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Complex Reductive Groups and Root Data

G = G(C) : connected, complex reductive group

GL(n,C),SL(n,C),Spin(n,C),G2(C),E8(C), . . .

Such a group is classified by its Root Datuma basic concept we
assume you are familiar with (see Bourbaki, Lie Groups and Lie
Algebras, Chapters 4-6).



Complex Reductive Groups and Root Data

Given G, choose a Cartan subgroup H, then

X ∗ = X ∗(H) = Homalg(H,C×) ' Z×n

X∗ = X∗(H) = Homalg(C×,H) ' Z×n

Perfect pairing X∗ × X ∗ → Z:

〈µ∨, γ〉 = n : γ(µ∨(z)) = zn (C× µ∨
→ H

γ→ C×)

R ⊂ X ∗ the roots
R∨ ⊂ X∗ the coroots

(Finite sets, in bijection via:)

R 3 α→ α∨ ∈ R∨:
〈α, α∨〉 = 2



Complex Groups and Root Data

� Although X ∗ and X∗ are both isomorphic to Zn, never
identify them. They are naturally dual to each other.

X∗ × X ∗ → Z

In atlas:

v=[a 1,a 2,...,a n]∈ X∗
w=[b 1,b 2,...,b n]∈ X ∗

Then the pairing is the dot product v*w=a 1b 1+...+a nb n.

However the software does not prevent you from computing
v*v or w*w, although these values are probaly not what you
intended.



Root Datum in Atlas

A root datum in atlas is a pair of n ×m integral matrices
(A,B).

n : rank (X ∗ ' Zn)
m: semisimple rank (rank of the span of the roots)

Satisfying: tB ∗ A is a Cartan matrix (size m ×m)

Equivalence: (A,B) ∼ (gA, tg−1B) (g ∈ GL(2,Z))



Example: rank 2, semisimple rank 1

Exercise: Suppose rank(G) = 2, semisimple-rank(G) = 1.
Then up to equivalence (A,B)=

(

(
1
0

)
,

(
2
0

)
)↔ SL(2)×GL(1)

(

(
2
0

)
,

(
1
0

)
)↔ PSL(2)×GL(1)

(

(
1
1

)
,

(
1
1

)
)↔ GL(2)

Exercise: What group has root datum (

(
2005
2017

)
,

(
336
334

)
)?



Complex Groups and Root Data

G: connected complex reductive group

Also fix a Cartan subgroup H → ∆(G,H) = (X ∗,R,X∗,R∨)

Also fix a Borel subgroup H ⊂ B , equivalently a set of positive
roots, equivalently a Π of simple roots

(G,B,H)→ ∆b = (X ∗,Π,X∗,Π∨)

(Based rood datum)
Recall:

The Atlas point of view: The Cartan subgroup H and Borel
subgroup B are fixed, fixed, fixed forever. Everything else,
including θ and K , can vary.



K\G/B

G,σ,G(R) = Gσ, θ, K = Gθ

(Remember: G = G(C),B = B(C),K = K (C))

Recall: G/B is the set of Borel subgroups

B\G/B 'W (a finite set): geometry behind Category O/Verma
modules

In the setting of (g,K )-modules: K is playing an important role

K\G/B = {K -orbits of K acting on B}
= {K − conjugacy classes of Borel subgroups of G}



K\G/B

Theorem K acts on G/B with finitely many orbits.

This goes back to (Wolf 1969); this version is (Matsuki 1979).

Problem: Parametrize the orbit space K\G/B.

Remember: strictly speaking this depends on the choice of K ,
and it is not possible in general to canonically identify these
spaces (even for K ’s which are conjugate).



Example: SL(2,R)

G(R) = SU(1,1), K = H = {diag(z,1/z)} ' C×.

G/B = CP1 = C ∪∞ , diag(z,1/z) : w → z2w

K\G/B = {0,∞,C×}

In terms of Borel subgroups:

0→
(

a b
0 c

)
∞→

(
a 0
b c

)
C× → all other Borel subgroups



K\G/B

One of the first things the software does is: compute a
parameter set for K\G/B

Simplifying assumption: θ is an inner automorphism. This is the
compact inner class (more on this later)



K\G/B

Theorem Suppose G(R) is in the compact inner class.
Suppose θ is a Cartan involution for G(R). Then θ = int(x0) for
x0 ∈ G, x2

0 ∈ Z (G). After conjugating by G we may assume
x0 ∈ H; let K = CentG(x0).

Then

K\G/B ↔ {x ∈ NormG(H) | x ∼ x0}/H

This set is very amenable to computation by computer.

Note: There is a map from this set to the set of involutions in
the Weyl group. The latter is comprehensible combinatorially
(and the fibers of the map are essentially finite).



Example: SL(2,R)

G = SL(2),G(R) = SU(1,1), x0 = diag(i ,−i), x2
0 = −I

Compute {x ∈ NormG(H) | x2 = x2
0}/conjugation by H

Case 1: x ∈ H: x = ±x0 = ±(diag(i ,−i)
(the H-action by conjugation is trivial)

Case 2: x 6∈ H,→ x =

(
0 z
−1

z 0

)
Easy exercise: these elements are all conjugate, and have the
same square: x2 = x2

0 = −I.



Example: SL(2,R)

Conclusion:

K\G/B ↔ {diag(i ,−i), diag(−i , i),
(

0 1
−1 0

)
}

� Obviously the last element goes to the open
orbit. But how do we match ±diag(i ,−i) with {0,∞}?

This depends on the choice of x0 defining K = CentG(x0)
Write K = Kx0 , and think of G/B as the set of Borel subgroups
B. Unwinding the bijection

Kx0\G/B ↔ {x ∈ NormG(H) | x ∼ x0}/H



� Obviously the last element goes to the open
orbit. But how do we match ±diag(i ,−i) with {0,∞}?

This depends on the choice of x0 defining K = CentG(x0)
Write K = Kx0 , and think of G/B as the set of Borel subgroups
B. Unwinding the bijection

Kx0\B ↔ {x ∈ NormG(H) | x ∼ x0}/H

we see: suppose x is in the RHS. Write x = gx0g−1. Then
x → g−1Bg (B is the fixed, fixed, fixed Borel subgroup).

In our example: x0 → B,−x0 → Bop



The Space X

Consider the compact inner class of real forms of G

θ = int(x) (x2 ∈ Z )

Definition

X = {x ∈ NormG(H) | x2 ∈ Z}/H

(the quotient is by conjugation by H)

If x0 ∈ X then

X [x0] = {x ∈ X | x ∼ x0}/H

X is a finite set if G is semisimple, and X [x0] is always finite.



The Space X

Here is a slight restatement of the preceding Theorem.

Theorem There is a surjective map from X to real forms of G, in
the compact inner class, given by x → θx = int(x).
x , x ′ ∈ X map to the same real form if x ' x ′.
Fix x0 ∈ X . Let θ = θx0 = int(x0), K0 = Gθ. Then

K0\G/B ↔ X [x0] = {x ∈ NormH |x ∼ x0}/H

� Stricly speaking θx is only a well-defined involution
of H (since x is only an H-conjugacy class of elements).

Thus: the involution θx of H is well defined, but to make an
involution of G requires a further choice (of an element in G
mapping to the H-conjugacy class x). We will usually gloss
over this distinction.





Further properties of X

Fix x0 ∈ X , let θ = θx0 (an involution of H, and also G), K = Gθ.

Theorem

X [x0]↔ K\G/B (1)

X [x0]/W ↔ {θ-stable Cartan subgroups}/K
↔ {real Cartan subgroups}/G(R)

(2)

W (K ,H) 'W (G(R),HR) ' StabW (x)k (3)



Example: SL(2,R)

G = SL(2), x0 = t = diag(i ,−i)

X [t ] = {t ,−t ,w} = {diag(i ,−i), diag(−i , i)}
(

0 1
−1 0

)
(1)

X [t ]/W = {t ,w} ↔ {Hf (R) = S1,Hs(R) = R×} (2)

StabW (t) = 1→WG(R)(S1) = 1

StabW (w) = W →WG(R)(R×) = W = Z/2Z
(3)



Example: Sp(4,R)

In Atlas K\G/B is a numbered list 1,2,...,n

atlas> print_KGB(Sp(4,R))
kgbsize: 11
Base grading: [11].
0: 0 [n,n] 1 2 4 5 (0,0)#0 e
1: 0 [n,n] 0 3 4 6 (1,1)#0 e
2: 0 [c,n] 2 0 * 5 (0,1)#0 e
3: 0 [c,n] 3 1 * 6 (1,0)#0 e
4: 1 [r,C] 4 9 * * (0,0) 1 1ˆe
5: 1 [C,r] 7 5 * * (0,0) 2 2ˆe
6: 1 [C,r] 8 6 * * (1,0) 2 2ˆe
7: 2 [C,n] 5 8 * 10 (0,0)#2 1x2ˆe
8: 2 [C,n] 6 7 * 10 (0,1)#2 1x2ˆe
9: 2 [n,C] 9 4 10 * (0,0)#1 2x1ˆe

10: 3 [r,r] 10 10 * * (0,0)#3 1ˆ2x1ˆe



Example: Sp(4,R)

KGB# dimension Cartan θx ∈W
0 0 S1 × S1 e
1 0 S1 × S1 e
2 0 S1 × S1 e
3 0 S1 × S1 e
4 1 C× s1
5 1 S1 × R× s2
6 1 S1 × R× s2
7 2 S1 × R× s1s2s1
8 2 S1 × R× s1s2s1
9 2 C× s2s1s2

10 3 R× × R× −id



Inner classes

Aut(G), Int(G) (inner automorphisms)Out(G) = Aut(G)/Int(G)

Note: If G is semisimple, Out(G) is a subgroup of the
automorphism group of the Dynkin diagram.

Fact: the exact sequence

1→ Int(G)→ Aut(G)→ Out(G)→ 1

canonically splits (up to inner automorphism).

So: an inner class is given by δ ∈ Aut(G)2.

Without loss of generality: δ(H) = H, δ(B) = B.

The compact inner class is δ = 1.

Fact: θ is in the compact inner class if and only if G(R) has a
compact Cartan subgroup.



Extended Group

Definition: δG = G o 〈δ〉
δG = G ∪Gδ, δgδ−1 = δ(g), δ2 = 1

If δ = 1 then δG = G × Z/2Z and we can ignore the extension.

K\G/B in general:

x0 ∈ δG −G, x2
0 ∈ Z (G)→ θx0 ,K

X [x0] = {g ∈ NormGδ(H)}/H

Theorem

X [x0]↔ K\G/B


