The Atlas point of view 2

Jeffrey Adams

University of Maryland

Workshop on the Atlas of Lie Groups and Representations University of Utah, Salt Lake City July 10 - 21, 2017 $G = G(\mathbb{C})$: connected, complex reductive group

 $GL(n,\mathbb{C}), SL(n,\mathbb{C}), Spin(n,\mathbb{C}), G_2(\mathbb{C}), E_8(\mathbb{C}), \ldots$

Such a group is classified by its Root Datuma basic concept we assume you are familiar with (see Bourbaki, Lie Groups and Lie Algebras, Chapters 4-6).

Complex Reductive Groups and Root Data

Given G, choose a Cartan subgroup H, then

$$\begin{split} X^* &= X^*(H) = \operatorname{Hom}_{\operatorname{alg}}(H, \mathbb{C}^{\times}) \simeq \mathbb{Z}^{\times n} \\ X_* &= X_*(H) = \operatorname{Hom}_{\operatorname{alg}}(\mathbb{C}^{\times}, H) \simeq \mathbb{Z}^{\times n} \end{split}$$

Perfect pairing $X_* \times X^* \to \mathbb{Z}$:

$$\langle \mu^{\vee}, \gamma \rangle = n: \quad \gamma(\mu^{\vee}(z)) = z^n \quad (\mathbb{C}^{\times} \xrightarrow{\mu^{\vee}} H \xrightarrow{\gamma} \mathbb{C}^{\times})$$

$$R \subset X^*$$
 the roots $R^{\lor} \subset X_*$ the coroots

(Finite sets, in bijection via:)

 $\pmb{R} \ni \alpha \to \alpha^\vee \in \pmb{R}^\vee$: $\langle \alpha, \alpha^\vee \rangle = \pmb{2}$

Although X^* and X_* are both isomorphic to \mathbb{Z}^n , never identify them. They are naturally dual to each other.

 $X_* imes X^* o \mathbb{Z}$

In atlas:

v=[a_1,a_2,...,a_n] $\in X_*$ w=[b_1,b_2,...,b_n] $\in X^*$

Then the pairing is the dot product $v * w = a_1b_1 + \ldots + a_nb_n$.

However the software does not prevent you from computing v * v or w * w, although these values are probaly not what you intended.

- A root datum in atlas is a pair of $n \times m$ integral matrices (A, B).
- $n : \operatorname{rank} (X^* \simeq \mathbb{Z}^n)$ m: semisimple rank (rank of the span of the roots) Satisfying: ${}^{t}B * A$ is a Cartan matrix (size $m \times m$) Equivalence: $(A, B) \sim (gA, {}^{t}g^{-1}B) (g \in GL(2, \mathbb{Z}))$

Exercise: Suppose rank(G) = 2, semisimple-rank(G) = 1. Then up to equivalence (A, B)=

$$\begin{split} & (\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0 \end{pmatrix}) \leftrightarrow SL(2) \times GL(1) \\ & (\begin{pmatrix} 2\\0 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}) \leftrightarrow PSL(2) \times GL(1) \\ & (\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}) \leftrightarrow GL(2) \end{split}$$

Exercise: What group has root datum $\begin{pmatrix} 2005\\2017 \end{pmatrix}, \begin{pmatrix} 336\\334 \end{pmatrix}$?

G: connected complex reductive group

Also fix a Cartan subgroup $H \to \Delta(G, H) = (X^*, R, X_*, R^{\vee})$

Also fix a Borel subgroup $H \subset B$, equivalently a set of positive roots, equivalently a Π of simple roots

$$(G, B, H) \rightarrow \Delta_b = (X^*, \Pi, X_*, \Pi^{\vee})$$

(Based rood datum) Recall:

The Atlas point of view: The Cartan subgroup *H* and Borel subgroup *B* are fixed, fixed, fixed forever. Everything else, including θ and *K*, can vary.

 $G,\sigma,G(\mathbb{R})=G^{\sigma},\,\theta,\,K=G^{\theta}$

(Remember: $G = G(\mathbb{C}), B = B(\mathbb{C}), K = K(\mathbb{C})$)

Recall: G/B is the set of Borel subgroups

 $B \setminus G/B \simeq W$ (a finite set): geometry behind Category \mathcal{O} /Verma modules

In the setting of (g, K)-modules: K is playing an important role

$$\begin{split} & \mathcal{K} \backslash G / B = \{ \mathcal{K} \text{-orbits of } \mathcal{K} \text{ acting on } \mathcal{B} \} \\ & = \{ \mathcal{K} - \text{conjugacy classes of Borel subgroups of } \mathcal{G} \} \end{split}$$

- Theorem K acts on G/B with finitely many orbits.
- This goes back to (Wolf 1969); this version is (Matsuki 1979).
- Problem: Parametrize the orbit space $K \setminus G/B$.
- Remember: strictly speaking this depends on the choice of K, and it is *not* possible in general to canonically identify these spaces (even for K's which are conjugate).

Example: $SL(2,\mathbb{R})$

$$G(\mathbb{R}) = SU(1, 1), K = H = \{ \operatorname{diag}(z, 1/z) \} \simeq \mathbb{C}^{\times}.$$

$$G/B = \mathbb{C}P^{1} = \mathbb{C} \cup \infty, \operatorname{diag}(z, 1/z) : w \to z^{2}w$$

$$K \setminus G/B = \{0, \infty, \mathbb{C}^{\times}\}$$

In terms of Borel subgroups:

$$egin{aligned} 0 & o egin{pmatrix} a & b \ 0 & c \end{pmatrix} \ \infty & o egin{pmatrix} a & 0 \ b & c \end{pmatrix} \ \mathbb{C}^{ imes} ext{ } ext{ } ext{ all other Borel subgroups} \end{aligned}$$

One of the first things the software does is: compute a parameter set for $K \setminus G/B$

Simplifying assumption: θ is an inner automorphism. This is the compact inner class (more on this later)

Theorem Suppose $G(\mathbb{R})$ is in the compact inner class. Suppose θ is a Cartan involution for $G(\mathbb{R})$. Then $\theta = int(x_0)$ for $x_0 \in G, x_0^2 \in Z(G)$. After conjugating by *G* we may assume $x_0 \in H$; let $K = Cent_G(x_0)$.

Then

$$K \setminus G/B \leftrightarrow \{x \in \operatorname{Norm}_G(H) \mid x \sim x_0\}/H$$

This set is very amenable to computation by computer.

Note: There is a map from this set to the set of involutions in the Weyl group. The latter is comprehensible combinatorially (and the fibers of the map are essentially finite).

$$G = SL(2), G(\mathbb{R}) = SU(1,1), x_0 = \text{diag}(i,-i), x_0^2 = -I$$

Compute $\{x \in \text{Norm}_G(H) \mid x^2 = x_0^2\}/\text{conjugation by } H$ Case 1: $x \in H$: $x = \pm x_0 = \pm(\text{diag}(i, -i))$ (the *H*-action by conjugation is trivial)

Case 2:
$$x \notin H$$
, $\rightarrow x = \begin{pmatrix} 0 & z \\ -\frac{1}{z} & 0 \end{pmatrix}$

Easy exercise: these elements are all conjugate, and have the same square: $x^2 = x_0^2 = -I$.

Conclusion:

$$K \setminus G/B \leftrightarrow \{ \operatorname{diag}(i,-i), \operatorname{diag}(-i,i), \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \}$$

Obviously the last element goes to the open orbit. But how do we match $\pm \text{diag}(i, -i)$ with $\{0, \infty\}$?

This depends on the choice of x_0 defining $K = \text{Cent}_G(x_0)$ Write $K = K_{x_0}$, and think of G/B as the set of Borel subgroups \mathcal{B} . Unwinding the bijection

$$K_{x_0} \setminus G/B \leftrightarrow \{x \in \operatorname{Norm}_G(H) \mid x \sim x_0\}/H$$

Obviously the last element goes to the open orbit. But how do we match $\pm \text{diag}(i, -i)$ with $\{0, \infty\}$? This depends on the choice of x_0 defining $K = \text{Cent}_G(x_0)$ Write $K = K_{x_0}$, and think of G/B as the set of Borel subgroups \mathcal{B} . Unwinding the bijection

$$K_{x_0} \setminus \mathcal{B} \leftrightarrow \{x \in \operatorname{Norm}_G(\mathcal{H}) \mid x \sim x_0\}/\mathcal{H}$$

we see: suppose *x* is in the RHS. Write $x = gx_0g^{-1}$. Then $x \to g^{-1}Bg$ (*B* is the fixed, fixed, fixed Borel subgroup). In our example: $x_0 \to B, -x_0 \to B^{op}$ Consider the compact inner class of real forms of G $\theta = int(x) \ (x^2 \in Z)$

Definition

$$\mathcal{X} = \{x \in \operatorname{Norm}_{G}(H) \mid x^{2} \in Z\}/H$$

(the quotient is by conjugation by H)

If $x_0 \in \mathcal{X}$ then

$$\mathcal{X}[x_0] = \{x \in \mathcal{X} \mid x \sim x_0\}/H$$

 \mathcal{X} is a finite set if *G* is semisimple, and $X[x_0]$ is always finite.

The Space \mathcal{X}

Here is a slight restatement of the preceding Theorem.

Theorem There is a surjective map from \mathcal{X} to real forms of G, in the compact inner class, given by $x \to \theta_x = \operatorname{int}(x)$. $x, x' \in \mathcal{X}$ map to the same real form if $x \simeq x'$. Fix $x_0 \in \mathcal{X}$. Let $\theta = \theta_{x_0} = \operatorname{int}(x_0)$, $K_0 = G^{\theta}$. Then

$$K_0 \setminus G/B \leftrightarrow \mathcal{X}[x_0] = \{x \in \operatorname{Norm}_H | x \sim x_0\}/H$$

Stricly speaking θ_x is only a well-defined involution of *H* (since *x* is only an *H*-conjugacy class of elements). Thus: the involution θ_x of *H* is well defined, but to make an involution of *G* requires a further choice (of an element in *G* mapping to the *H*-conjugacy class *x*). We will usually gloss over this distinction.

Further properties of \mathcal{X}

Fix $x_0 \in \mathcal{X}$, let $\theta = \theta_{x_0}$ (an involution of *H*, and also *G*), $K = G^{\theta}$. Theorem

$$\mathcal{X}[x_0] \leftrightarrow K \backslash G/B \tag{1}$$

 $\mathcal{X}[x_0]/W \leftrightarrow \{\theta \text{-stable Cartan subgroups}\}/K$ $\leftrightarrow \{\text{real Cartan subgroups}\}/G(\mathbb{R})$ (2)

$$W(K,H) \simeq W(G(\mathbb{R}),H_{\mathbb{R}}) \simeq \operatorname{Stab}_W(x)k$$
 (3)

Example: $SL(2,\mathbb{R})$

$$G = SL(2), x_0 = t = \operatorname{diag}(i, -i)$$

$$\mathcal{X}[t] = \{t, -t, w\} = \{\operatorname{diag}(i, -i), \operatorname{diag}(-i, i)\} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
(1)

$$\mathcal{X}[t]/W = \{t, w\} \leftrightarrow \{H_f(\mathbb{R}) = S^1, H_s(\mathbb{R}) = \mathbb{R}^{\times}\}$$
(2)

$$\mathrm{Stab}_{W}(t) = 1
ightarrow W_{G(\mathbb{R})}(S^{1}) = 1$$

 $\mathrm{Stab}_{W}(w) = W
ightarrow W_{G(\mathbb{R})}(\mathbb{R}^{\times}) = W = \mathbb{Z}/2\mathbb{Z}$ (3)

In Atlas $K \setminus G/B$ is a numbered list 1, 2, ..., n

atlas	s>	print_P	KGB (Sp	(4,R))			
kgbs	ize	: 11						
Base	gr	ading:	[11].					
0:	0	[n , n]	1	2	4	5	(0,0)#0 e	
1:	0	[n , n]	0	3	4	6	(1,1)#0 e	
2:	0	[c , n]	2	0	*	5	(0,1)#0 e	
3:	0	[c , n]	3	1	*	6	(1,0)#0 e	
4:	1	[r , C]	4	9	*	*	(0,0) 1 1^e	
5:	1	[C,r]	7	5	*	*	(0,0) 2 2^e	
6:	1	[C,r]	8	6	*	*	(1,0) 2 2^e	
7:	2	[C , n]	5	8	*	10	(0,0)#2 1x2^	е
8:	2	[C , n]	6	7	*	10	(0,1)#2 1x2^	e
9:	2	[n,C]	9	4	10	*	(0,0)#1 2x1^	e
10:	3	[r,r]	10	10	*	*	$(0,0) #3 1^{2x}$:1^e

KGB#	dimension	Cartan	$\theta_{x} \in W$
0	0	$S^1 imes S^1$	е
1	0	$S^1 imes S^1$	е
2	0	$S^1 imes S^1$	е
3	0	$S^1 imes S^1$	е
4	1	$\mathbb{C}^{ imes}$	<i>S</i> 1
5	1	$S^1 imes \mathbb{R}^{ imes}$	S 2
6	1	$S^1 imes \mathbb{R}^ imes$	<i>S</i> 2
7	2	$S^1 imes \mathbb{R}^{ imes}$	<i>S</i> ₁ <i>S</i> ₂ <i>S</i> ₁
8	2	$S^1 imes \mathbb{R}^ imes$	<i>S</i> ₁ <i>S</i> ₂ <i>S</i> ₁
9	2	$\mathbb{C}^{ imes}$	<i>S</i> ₂ <i>S</i> ₁ <i>S</i> ₂
10	3	$\mathbb{R}^{\times} \times \mathbb{R}^{\times}$	-id

Aut(*G*), Int(*G*) (inner automorphisms)Out(*G*) = Aut(*G*)/Int(*G*) Note: If *G* is semisimple, Out(*G*) is a subgroup of the automorphism group of the Dynkin diagram.

Fact: the exact sequence

$$1 \to \operatorname{Int}(G) \to \operatorname{Aut}(G) \to \operatorname{Out}(G) \to 1$$

canonically splits (up to inner automorphism).

So: an inner class is given by $\delta \in Aut(G)_2$.

Without loss of generality: $\delta(H) = H$, $\delta(B) = B$.

The compact inner class is $\delta = 1$.

Fact: θ is in the compact inner class if and only if $G(\mathbb{R})$ has a compact Cartan subgroup.

Extended Group

Definition: ${}^{\delta}G = G \rtimes \langle \delta \rangle$ ${}^{\delta}G = G \cup G\delta, \delta g \delta^{-1} = \delta(g), \delta^2 = 1$

If $\delta = 1$ then ${}^{\delta}G = G \times \mathbb{Z}/2\mathbb{Z}$ and we can ignore the extension.

$$\mathcal{X}[x_0] \leftrightarrow K \backslash G/B$$