Cohomological Parabolic Induction in atlas

Annegret Paul

Western Michigan University

Workshop on the Atlas of Lie Groups and Representations University of Utah, Salt Lake City July 10 - 21, 2017

Recall: Goals

Tasks

- Given a real group $G(\mathbb{R})$, a real parabolic subgroup $P(\mathbb{R})$ of $G(\mathbb{R})$ with Levi factor $L(\mathbb{R})$, and $\pi \in \widehat{L(\mathbb{R})}$, use atlas to find the composition factors of $Ind_{P(\mathbb{R})}^{G(\mathbb{R})}(\pi \otimes 1)$.
- Given a θ-stable parabolic subalgebra q = ι + u of g and X an irreducible representation of L(ℝ), compute the composition series of R^S_q(X).

Some Questions: Given a group $G(\mathbb{R})$ and a θ -stable parabolic subalgebra \mathfrak{q} with associated Levi subgroup *L*,

- Construct various $A_q(\lambda)$ modules.
- How does the result change as we vary λ?
- Reducibility? Unitarity? Non-zero?
- What do the modules and their constituents look like?

- As for real parabolic induction, there are functions theta_induce_standard and theta_induce_irreducible.
- The algorithm for theta_induce_irreducible is similar to the one for real induction, except:
- Now the unipotent radical of the parabolic matters, in addition to the Levi factor.
- Embedding the parameter for L(R) in G(R) may result in a non-standard parameter; i.e., it may be non-dominant for the imaginary roots. In this case, coherent continuation is used to make the parameter dominant.
- The resulting module may be zero.

Recall:

- Parabolic subgroups and subalgebras for G(R) are parametrized by KGP elements, which in atlas are pairs (S, x) of a set S of simple roots defining the complex parabolic subgroup, and a KGB element x giving an S-equivalence class (defined by cross actions and Cayley transforms through roots in S).
- Then (S, x) parametrizes a θ-stable parabolic subalgebra of g if and only if the equivalence class contains a closed orbit (provided x preserves the Levi factor).
- The function parabolic (lambda, x) will produce a θ -stable parabolic if x is a KGB element attached to the fundamental Cartan (and in the distinguished fiber). The weight λ must be fixed by the involution θ_x .

Example (U(2,2))

Define the θ -stable parabolic subalgebra with $L(\mathbb{R}) = U(2,1) \times U(0,1)$: Choose a "nice" KGB element x_K; then check whether it is suitable by looking at the corresponding compact ρ -shift:

atlas> set G=U(2,2)											
Variable G: RealForm											
atlas> simple_roots(G)											
Value:											
1, 0, 0											
-1, 1, 0											
0, -1, 1											
0, 0, -1											
atlas> print_KGB(G)											
0:	0	[n,n,n]	1	2	3	10	8	6	(0,0,0,0)#0 e		
1:	0	[n,c,n]	0	1	4	10	*	7	(1,1,0,0)#0 e		
2:	0	[c,n,c]	2	0	2	*	8	*	(0,1,1,0)#0 e		
3:	0	[n,c,n]	4	3	0	11	*	6	(0,0,1,1)#0 e		
4:	0	[n,n,n]	3	5	1	11	9	7	(1,1,1,1)#0 e		
5:	0	[c,n,c]	5	4	5	*	9	*	(1,0,0,1)#0 e		
•••••											

What is a "nice" x_K?

Example (U(2,2) continued)

Example (U(2,2) continued)

Use this q to compute some cohomologically induced modules:

```
atlas> p:=finite_dimensional(L, [2, 1, 1, -4])
Value: final parameter (x=5, lambda=[3, 1, 0, -4]/1, nu=[3, 0, -3, 0]/2)
atlas> dimension(p)
Value: 3
atlas> theta induce irreducible (p,G)
Value:
1*parameter(x=15,lambda=[7,3,1,-11]/2,nu=[3,0,-3,0]/2) [23]
atlas> p:=finite dimensional(L, [2,1,1,4])
Value: final parameter(x=5,lambda=[3,1,0,4]/1,nu=[3,0,-3,0]/2)
atlas> theta induce irreducible(p,G)
Value:
1*parameter(x=20, lambda=[7, 5, 3, 1]/2, nu=[3, 1, -1, -3]/2) [0]
1*parameter(x=18,lambda=[7,5,3,1]/2,nu=[3,0,0,-3]/2) [3]
1*parameter(x=13,lambda=[7,5,3,1]/2,nu=[0,1,0,-1]/1) [6]
```

- Of special interest are A_q(λ) modules; i.e., modules that are θ-induced from one-dimensionals of L(R).
- We can define them in atlas in two different ways.
- We can use theta_induce_irreducible as above, just choosing the parameter on $L(\mathbb{R})$ to be one-dimensional.
- There is also a function command $Aq(x, lambda, lambda_q)$ which can be used to define $A_q(\lambda)$ modules.
- Here x is a (fundamental) KGB element, lambda_q defines the parabolic subalgebra, and lambda defines the one-dimensional representation of $L(\mathbb{R})$.
- However, the normalization is different: there is a shift of $\rho(\mathfrak{u})$.
- This also affects the integrality needed for lambda: lambda-rho_u(P) must be integral.

Example (U(2,2) continued)

Continue with q with $L(\mathbb{R}) = U(2,1) \times U(0,1)$. Start with $A_q(0)$:

```
atlas> theta_induce_irreducible(trivial(L),G)
Value:
1*parameter(x=15,lambda=[3,1,-1,-3]/2,nu=[1,0,-1,0]/1) [6]
atlas> rho_u(P)
Value: [ 1, 1, 1, -3 ]/2
atlas> Aq(x_K,[1,1,1,-3]/2,[1,1,1,0])
Value: final parameter(x=15,lambda=[3,1,-1,-3]/2,nu=[1,0,-1,0]/1)
```

- Both functions yield the same module. The shift is $\rho(\mathfrak{u})$.
- The Aq function returns a parameter, while theta_induce_irreducible returns a ParamPol. This causes trouble when the module is not irreducible.

Before we continue, recall what Peter said about the relative positions of the parabolic and the representation for this construction.

Let $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$ be a θ -stable parabolic subalgebra of \mathfrak{g} , and let X be an $(\mathfrak{l}, L \cap K)$ -module with infinitesimal character γ_L .

• Recall that X is in the **good** range for q if for all $\alpha \in \Delta(\mathfrak{u})$,

$$Re\langle \gamma_L + \rho(\mathfrak{u}), \alpha^{\vee} \rangle > 0$$

• X is in the weakly good range if for all $\alpha \in \Delta(\mathfrak{u})$,

$$\operatorname{Re}\langle \gamma_L + \rho(\mathfrak{u}), \alpha^{\vee} \rangle \geq 0.$$

- In the good range, θ-stable induction takes irreducible modules to irreducible modules, and preserves unitarity and non-unitarity of irreducible modules.
- In the weakly good range, θ-stable induction takes an irreducible module to an irreducible module or 0, and preserves unitarity.

Example (U(2,2))

Recall the parabolic with $L(\mathbb{R}) = U(2, 1) \times U(0, 1)$, and the two finite dimensional representations of $L(\mathbb{R})$.

```
atlas> p:=finite_dimensional(L,[2,1,1,-4])
Value: final parameter(x=5,lambda=[3,1,0,-4]/1,nu=[3,0,-3,0]/2)
atlas> is_weakly_good(p,G)
Value: true
atlas> goodness(p,G)
Value: "Good"
```

This module was irreducible when θ -induced to $G(\mathbb{R})$.

```
atlas> p:=finite_dimensional(L,[2,1,1,4])
Value: final parameter(x=5,lambda=[3,1,0,4]/1,nu=[3,0,-3,0]/2)
atlas> goodness(p,G)
Value: "None"
```

The θ -induced module had three composition factors.

For $A_q(\lambda)$ modules, we can also talk about "fair" and "weakly fair":

- The module A_q(λ) = R^S_q(C_λ) is in the fair range if for all α ∈ Δ(μ),
 (λ + ρ(μ), α[∨]) > 0.
- The module A_q(λ) = R^S_q(C_λ) is in the weakly fair range if for all α ∈ Δ(u),

$$\langle \lambda + \rho(\mathfrak{u}), \alpha^{\vee} \rangle \geq \mathbf{0}.$$

In terms of the atlas definition
 Aq(x, lambda, lambda_q), the module is weakly fair if for
 all α ∈ Δ(u),

$$\langle \lambda, \alpha^{\vee} \rangle \ge \mathbf{0}.$$

• A weakly fair $A_q(\lambda)$ module is either 0 or unitary.

For $A_q(\lambda)$ modules, the goodness of the module Aq(x,lambda,lambda_q) can be determined by the command goodness(x,lambda,lambda_q).

Example $(Sp(4, \mathbb{R}))$

Consider $A_q(\lambda)$ modules with q the parabolic with $L(\mathbb{R}) = U(1,0) \times SL(2,\mathbb{R})$.

Start with $A_q(0)$ (at infinitesimal character ρ):

```
atlas> Aq(x, [2,0], [1,0])
Value: final parameter (x=5, lambda=[2,1]/1, nu=[0,1]/1)
atlas> goodness(x, [2,0], [1,0])
Value: "Good"
atlas> Aq(x, [1,0], [1,0])
Value: final parameter(x=5,lambda=[1,1]/1,nu=[0,1]/1)
atlas> goodness(x, [1,0], [1,0])
Value: "Weakly good"
atlas> Aq(x, [0, 0], [1, 0])
Runtime error:
  Ag is not irreducible. Use Ag reducible(x,lambda) instead
                 . . .
Evaluation aborted.
```

When the module is reducible, use the function Aq_reducible instead.

```
atlas> goodness(x,[0,0],[1,0])
Value: "Weakly fair"
```

```
atlas> Aq_reducible(x,[0,0],[1,0])
Value:
1*parameter(x=7,lambda=[3,0]/1,nu=[1,0]/1) [0]
1*parameter(x=2,lambda=[1,0]/1,nu=[0,0]/1) [3]
```

The module is reducible! (Recall from Peter's talk that for U(p, q), weakly fair $A_q(\lambda)$ modules are either irreducible or zero.) Let's keep going:

```
atlas> goodness(x, [-1,0], [1,0])
Value: "None"
atlas> set q=Aq(x, [-1,0], [1,0])
Value: final parameter(x=5,lambda=[1,1]/1,nu=[0,1]/1)
atlas> is_unitary(q)
Value: true
```

We'll come back to this module.

Let's go one step further into the bad range:

```
atlas> Aq_reducible(x, [-2,0], [1,0])
Value:
-1*parameter(x=10,lambda=[2,1]/1,nu=[2,1]/1) [0]
1*parameter(x=5,lambda=[2,1]/1,nu=[0,1]/1) [6]
```

Here is what it looks like when the module is zero:

Example ($Sp(4, \mathbb{R})$: A zero module)

atlas> Aq_reducible (x,[0,0],[2,1])
Value: Empty sum of standard modules

Here the θ -stable parabolic subalgebra is a Borel (since lambda_q is regular). The module is zero because there is a compact simple root that is orthogonal to λ .

```
atlas> goodness(x,[0,0],[2,1])
Value: "Weakly good"
```

- Given a parameter *p* of a group *G*(ℝ), you might want to know whether it is the parameter for a good or weakly fair *A*_q(λ) module.
- In the weakly fair case, an irreducible module might be just a constituent of a reducible A_q(λ) module.
- There are three different commands to accomplish this: is_good_Aq, is_weakly_good_Aq, and is_weakly_fair_Aq, all returning "true" or "false".
- The last of the three essentially works by constructing all possible weakly fair $A_q(\lambda)$ modules with the given infinitesimal character, and comparing. This is obviously quite slow.

Example ($Sp(4, \mathbb{R})$)

Recall that we had a weakly fair $A_q(\lambda)$ module of $Sp(4, \mathbb{R})$ with two constituents. Let's try the function on one of the summands:

```
atlas> set p=parameter(G,7,[3,0],[1,0])
Variable p: Param
atlas> is_weakly_fair_Aq(p)
Value: true
```

In this case, we can find out the parabolic, and the parameter on $L(\mathbb{R})$. There could be more than one, so the output is a list of such pairs:

Recall the "bad" example:

Example ($Sp(4, \mathbb{R})$)

```
atlas> q:=Aq(x, [-1,0], [1,0])
Value: final parameter(x=5,lambda=[1,1]/1,nu=[0,1]/1)
atlas> goodness(x, [-1,0], [1,0])
Value: "None"
atlas> is_weakly_fair_Aq(q)
Value: true
```

So although the module was not constructed as a weakly fair $A_q(\lambda)$, it is equivalent to one. Which one?

Unraveling this information, we see that this module is actually the weakly good one we had earlier:

```
atlas> is_weakly_good_Aq(q)
Value: true
atlas> q=Aq(x,[1,0],[1,0])
Value: true
```

Deciding whether a parameter corresponds to a (weakly) good $A_q(\lambda)$ module is much faster.

- If X is a cohomologically induced module in the good range with parameter p = (x, lambda, nu), it is easy to determine the parameter p_L on L(R) from...provided that we know which parabolic. Just subtract some ρ shift (and inverse-embed the KGB element inverse_embed_KGB).
- It is also not hard to determine a (canonical) parabolic subalgebra for which there is such a parameter ("good range reduction").
- The support of a KGB element x is the (minimal) set S of simple roots so that x ~_S y for a closed KGB orbit y.
- This is well defined.
- It is clear from the definition that the pair (S, x) then defines a θ-stable parabolic subalgebra q(x).

Detecting $A_q(\lambda)$ Modules

Example $(Sp(4,\mathbb{R}))$

atla	s>p	rint_KGE	3(G)					
0:	0	[n , n]	1	2	4	5	(0,0)#0	е
1:	0	[n , n]	0	3	4	6	(1,1)#0	е
2:	0	[c,n]	2	0	*	5	(0,1)#0	е
3:	0	[c,n]	3	1	*	6	(1,0)#0	е
4:	1	[r,C]	4	9	*	*	(0,0) 1	1^e
5:	1	[C,r]	7	5	*	*	(0,0) 2	2^e
6:	1	[C,r]	8	6	*	*	(1,0) 2	2^e
7:	2	[C , n]	5	8	*	10	(0,0)#2	1x2^e
8:	2	[C , n]	6	7	*	10	(0,1)#2	1x2^e
9:	2	[n,C]	9	4	10	*	(0,0)#1	2x1^e
10:	3	[r,r]	10	10	*	*	(0,0)#3	1^2x1^e

The closed orbits are 0, 1, 2, and 3. They all have support the empty set.

```
atlas> support(KGB(G,4))
Value: [0]
atlas> support(KGB(G,5))
Value: [1]
atlas> support(KGB(G,7))
Value: [0,1]
```

Detecting $A_q(\lambda)$ Modules

- The support is the set of roots appearing in the last column of KGB.
- Some KGB elements, e.g., the maximal one, have support the set of all simple roots. The corresponding parabolic subalgebra is then all of g

Theorem (Vogan)

Let X be the irreducible module given by the parameter p = (x, lambda, nu). Let S be the support of x, and q(x) the parabolic given by the pair (S, x), with Levi factor $L(\mathbb{R})$. Then X is cohomologically induced, in the weakly good range, from an irreducible module on $L(\mathbb{R})$.

- The parameter p_L on $L(\mathbb{R})$ can then easily be computed.
- To see whether X is a weakly good $A_q(\lambda)$ module, check whether p_L is the parameter of a unitary character. For "good", also check that the infinitesimal character of X is regular.

Example $\overline{(Sp(4,\mathbb{R}))}$

```
atlas> set p1=Aq(x,[2,0],[1,0])
Variable p1: Param
atlas> set p2=Aq(x,[1,0],[1,0])
Variable p2: Param
```

```
atlas> is_good_Aq(p1)
Value: true
atlas> is_good_Aq(p2)
Value: false
atlas> is_weakly_good_Aq(p2)
Value: true
```

The function reduce_good_range identifies the parabolic and the parameter as given by the theorem (the name reduce_weakly_good_range seemed too awkward):

Good Range Reduction

Example ($Sp(4, \mathbb{R})$)

Return one more time to the reducible weakly fair $A_q(\lambda)$ module of $Sp(4, \mathbb{R})$, to get more information about the two constituents:

This module may not be reduced in the (weakly) good range. (It is attached to KGB element 7, which has support $\{0, 1\}$, and to the mixed Cartan subgroup.)

Of course, KGB element #2 is a closed orbit, so this is a limit of discrete series representation.

Applications of Good Range Reduction

Recall that a representation of $G(\mathbb{R})$ with infinitesimal character γ is called **strongly regular** if γ is real and "at least as regular as ρ "; i.e., if for all positive roots α ,

$$\langle \gamma - \rho, \alpha^{\vee} \rangle \ge \mathbf{0}.$$

Here γ is chosen in the same Weyl chamber as $\rho.$

Theorem (Salamanca-Riba)

If X is strongly regular then X is unitary if and only if it is a good $A_q(\lambda)$ module.

- This suggests a quick test (without the heavy machinery of computing hermitian forms) for unitarity in the strongly regular case.
- Both tests (checking for "strongly regular" and is_good_Aq) are very fast.

Applications of Good Range Reduction

So here is an easy unitarity test:

```
set is_unitary_easy(Param p)=string:
    if is_strongly_regular(p) then
    if is_good_Aq(p) then "true" else "false" fi
        else "This is too hard." fi
```

Example $(Sp(4, \mathbb{R}))$

```
atlas> is_unitary_easy(trivial(G))
Value: "true"
atlas> p1:=finite_dimensional(G,[3,1])
Value: final parameter(x=10, lambda=[3,2]/1, nu=[5,2]/1)
atlas> is_unitary_easy(p1)
Value: "false"
atlas> p2:=Aq(x, [1,0], [1,0])
Value: final parameter (x=5, lambda=[1,1]/1, nu=[0,1]/1)
atlas> is_unitary_easy(p2)
Value: "This is too hard."
```

More generally, since **the hermitian form is preserved** by induction in the (weakly) good range, good range reduction can reduce this calculation to a computation on the smaller group:

If $X = \mathcal{R}_q^S(X_L)$ in the weakly good range, and HF_L is the ParamPol representing the hermitian form for X_L , then theta_induce_standard(HF_L,G) represents the hermitian form on X.