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Complex Reductive Groups and Root Data

G = G(C) : connected, complex reductive group
GL(na C)a SL(n> C)? Spin(nv (C)7 GZ(C)v EB((C)a s

Such a group is classified by its Root Datuma basic concept we
assume you are familiar with (see Bourbaki, Lie Groups and Lie

Algebras, Chapters 4-6).



Complex Reductive Groups and Root Data

Given G, choose a Cartan subgroup H, then
X* = X*(H) = Homgg(H,C*) ~ %"
X. = Xi(H) = Homgg(C*, H) ~ 2*"
Perfect pairing X, x X* — Z:

\

W' =n: Au(2)=2" (C*%HHC)

R c X* theroots
RY c X, the coroots

(Finite sets, in bijection via:)

R>a—aveRY:
(a,a’) =2



Complex Groups and Root Data

@ Although X* and X, are both isomorphic to Z", never
identify them. They are naturally dual to each other.

X x X* =7
In atlas:

v=[a.l,a.2,...,anle X,
w=[b.1,b2,...,b.nle X*

Then the pairing is the dot product vxw=a_1b_1+...+a_nb.n.

However the software does not prevent you from computing
v+v Or wxw, although these values are probaly not what you
intended.



Root Datum in Atlas

A root datum in atlas is a pair of n x mintegral matrices
(A, B).

n:rank (X* ~ Z")
m: semisimple rank (rank of the span of the roots)

Satisfying: B x A is a Cartan matrix (size m x m)
Equivalence: (A, B) ~ (gA, ' 'B) (g € GL(2,7))



Example: rank 2, semisimple rank 1

Exercise: Suppose rank(G) = 2, semisimple-rank(G) = 1.
Then up to equivalence (A, B)=

(0) (-
(&) (-
() (e

Exercise: What group has root datum ((2005) , <336> )?
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Complex Groups and Root Data

G: connected complex reductive group
Also fix a Cartan subgroup H — A(G, H) = (X*, R, X, RY)

Also fix a Borel subgroup H C B, equivalently a set of positive
roots, equivalently a I of simple roots

(G, B,H) — Ap = (X*, 1, X, 1Y)

(Based rood datum)
Recall:

The Atlas point of view: The Cartan subgroup H and Borel
subgroup B are fixed, fixed, fixed forever. Everything else,
including # and K, can vary.



G,o,G(R) =G, 0,K = G’
(Remember: G = G(C),B = B(C),K = K(C))
Recall: G/B is the set of Borel subgroups

B\G/B ~ W (afinite set): geometry behind Category O/Verma
modules

In the setting of (g, K)-modules: K is playing an important role

K\ G/B = {K-orbits of K acting on B}
= {K — conjugacy classes of Borel subgroups of G}



Theorem K acts on G/B with finitely many orbits.
This goes back to (Wolf 1969); this version is (Matsuki 1979).
Problem: Parametrize the orbit space K\ G/B.

Remember: strictly speaking this depends on the choice of K,
and it is not possible in general to canonically identify these
spaces (even for K’s which are conjugate).



Example: SL(2,R)

G(R) = SU(1,1), K = H = {diag(z,1/2)} ~ C*.
G/B=CP' =CUcc, diag(z,1/2) : w — Z?w
K\G/B = {0, 00,C*}

In terms of Borel subgroups:

a b
0—><OC>
_)aO
> b c

C* — all other Borel subgroups



One of the first things the software does is: compute a
parameter set for K\ G/B

Simplifying assumption: @ is an inner automorphism. This is the
compact inner class (more on this later)



Theorem Suppose G(R) is in the compact inner class.
Suppose 6 is a Cartan involution for G(R). Then 6 = int(xp) for
Xo € G, X2 € Z(G). After conjugating by G we may assume

Xo € H;let K = Centg(Xp).

Then

| K\G/B ¢ {x € Normg(H) | x ~ xo}/H]

This set is very amenable to computation by computer.

Note: There is a map from this set to the set of involutions in
the Weyl group. The latter is comprehensible combinatorially
(and the fibers of the map are essentially finite).



Example: SL(2,R)

G = SL(2), G(R) = SU(1,1), xo = diag(i, —i), X2 = —

Compute {x € Normg(H) | x? = x5} /conjugation by H
Case 1: x € H: x = £x¢ = £(diag(/, —/)
(the H-action by conjugation is trivial)

Case2:xng,—>x:<o1 Z)
10

Easy exercise: these elements are all conjugate, and have the
same square: x2 = xg = —|I.



Example: SL(2,R)

Conclusion:

K\G/B < {diag(i, —i), diag(—i, i) (_01 é)}

@ Obviously the last element goes to the open
orbit. But how do we match +diag(i, —f) with {0, c0}?

This depends on the choice of xy defining K = Centg(xp)
Write K = K,, and think of G/B as the set of Borel subgroups
B. Unwinding the bijection

Kx,\G/B <> {x € Normg(H) | x ~ xo}/H



@ Obviously the last element goes to the open
orbit. But how do we match +diag(i, —i) with {0, 00}?

This depends on the choice of xy defining K = Centg(Xp)
Write K = K,, and think of G/B as the set of Borel subgroups
B. Unwinding the bijection

Ky, \B <> {x € Normg(H) | x ~ xo}/H

we see: suppose x is in the RHS. Write x = gxog~'. Then
x — g~ 'Bg (B s the fixed, fixed, fixed Borel subgroup).

In our example: xg — B, —xg — B°°



The Space X

Consider the compact inner class of real forms of G
0 = int(x) (x? € Z)

Definition

X = {x € Normg(H) | x? € Z}/H
(the quotient is by conjugation by H)
If xg € X then

Xxo] ={x e X [x~xo}/H

X is afinite set if G is semisimple, and X[xp] is always finite.



The Space X

Here is a slight restatement of the preceding Theorem.

Theorem There is a surjective map from X to real forms of G, in
the compact inner class, given by x — 0y = int(x).

X, x" € X map to the same real form if x ~ x’.

Fix xo € X. Let 6 = 0y, = int(xo), Ko = G’. Then

Ko\G/B <~ X[Xo] = {X S NormH|X ~ Xo}/H

@ Stricly speaking 0y is only a well-defined involution

of H (since x is only an H-conjugacy class of elements).
Thus: the involution 64 of H is well defined, but to make an
involution of G requires a further choice (of an element in G
mapping to the H-conjugacy class x). We will usually gloss
over this distinction.






Further properties of X

Fix xo € X, let § = 6y, (an involution of H, and also G), K = G.

Theorem

X[x] <+ K\G/B (1)

X[x0]/ W <« {6-stable Cartan subgroups}/K

2
+» {real Cartan subgroups}/G(R) @)

W(K, H) ~ W(G(R), Hz) ~ Staby/(x)k (3)



Example: SL(2,R)

G = SL(2), xo = t = diag(i, —/)
X[t = {t, ~t, w} = {diag(i, i), diag(~i, )} (_01 8) (1)

X[t/W = {tw} & {H/(R) = " Hs(R) =R*} (2

StabW(t) =1- WG(]R)(S1) =1

Stabw (w) = W — Wey(R*) = W = Z/2Z ®
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In Atlas K\G/B is a numbered list 1, 2, ..

atlas> print_KGB(Sp(4,R))
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kgbsize:
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Example: Sp(4,R)

KGB# | dimension | Cartan | 0, ¢ W
0 0 ST x &' e
1 0 ST x S e
2 0 ST x &' e
3 0 ST x §' e
4 1 C* 51
5 1 ST x RX So
6 1 ST x R So
7 2 ST x R 515251
8 2 ST x R 5152851
9 2 C* S051So
10 3 R* x R* —id




Inner classes

Aut(G), Int(G) (inner automorphisms)Out(G) = Aut(G)/Int(G)

Note: If G is semisimple, Out(G) is a subgroup of the
automorphism group of the Dynkin diagram.

Fact: the exact sequence
1 — Int(G) — Aut(G) — Out(G) — 1

canonically splits (up to inner automorphism).
So: an inner class is given by § € Aut(G)a2.
Without loss of generality: 6(H) = H,6(B) = B.
The compact inner class is § = 1.

Fact: 0 is in the compact inner class if and only if G(R) has a
compact Cartan subgroup.



Extended Group

Definition: °G = G x (9)
°G=GUGS,690 " =6(g),5% =1
If 6 = 1 then °G = G x Z/27Z and we can ignore the extension.

K\ G/B in general:

Xo € °G— G, X5 € Z(G) — 0x,, K
X[x] = {g € Normgs(H)}/H
Theorem

| X[x] <> K\G/B|




