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1 Representations of SL(2,R)

Elsewhere, and in the background reading, we discuss how to go from represen-
tations of a group on a Hilbert space, to algebraic representations, or (g, K)-
modules. Once in the setting of (g, K)-modules it is possible to do some explicit
calculations. The case of SL(2,R) is very informative, and we will treat this in
some detail in the lectures. Here is some background.

We take G = SL(2,R), with Lie algebra go = s[(2,R), the two-by-two real
matrices of trace 0.

Set g = go ® C = sl(2,C). Let t(e?) = ( cos(0) sm(9)>, so ¢ is an
—sin(f) cos(0)
isomorphism from the circle to the subgroup K = {g € G | glg = I} = SO(2) C
SL(2,R). This is a maximal compact subgroup of G. We identity the irreducible
representation K of K with Z. We assume familiarity with representations of
compact groups.
Define the following basis of g:

(1.1) E1<1 Z> F1<1 —z’>, H(o _i>
2\ -1 2\-i -1 i 0

Exercise 1.2 Check that H, E, F satisfy the familiar identities [H, E] = 2F, [H, F| =
—2F,[E,F| = H. Also iH is a basis of £ = Lie(K) C go.

Definition 1.3 For v € C,e € Z/27 define a vector space I(v,€), with repre-
sentations of g and K as follows. It has a basis {v; | j € e +2Z}. The action
of K 1is:

(1.4)(a) m(t(e)) (k) = €™ vy



The action of g is given by

(14)(b) w(H)v; = jv;
L4)(c) (E)v; = 1/2(v + (j + 1))vjs2
(14)(d) T(F)v; = 1/2(v — (j — 1)vy—2

Exercise 1.5 Verify that I(v,¢€) is a (g, K)-module. This means:
(1) This is a representation of g and K
(2) Every vector is K-finite: dim{mw(k)v |k € K) < oo for all v € V;

(3) The representation of g, restricted to €, is the differential of the represen-
tation of K.

(We have omitted a fourth condition which is not necessary since K is con-
nected.)

We say a (g, K )-module is irreducible if it does not contain a proper subspace
W, invariant under the action of g and K.

Lemma 1.6 I(v,¢) is reducible if and only if
(1.7) VEe+ 2+ 1.

Lemma 1.8 Suppose v = n € ¢+ 2Z + 1 with n > 0. Then I(v,e) has two
infinite dimensional subrepresentatios

Iy (v,e) = (Unt1, Unt3,---)

I_(v,e) = (Vp—1,V—n_3,...)
Furthermore V/(I+ @ I_) is an irreducible finite dimensional representation
Io(v,€) of dimension n with basis V_pi1,V_pis,...,0n_1 (the image of these

vectors in the quotient).
In other words there is an exact sequence of (g, K)-modules:

0= I (ve)®I_(v,e) = I(v,€) — Ip(v,e) = 0

Furthermore:
Ii(v,e) ~ I (—v,€)
IO(Vv 6) = IO(_Vv 6)
An important special case is € = 1,v =0, in which case V. =1, ®I_ and I
vanishes.

Lemma 1.9 Suppose v=mn€e+2Z+1, andn <0. Then I(v,€) has a finite
dimensional subrepresentation Io(v,€) = (Upt1,Vnt3,s---,V—n_1) 0of dimension



n (vanishing if n = 0), and V/Iy is the direct sum of two irreducible, infinite
dimensional representations:

I (v,€) = (Vont1, Voniss - - -)
I_(v,e) = (Up—1,Vn—3,...)
In other words there is an exact sequence

0— Io(v,e) = I(v,e) = I (v,e) ®I_(v,e) — 0

Exercise 1.10 Prove both of these Lemmas. The main point is that I(v,¢€) is
irreducible if and only if Fv; # 0 and Fv; # 0 for all j. Furthermore Ev,, = 0
if and only if Fv_,, = 0, and the behavior of the submodules/quotients depends
on whether v is positive or negative.

Here are a few useful formulas.

T(E)vj—2 =1/2(v + (j — 1))v;
T(F)vjp2 =1/2(v — (§ +1))v;

(1.11) m(E)m(F)v; = %(ﬂ — (- 1)2)vj

r(F)r(EYo; = 102~ (G + 1)

Let C be the Casimir element:

C =H?+2FEF +2FE +1
(1.12) = H?+2H +4FE + 1
=H? -2H +4FF +1

This is an element of the universal enveloping algebra of g, and it acts on a
representation using any one of these formulas, for example 7(C)(v) = (7(H)?*+
2r(EYn(F) 4+ 2n(F)n(E) + 1)v.

Exercise 1.13 Show that 7(C)7(X) = n(X)7(C) for all X € g, and that given
v, €,

7(C)(v) = v*v for all v € I(v,e).
In fact C' is in the center of the universal enveloping algebra.
Theorem 1.14 Consider the irreducible (g, K)-modules:
(a) I(v,e) (v&e+2Z+1);
(b) In(n,e) (n=1,2,3,...)
(c) I+(n,e) (n=0,1,2,3...)



In (a) I(v,€) = I(—v,€); there are no other isomorphisms between these mod-
ules. Every irreducible (g, K) module is isomorphic to one of these.

Most of this is straightforward, except for the fact that every irreducible
representation is isomorphic to one of these. See [5, Proposition 1.2.14].

Define an action of K on the algebraic dual space Hom(V,C) as usual:
(k) (f)(v) = f(x(k~1)v). Let V* be the K-finite vectors. Then g acts on

V* as usual: 7(X)(f)(v) = —f(x(X)v).

Exercise 1.15 Show that V* is a (g, K)-module. What is I(v, €)*? Include the
cases when this module is reducible. What about Io(v,€)* and I (v, €)*?

2 Hermitian forms

Given a (g, K)-module (7, V) for SL(2,R), suppose (,) is a Hermitian form on
the complex vector space V. The natural notion of invariance under the action
of the Lie algebra is

(2.1)(a) (m(X)v, w) + (v, 7(X)w) =0 (X € go)-

It is essential that X is in the real Lie algebra. To give a valid formula on g
observe that m(iX) = iw(X), and (a) implies

(2.1)(b)  (7(iX)v,w) + (v, 7(=iX)w) = i(7(X)v,w) + —i(v,7(X)w) =0

In other words if ¢ is complex conjugation of g with respect to go, then (a) is
equivalent to

(21)(c) (x(X)v,w) + (v, 7o (X))w) =0 (X € g).

Definition 2.2 An invariant Hermitian form on a (g, K)-module (7,V) is a
Hermitian form satisfying

(r(k)v,m(k)w) = (v,w) (ke K)
(m(X)v,w) + (v, 7(e(X))w) =0 (X € g).
Note that K = K(R) = SO(2). It is natural to replace K with K(C) = C*,

in which case the first formula would have an extra o on the right. We don’t do
this here.

Exercise 2.3 Show that the invariance condition is equivalent to
( —(v, 7 (F)w)
( —(v, 7 (E)w)
(F(H) ) (v, m(H)w)

v, (
(2.4) 7(

v,

Consider the module I(v,€) with v € R, and basis {v,}.



Exercise 2.5 Suppose (,) is an invariant Hermitian form on I(v,€¢). Then
(vj,vg) =0 for j # k.

Exercise 2.6 Suppose I(v,€) is irreducible, and I(v,€) has a invariant form.
Show that (2.4) and (1.4)(b-d) imply for all j

(=7+(G+1)

CEITESDRY

(2.7) (vjt2,0j42) =
Using the fact that (v,v) € R for all v implies I(v,€) supports an invariant
Hermitian form if and only if v € iR UR.

(1) If v € iR this form can be taken to be identically 1.

(2) If v € R and € = 0 this form can be uniquely normalized so that (vg,vg) =
1.

(3) If v e R* and € = 1 then (v_1,v_1) = —(v1, v1).

The irreducibility assumption is only to avoid the denominator being 0. With
a little more care this can be dropped.

The representations with v € iR are the tempered, unitary principal series.
The important case is v € R (the case of real infinitesimal character).

The last case in the exercise illustrates a crucial problem: there is no canon-
ical way to normalize the form on the lowest K-types v4; in this case.

The remedy is to use a modification of the invariant Hermitian form. Define

o.(X)=-X

Then g% = su(2), the Lie algebra of the compact group SU(2), the subscript
stands for compact. Notice that o.(Lie(K)) = Lie(K).

Definition 2.8 A c-invariant Hermitian form on a (g, K)-module (w,V) is a
Hermitian form (,). satisfying

(v,w)e (k€ K)

(m(k)v, m(k)w).
=0 (X e€g).

(m(X)v, w)e + (v, 7(0c(X))w)

Exercise 2.9 Suppose I(v,€) is irreducible, and I(v, €) has a c-invariant form.
Show that (2.4) and (1.4)(b-d) imply for all j

T-(+1)

(21()) (Uj+2,?)j+2)c = (V+ (] I 1))

(v5,05)e
Conclude that if v € R then I(v,¢) supports a unique c-invariant Hermitian
form normalized so that (vg,vp). = 1 (¢ = 0) or (v1,v1)e = (v_1,v-1)c = 1

(e=1).



Exercise 2.11 Show that the n-dimensional irreducible representation has a
positive definite c-invariant Hermitian form. It supports an invariant Hermitian
form, which is not positive definite unless n = 1.

Exercise 2.12 Suppose v > 0, v € Z.

(1) Show that I(v,1) has an invariant Hermitian form, which is not positive
definite.

(2) Show that I(r,0) has an invariant Hermitian form, which is positive defi-
nite if and only if v < 1.

The representations (2) are the complementary series for SL(2,R).

3 Tori

An important role is played by real algebraic tori and their representations.
We discuss representations of real algebraic tori. For background on algebraic
groups see [4], [2] or [3]. and [1, Section 3] for the representations of tori.

Start with a complex torus H = H(C) ~ C*". Let X* be the holomorphic
characters of H. If n = 1 these are the maps z — 2" (n € Z). Let X, be the
algebraic co-characters, i.e. holomorphic group homomorphisms C* — H. Then
X*, X, are isomorphic to Z", and there is a perfect pairing (, ) : X* x X, — Z.
If a(vV(2)) = 2% (2 € C*,k € Z) then {a,7Y) = k.

Lemma 3.1 Suppose 0 is a holomorphic involution of H = H(C). Then there
is an isomorphism H ~ C*™ so that
(215 ey Zay Wiy e ey Wy UL, Vs e - vy U, V) =

1 1
(21, ey Zay W ey Wy UL, UL - v Vg, U

Exercise 3.2 Try proving this result. It is not elementary. It is equivalent to
proving that any involution in GL(n,Z) is conjugate to a matrix with diagonal

entries 1, —1, or 2 x 2 blocks 01 .

1 0
Lemma 3.3 Suppose o is an anti-holomorphic involution of H. Then there is
an isomorphism H ~ C*™ so that

O(Z15 ey Zay Wy e ey W UL, Vs e vy Uy Ve) =

(Efl,...,za , —1 7_1).

_ =1 ——1 _
Wiy, Why Uy Uy 5eeey Uy, U,

Write H(R) = H?. This is a real Lie group. With these coordinates we
have:

H(R) = S§' x R*® x C** (the real torus)
T(R) = H(R)? = 8% x (Z/QZ)b x S (the maximal compact subgroup)
T(C) = HY = C** x (Z/2Z)" x C** (the complexified maximal compact subgroup)



—

Lemma 3.4 There is a natural isomorphism T(R) ~ X*/(1 — 0)X*.

Exercise 3.5 Prove the Lemma. First of all, the characters of T'(R) are the
same thing as the algebraic characters of T(C) = H?. You may assume that
any algebraic character of H? is the restriction of a character of H.

A character of H(R) may be identified with a (b, H%)-module.

Proposition 3.6 The (h, H’) modules are parametrized by pairs (v, ) satisfy-
mg:

(1) ve X*®C ~b*;
(2) ke X*/(1—0)X*;
(3) (1+0)v=(1+0)k.

The corresponding character v of H(R) has differential v, and the restriction of
v to H(R)? is k.

Exercise 3.7 Prove the Proposition. Note that H(R) = T(R) exp(ho)-

Example 3.8 Suppose 6 = 1, so H(R) ~ S'" is compact. The characters are
parametrized by k € X*.

If = -1, H(R) ~ R*", and characters are parametrized by pairs (v, k) with
veX*@C~C"and k € X*/2X*(~Z/2Z)".

Exercise 3.9 Work out the case of H(R) ~ C*. In this case H(C) = C* x C*,
o(z,w) = (w 1,z71), and (z,w) = (w, 2).

3.1 Digression: Characters of compact groups

Let G = SU(2), with T ~ S! the diagonal Cartan subgroup. The character of
the n-dimensional irreducible representation (n =1,2,...) is

em@ _ e—m@

ei(—n-‘rl)Q + ei(—7z+3)9 + .. .ei(n—S)O + ei(n—l)@ — y —
e —e€

This is the Weyl character formula in this case.
Now consider the similar case of G = SO(3). Again a Cartan subgroup T is

cos(d) sin(f) O
the circle, for example take | — sin(d) cos(f) 0 The irreducible representa-

0 0 1
tions of G are odd dimensional; the character of the n-dimensional irreducible
representation for (n =1,3,5...) is:
ein0/2 _ e—in9/2

ei0/2 _ o—if/2

(B.1L1)(a) e TED0 4 G (TFD0 L (520 im0



The numerator and denominator of the quotient are not well defined functions
on T, because of the 2s in the denominator. The quotient is well defined; after

multiplying by ;Z% it can be written

H(MFH)0 _ pi(=5)0

(3.1.1)(b) —

Since n is odd both numerator and denominator are well defined. However (a)
is clearly a more symmetric, and therefore preferable, expression.
For a general conneced compact group the Weyl denominator is

H (e7@/? —em/2) = H (1—e")e”

a>0 a>0

Here p = % > a0 @ as usual. The first expression isn’t really well defined; it is
shorthand for the second. The second expression is well defined if p exponenti-
ates to a character of T'. This holds for SL(2), but not PSL(2).

The conclusion is it is very useful to introduce a two-fold cover of the torus
on which p is well defined. These play an important role in the Langlands
classification. If p exponentiates this cover can be ignored, and it is reasonable
to focus on this case first time around.

3.2 Covers of tori

Now fix an element 7 € %X *. Let
(3.2.1) H,={(h,2z) € Hx C*|2y(h) = 2°}.

This is a two-fold cover of H via the map (h,z) — h; write ¢ for the nontrivial
element in the kernel of this map. We call this the ~-cover of H. Note that
(h,z) — z is a character of H,, and is a canonical square root of 2+, denoted .

Exercise 3.2.2 Prove this cover splits, i.e. H, ~ H x Z/27Z if and only if
ve X*.

Now assume H is defined over R, with Cartan involution §. The « cover of
H(R) is defined to be the inverse image of H(R) in H,. A character of H(R),
is said to be genuine if it is nontrivial on (.

Lemma 3.2.3 The genuine characters of H(R). are canonically parametrized
by the set of pairs (v, k) with v € b*, k € v+ X*/(1 — 0)X*, and satisfying
(14+0)v=(1+0)xk.

Exercise 3.2.4 Prove the Lemma.

Example 3.2.5 Suppose H is a Cartan subgroup of a reductive group G.
Choose a set of positive roots AT and let p = % > a+ @, and consider the cover



H, of H. This is independent of the choice of AT up to canonical isomorphism
(prove this!).

Suppose G = SL(2,R). For any real Cartan subgroup H(R), ~ H(R) x
Z7/27.

Let G = PSL(2,R) ~ SO(2,1) (this group is disconnected). If H(R) ~ S*.
then H(R), ~ S*, with projection map z — 22.

If H(R) ~ R* then H(R), ~ R* UiR*. Note this has an element of order 4.
Although H, is a real algebraic group, H(R), is not its real points; H,(R) ~ R*
is a subgroup of index 2 in H(R),.

Exercise 3.2.6 Think through the final example .

4 Cartan subgroups

If G is compact or complex, its Cartan subgroups are unique up to conjugacy.
In a real Lie group there are a finite number of conjugacy classes of Cartan
subgroups, and these play an important role in representation theory.

If G = SL(2,R) there are two Cartan subgroups, up to conjugacy. The
diagonal {diag(z, 1)} ~ R*, and the circle SO(2) ~ S*.

Exercise 4.1 Show that every semisimple element of GL(2,R) is conjugate to

either diag(z,y) or a b
—-b a

groups (up to conjugacy), one R*? and C*.

). Conclude that GL(2,R) has two Cartan sub-

Exercise 4.2 Find representatives of all conjugacy classes of Cartan subgroups
in GL(n,R) and SL(n,R).
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