Parabolic Subgroups and Induction in atlas

Annegret Paul

Western Michigan University

Workshop on the Atlas of Lie Groups and Representations University of Utah, Salt Lake City July 10 - 21, 2017

Tasks

- Given a real group $G(\mathbb{R})$, a real parabolic subgroup $P(\mathbb{R})$ of $G(\mathbb{R})$ with Levi factor $L(\mathbb{R})$, and $\pi \in \widehat{L(\mathbb{R})}$, use atlas to find the composition factors of $Ind_{P(\mathbb{R})}^{G(\mathbb{R})}(\pi \otimes 1)$.
- Given a θ-stable parabolic subalgebra q = ι + u of g and X an irreducible representation of L(ℝ), compute the composition series of R^S_q(X).

Application (one of many): Suppose π is unitary (as computed by atlas), then all constituents of the induced representation will be unitary as well.

Example

- $G = GL(4, \mathbb{R}), L(\mathbb{R}) = GL(2, \mathbb{R}) \times GL(2, \mathbb{R})$
- $\pi = \sigma_3 \otimes 1$ is the (spherical) three dimensional representation of $GL(2, \mathbb{R})$ with highest weight (1, -1) on the first factor, trivial on the second.

• Consider
$$Ind_{P(\mathbb{R})}^{G(\mathbb{R})}(\sigma_3 \otimes 1 \otimes 1).$$

- Is this representation reducible? What are the constituents?
- Same questions for $Ind_{P(\mathbb{R})}^{G(\mathbb{R})}(1 \otimes 1 \otimes 1)$.
- More generally, for which values of p and q and $L(\mathbb{R}) = GL(p, \mathbb{R}) \times GL(q, \mathbb{R}) \subset GL(p+q, \mathbb{R})$ is $Ind_{P(\mathbb{R})}^{G(\mathbb{R})}(1 \otimes 1 \otimes 1)$ reducible?

Example (Some $A_q(\lambda)$ Calculations)

Given a real group $G(\mathbb{R})$ and a θ -stable parabolic subalgebra q with associated Levi subgroup $L(\mathbb{R})$,

- Construct various $A_q(\lambda)$ modules.
- How does the result change as we vary λ?
- Reducibility? Unitarity? Non-zero?
- What do the modules and their constituents look like?

Complex Parabolics:

- For a complex group G, types (conjugacy classes) of parabolic subgroups are given by subsets of Π, a fixed set of simple roots.
- In atlas, once we define a root datum, a Borel subgroup B (and hence Π) sitting inside our complex group G is fixed.
- There is an atlas data type ComplexParabolic consisting of a pair (rd, S). Here rd is a root datum, and S is a list of integers corresponding to the numbers (in atlas numbering) of the simple roots determining the desired parabolic.

Example ($G = GL(4, \mathbb{C})$)

```
Define the complex parabolic associated to our real parabolic subgroup of GL(4, \mathbb{R}) with L(\mathbb{R}) = GL(2, \mathbb{R}) \times GL(2, \mathbb{R}):
```

```
atlas>set G:=GL(4,R)
Variable G: RealForm
atlas> simple_roots (G)
Value:
| 1, 0, 0 |
| -1, 1, 0 |
| 0, -1, 1 |
| 0, 0, -1 |
```

Simple roots are numbered starting at 0; so we need roots 0 and 2.

```
atlas> set rd=root_datum(G)
Variable rd: RootDatum
atlas> rd
Value: simply connected adjoint root datum of Lie type 'A3.T1'
atlas> set Pc=ComplexParabolic:(rd,[0,2])
Variable Pc: (RootDatum,[int])
```

For real parabolic subgroups and θ -stable parabolic subalgebras, we need to add an appropriate Cartan involution θ that

- preserves the Levi factor (determined by the subset S of Π); and
- in the real case, for each simple root α that is not in S, θ(α) is negative;
- in the θ -stable case, for each simple root α that is not in *S*, $\theta(\alpha)$ is positive.

- In atlas, the Cartan involution (on the fixed complex group, with fixed, fixed, fixed Borel, and now the fixed parabolic subgroup) is specified by a KGB element.
- A parabolic subgroup/-algebra can be given by a pair (S, x), where S is a list of simple roots, and x an appropriate KGB element.

Questions

- How do I know which x to choose?
- When are two parabolics the same (conjugate by K)?

A different way to look at parabolics:

- A conjugacy class of complex parabolic subgroups is *G*/*P* for a fixed complex parabolic subgroup *P*. (Let's call this **fixed** group in atlas, uniquely determined by our fixed *B* and the set of simple roots *S*, *P*_{*S*}.)
- If θ is the involution corresponding to our chosen x, then the K_θ conjugacy class of our parabolic is determined by a K_θ-orbit on G/P_S.
- So parabolic subgroups/-algebras correspond to elements of K_θ\G/P_S.

We need to study these objects $K_{\theta} \setminus G/P_S$ for a given subset $S \subset \Pi$.

Parabolic Subgroups

 If x and y are KGB elements for the same real form G(ℝ), then there is a bijection/identification (canonical once you have picked a base point: conjugation by an element of G):

$$K_{ heta_x} ackslash G/P_S \leftrightarrow K_{ heta_y} ackslash G/P_S$$

Call this set just $K \setminus G/P_S$.

• Clearly $B \subset P_S$. Look at $K \setminus G/P_S$ as

 P_S -orbits on $K \setminus G$.

- Each element of $K \setminus G/P_S$ is the union of *B*-orbits. That is, $K \setminus G/P_S$ represents a *partition* of $KGB = K \setminus G/B$.
- The KGB elements grouped together are those corresponding to "KGB for the Levi subgroup".

Parabolic Subgroups

The set *S* defines an equivalence relation on KGB generated by cross actions and Cayley transforms by roots in *S*:

 $K ackslash G / P_S = ext{kgb} / \sim_S$

Example

 $G(\mathbb{R}) = GL(4, \mathbb{R}), S = [0, 2]$. Here is KGB for $G(\mathbb{R})$:

0:	0	[C,n,C]	2	0	2	*	1	*	(0,0,0,0)#0 e	
1:	1	[C,r,C]	4	1	3	*	*	*	(0,0,0,0) 1 2	^e
2:	1	[C,C,C]	0	5	0	*	*	*	(0,0,0,0) 0 1	xe
3:	2	[C,C,C]	7	6	1	*	*	*	(0,0,0,0) 1 32	x2^e
4:	2	[C,C,C]	1	8	7	*	*	*	(0,0,0,0) 1 1:	x2^e
5:	2	[n,C,n]	5	2	5	8	*	6	(0,0,0,0) 0 22	x1xe
6:	3	[n,C,r]	6	3	6	9	*	*	(0,0,0,0) 1 22	x3x2^e
7:	3	[C,n,C]	3	7	4	*	9	*	(0,0,0,0)#1 1:	x3x2^e
8:	3	[r,C,n]	8	4	8	*	*	9	(0,0,0,0) 1 1	^2x1xe
9:	4	[r,r,r]	9	9	9	*	*	*	(0,0,0,0)#2 1	^2x3x2^e

The KGP orbits are $\{0,2\}$, $\{1,3,4,7\}$, $\{5,6,8,9\}$. The numbers in the sets denote the KGB elements.

- In atlas, the data type for KGP elements is KGPElt or Parabolic; it consists of a pair (S, x), where S is a list of simple root numbers, and x is a KGB element.
- We have (S, x) = (T, y) iff S = T and $x \sim_S y$.

Example (continued)

We can find all KGP elements for $G(\mathbb{R})$ and associated to a set *S*:

```
atlas> KGP(G,[0,2])
Value: [([0,2],KGB element #2),([0,2],KGB element #7),([0,2],
KGB element #9)]
```

We can find all KGB elements in the class of a Parabolic P:

```
atlas> set P=KGP(G,[0,2])[2]
Variable P: ([int],KGBElt)
atlas> P
Value: ([0,2],KGB element #9)
atlas> equivalence_class_of (P)
Value: [KGB element #5,KGB element #6,KGB element #8,
KGB element #9]
atlas> set x=KGB(G,6)
Variable x: KGBElt
atlas> P=([0,2],x)
Value: true
```

So which <code>Parabolic</code> is the one we want (the real parabolic subgroup)? Recall that the involution given by \mathbf{x}

- preserves the Levi factor (determined by the subset S of Π); and
- in the real case, for each simple root α that is not in *S*, $\theta_X(\alpha)$ is negative;
- in the θ -stable case, for each simple root α that is not in *S*, $\theta_X(\alpha)$ is positive.

Each of these conditions applies to one KGB element in the class if and only if it applies to all of them.

Suppose we have a KGP element P so that any element x in the class preserves the Levi factor. Then:

- P corresponds to a real parabolic subgroup if and only if the class of x contains the maximal element (↔ maximally split Cartan).
- *P* corresponds to a *θ*-stable parabolic algebra if and only if the class of x contains a closed KGB orbit.

We can think of those KGP elements that correspond to neither (such as ([0,2],KGB element #7)) as generalized parabolics.

atlas can tell you what type of parabolic you have, or list, say, all θ -stable parabolics of a real form $G(\mathbb{R})$.

Example (continued)

Levi Subgroups

- Once we have a suitable KGP element, it is easy to define the Levi subgroup L(ℝ) = MA.
- atlas will define it as it is embedded in G(ℝ). Look at the trivial representation of L(ℝ) to understand the embedding.

Example (continued)

There are several induction functions in atlas.

- real_induce_standard performs real parabolic induction of standard modules; that is, a standard module of *L*(ℝ) is mapped to a standard module of *G*(ℝ). Essentially, this is just embedding the parameter, with some *ρ* shift.
- real_induce_irreducible computes the composition series of a representation of $G(\mathbb{R})$ that is induced from an **irreducible** representation on $L(\mathbb{R})$. For this function, all parameters are taken to represent irreducible representations.
- The output is of type ParamPol. The function will also accept input of that type.

Example ($GL(4, \mathbb{R})$ continued)

```
First consider Ind_{P(\mathbb{R})}^{G(\mathbb{R})}(1 \otimes 1 \otimes 1):
```

```
atlas> real_induce_irreducible(t,G)
Value:
1*parameter(x=9,lambda=[3,1,-1,-3]/2,nu=[1,1,-1,-1]/2) [0]
```

So this induced representation is irreducible. Notice that after the second induction, the parameter is made dominant.

We can define finite dimensional representations by giving their highest weight.

Real Parabolic Induction

Example ($GL(4, \mathbb{R})$ continued)

A representation of $L(\mathbb{R})$ of dimension 3 with highest weight (1, -1; 0, 0) is

```
atlas> set fd=finite_dimensional(L,[1,-1,0,0])
Variable fd: Param
atlas> fd
Value: final parameter(x=3,lambda=[3,1,1,-1]/2,nu=[3,-3,1,-1]/2)
atlas> dimension(fd)
Value: 3
```

However, this is not the spherical one; it will be the one in the translation family of the trivial representation (the first factor contains the sign representation of O(2)).

```
atlas> set fds=parameter(L,3,[1,-1,1,-1]/2,[3,-3,1,-1]/2)
Variable fds: Param
atlas> dimension(fds)
Value: 3
atlas> fd=fds
Value: false
atlas> infinitesimal_character (fd)
Value: [ 3, -3, 1, -1 ]/2
atlas> infinitesimal_character (fds)
Value: [ 3, -3, 1, -1 ]/2
```

Example ($GL(4, \mathbb{R})$ continued)

```
atlas> real_induce_irreducible(fd,G)
Value:
1*parameter(x=9,lambda=[5,1,-1,-1]/2,nu=[3,1,-1,-3]/2) [0]
atlas> real_induce_irreducible(fds,G)
Value:
1*parameter(x=9,lambda=[3,1,-1,-3]/2,nu=[3,1,-1,-3]/2) [0]
1*parameter(x=8,lambda=[3,1,-1,-3]/2,nu=[3,1,-2,-2]/2) [3]
1*parameter(x=6,lambda=[3,1,-1,-3]/2,nu=[2,2,-1,-3]/2) [3]
1*parameter(x=5,lambda=[3,1,-1,-3]/2,nu=[1,1,-1,-1]/1) [4]
```

Real Parabolic Induction

The function will also check whether $L(\mathbb{R})$ is indeed the Levi factor of a **real** parabolic subgroup of $G(\mathbb{R})$:

Example (continued)

Recall that the first KGP element in the list kgp is θ -stable. Let's try to induce the trivial representation of its Levi factor $GL(2, \mathbb{C})$:

```
atlas> set Q=kqp[0]
Variable Q: ([int],KGBElt)
atlas> set L1=Levi(0)
Variable L1: RealForm
atlas> L1
Value: connected quasisplit real group with Lie algebra
                                         'sl(2,C).gl(1,C)'
atlas> t:=trivial(L)
Value: final parameter (x=1, lambda=[1, -1, 1, -1]/2, nu=[1, -1, 1, -1]/2)
atlas> real induce irreducible(t,G)
Runtime error:
 L1 is not Levi of real parabolic ...
```

How does it work?

- $\pi \in \widehat{L(\mathbb{R})}$ is given by a parameter γ , $\pi = J_L(\gamma)$.
- Write π = J_L(γ) as a formal sum of standard modules for L(ℝ):

$$J_L(\gamma) = \sum_i a_i I_L(\gamma_i), \quad a_i \in \mathbb{Z}.$$

• By Induction by Stages, for each *i*,

$$I_G(\gamma_i) = Ind_{L(\mathbb{R})}^{G(\mathbb{R})}(I_L(\gamma_i)).$$

Here $I_G(\gamma_i)$ really denotes the output of real_induce_standard; the parameter for $L(\mathbb{R})$ is embedded in $G(\mathbb{R})$, with a suitable ρ -shift.

So we have

$$Ind_L^G(J_L(\gamma)) = \sum_i a_i I_G(\gamma_i).$$

 Compute the composition series of each standard module on the right, then the composition series of Ind^{G(ℝ)}_{P(ℝ)}(π ⊗ 1) (as a formal sum) is obtained as the sum with coefficients a_i.

Theta Stable Parabolic Subalgebras

To define a θ -stable parabolic subalgebra, specify a linear functional λ on a Cartan subalgebra \mathfrak{t}_0 of \mathfrak{k}_0 taking purely imaginary values. Then

$$\mathfrak{q}(\lambda) = \mathfrak{l}(\lambda) + \mathfrak{u}(\lambda)$$

is given by

$$\Delta(\mathfrak{l},\mathfrak{t}) = \{ \alpha \in \Delta(\mathfrak{g},\mathfrak{t}) | \langle \lambda, \alpha^{\vee} \rangle = \mathbf{0} \}$$
$$\Delta(\mathfrak{u},\mathfrak{t}) = \{ \alpha \in \Delta(\mathfrak{g},\mathfrak{t}) | \langle \lambda, \alpha^{\vee} \rangle > \mathbf{0} \}$$

- The function parabolic (lambda, x) will produce a θ-stable parabolic if x is a KGB element attached to the fundamental Cartan (and in the distinguished fiber).
- The weight λ must be fixed by the involution θ_x. (The last two conditions are automatic in the equal rank case.)

Example $(Sp(4,\mathbb{R}))$

Let $G(\mathbb{R}) = Sp(4, \mathbb{R})$. We can get a list of all θ -stable parabolic subalgebras:

```
atlas> G:=Sp(4,R)
Value: connected split real group with Lie algebra 'sp(4,R)'
atlas> set tsp=theta_stable_parabolics(G)
Variable tsp: [([int],KGBElt)]
atlas> #tsp
Value: 10
atlas> tsp
Value: [([],KGB element #0),
   ([],KGB element #1),
   ([],KGB element #2),
   ([],KGB element #3),
   ([0],KGB element #2),
   ([0],KGB element #3),
   ([0],KGB element #4),
   ([1],KGB element #5),
   ([1],KGB element #6),
   ([0,1],KGB element #10)]
```

Example ($Sp(4, \mathbb{R})$ continued)

```
atlas> simple_roots(G)
Value:
| 1, 0 |
| -1, 2 |
```

Root 0 is the short root. There are three parabolic subalgebras with the Levi associated to the short root. Which is which? Let's choose a suitable KGB element. If you are used to a system where the first root is

Let's choose a suitable KGB element. If you are used to a system where the first root is compact, choose the KGB element accordingly:

```
atlas> print_KGB(G)
...
0: 0 [n,n] 1 2 4 5 (0,0)#0 e
1: 0 [n,n] 0 3 4 6 (1,1)#0 e
2: 0 [c,n] 2 0 * 5 (0,1)#0 e
3: 0 [c,n] 3 1 * 6 (1,0)#0 e
...
```

This will be element 2 or 3.

Example ($Sp(4, \mathbb{R})$ continued)

```
To define a parabolic with compact L(\mathbb{R}), choose \lambda = (1, 1), say:
```

```
atlas> set x=KGB(G,2)
Variable x: KGBElt
atlas> set P=parabolic([1,1],x)
Parabolic is theta-stable.
Variable P: ([int],KGBElt)
atlas> P
Value: ([0],KGB element #2)
atlas> Levi(P)
Value: compact connected real group with Lie algebra 'su(2).u(1)'
atlas> tsp[4]
Value: ([0],KGB element #2)
atlas> tsp[5]
Value: ([0],KGB element #3)
atlas> tsp[6]
Value: ([0],KGB element #4)
```

Example ($Sp(\overline{4}, \mathbb{R})$ continued)

This is the parabolic opposite the first one, with compact Levi factor.

Theta Stable Parabolic Subalgebras

Example (U(2,2))

```
atlas> G:=U(2,2)
Variable G: RealForm
atlas> simple_roots(G)
Value:
   1, 0, 0 |
  -1, 1, 0 |
  0, -1, 1 |
  0, 0, -1
atlas> print_KGB(G)
. . .
0: 0 [n,n,n] 1 2 3 10 8 6 (0,0,0,0)#0 e

1: 0 [n,c,n] 0 1 4 10 * 7 (1,1,0,0)#0 e

2: 0 [c,n,c] 2 0 2 * 8 * (0,1,1,0)#0 e

3: 0 [n,c,n] 4 3 0 11 * 6 (0,0,1,1)#0 e

4: 0 [n,n,n] 3 5 1 11 9 7 (1,1,1,1)#0 e
 5: 0 [c,n,c] 5
                                4
                                       5 *
                                                        9
                                                             * (1,0,0,1)#0 e
```

. . .

If you like to choose $\epsilon_1 - \epsilon_2$ and $\epsilon_3 - \epsilon_4$ to be compact, the correct element is either 2 or 5.

Example (U(2,2) continued)

```
To define the algebra with L(\mathbb{R}) = U(2,1) \times U(0,1):
```

Next Time: θ -Stable Induction.