r

rr
rr
r

rrr

r

r

rr
r

r

r

r

r
r
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From σc to σ0

Cplx conjs σc (compact form) and σ0 (our real form)
differ by Cartan involution θ: σ0 = θ ◦ σc .
Irr (g,K )-mod J  Jθ (same space, rep twisted by θ).

Proposition
J admits σ0-invt Herm form if and only if Jθ ' J. If
T0 : J ∼→ Jθ, and T 2

0 = Id, then

〈v ,w〉0J = 〈v ,T0w〉cJ .

T : J ∼→ Jθ ⇒ T 2 = z ∈ C⇒ T0 = z−1/2T  σ-invt Herm form.

To convert formulas for σc invt forms formulas for
σ0-invt forms need intertwining ops TJ : J ∼→ Jθ,
consistent with decomp of std reps.
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Equal rank case

rk K = rk G⇒ Cartan inv inner: ∃τ ∈ K , Ad(τ) = θ.
θ2 = 1⇒ τ 2 = ζ ∈ Z (G) ∩ K .

Study reps π with π(ζ) = z. Fix square root z1/2.

If ζ acts by z on V , and 〈, 〉cV is σc-invt form, then
〈v ,w〉0V

def
= 〈v , z−1/2τ · w〉cV is σ0-invt form.

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

translates to

〈, 〉0J =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉0I′(0) (vJ,I′ ∈W).

I′ has LKT µ′ ⇒ 〈, 〉0I′(0) definite, sign z−1/2µ′(τ).

J unitary ⇐⇒ each summand on right pos def.
Computability of vJ,I′ needs conjecture about Pσc

x,y .
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General case

Fix “distinguished involution” δ0 of G inner to θ
Define extended group GΓ = G o {1, δ0}.
Can arrange θ = Ad(τδ0), some τ ∈ K .
Define K Γ = CentGΓ(τδ0) = K o {1, δ0}.
Study (g,K Γ)-mods! (g,K )-mods V with
D0 : V ∼→ V δ0 , D2

0 = Id.
Beilinson-Bernstein localization: (g,K Γ)-mods! action of δ0 on
K -eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig
ideas. Not done yet!

Now translate σc-invt forms to σ0 invt forms

〈v ,w〉0V
def
= 〈v , z−1/2τδ0 · w〉cV

on (g,K Γ)-mods as in equal rank case.


	1. Why study unitary representations
	2. Langlands classification: big picture
	3. Introduction to Harish-Chandra modules
	4. (h,L)-modules as ring modules
	5. Cartan subgroups and characters
	6. Lie algebra cohomology
	7. Langlands classification: some details
	8. Hermitian forms
	9. Case of SL(2,R)
	10. Calculating signatures of invariant Hermitian forms

