The Langlands Classification Background for the Atlas workshop 2017

Jeffrey Adams

June 27, 2017

1 Representations of $SL(2,\mathbb{R})$

Elsewhere, and in the background reading, we discuss how to go from representations of a group on a Hilbert space, to algebraic representations, or (\mathfrak{g}, K) modules. Once in the setting of (\mathfrak{g}, K) -modules it is possible to do some explicit calculations. The case of $SL(2, \mathbb{R})$ is very informative, and we will treat this in some detail in the lectures. Here is some background.

We take $G = SL(2, \mathbb{R})$, with Lie algebra $\mathfrak{g}_0 = \mathfrak{sl}(2, \mathbb{R})$, the two-by-two real matrices of trace 0.

Set $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{C} = \mathfrak{sl}(2,\mathbb{C})$. Let $t(e^{i\theta}) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$, so t is an isomorphism from the circle to the subgroup $K = \{g \in G \mid g^t g = I\} = SO(2) \subset SL(2,\mathbb{R})$. This is a maximal compact subgroup of G. We identity the irreducible representation \widehat{K} of K with \mathbb{Z} . We assume familiarity with representations of compact groups.

Define the following basis of \mathfrak{g} :

(1.1)
$$E = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}, \quad F = \frac{1}{2} \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix}, \quad H = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Exercise 1.2 Check that H, E, F satisfy the familiar identities [H, E] = 2E, [H, F] = -2F, [E, F] = H. Also iH is a basis of $\mathfrak{k}_0 = \operatorname{Lie}(K) \subset \mathfrak{g}_0$.

Definition 1.3 For $\nu \in \mathbb{C}, \epsilon \in \mathbb{Z}/2\mathbb{Z}$ define a vector space $I(\nu, \epsilon)$, with representations of \mathfrak{g} and K as follows. It has a basis $\{v_j \mid j \in \epsilon + 2\mathbb{Z}\}$. The action of K is:

(1.4)(a)
$$\pi(t(e^{i\theta}))(v_k) = e^{ik\theta}v_k$$

The action of ${\mathfrak g}$ is given by

(1.4)(b)
$$\pi(H)v_j = jv_j$$

(1.4)(c) $\pi(E)v_j = 1/2(\nu + (j+1))v_{j+2}$

(1.4)(d)
$$\pi(F)v_j = 1/2(\nu - (j-1))v_{j-2}$$

Exercise 1.5 Verify that $I(\nu, \epsilon)$ is a (\mathfrak{g}, K) -module. This means:

- (1) This is a representation of \mathfrak{g} and K;
- (2) Every vector is K-finite: $\dim \langle \pi(k)v \mid k \in K \rangle < \infty$ for all $v \in V$;
- (3) The representation of \mathfrak{g} , restricted to \mathfrak{k}_0 , is the differential of the representation of K.

(We have omitted a fourth condition which is not necessary since K is connected.)

We say a (\mathfrak{g}, K) -module is irreducible if it does not contain a proper subspace W, invariant under the action of \mathfrak{g} and K.

Lemma 1.6 $I(\nu, \epsilon)$ is reducible if and only if

(1.7)
$$\nu \in \epsilon + 2\mathbb{Z} + 1.$$

Lemma 1.8 Suppose $\nu = n \in \epsilon + 2\mathbb{Z} + 1$ with $n \ge 0$. Then $I(\nu, \epsilon)$ has two infinite dimensional subrepresentatios

$$I_{+}(\nu, \epsilon) = \langle v_{n+1}, v_{n+3}, \dots \rangle$$
$$I_{-}(\nu, \epsilon) = \langle v_{-n-1}, v_{-n-3}, \dots \rangle$$

Furthermore $V/(I_+ \oplus I_-)$ is an irreducible finite dimensional representation $I_0(\nu, \epsilon)$ of dimension n with basis $v_{-n+1}, v_{-n+3}, \ldots, v_{n-1}$ (the image of these vectors in the quotient).

In other words there is an exact sequence of (\mathfrak{g}, K) -modules:

$$0 \to I_+(\nu, \epsilon) \oplus I_-(\nu, \epsilon) \to I(\nu, \epsilon) \to I_0(\nu, \epsilon) \to 0$$

Furthermore:

$$I_{\pm}(\nu, \epsilon) \simeq I_{\pm}(-\nu, \epsilon)$$
$$I_{0}(\nu, \epsilon) \simeq I_{0}(-\nu, \epsilon)$$

An important special case is $\epsilon = 1, \nu = 0$, in which case $V = I_+ \oplus I_-$ and I_0 vanishes.

Lemma 1.9 Suppose $\nu = n \in \epsilon + 2\mathbb{Z} + 1$, and $n \leq 0$. Then $I(\nu, \epsilon)$ has a finite dimensional subrepresentation $I_0(\nu, \epsilon) = \langle v_{n+1}, v_{n+3}, \dots, v_{-n-1} \rangle$ of dimension

n (vanishing if n = 0), and V/I_0 is the direct sum of two irreducible, infinite dimensional representations:

$$I_{+}(\nu, \epsilon) = \langle v_{-n+1}, v_{-n+3}, \dots \rangle$$
$$I_{-}(\nu, \epsilon) = \langle v_{n-1}, v_{n-3}, \dots \rangle$$

In other words there is an exact sequence

$$0 \to I_0(\nu, \epsilon) \to I(\nu, \epsilon) \to I_+(\nu, \epsilon) \oplus I_-(\nu, \epsilon) \to 0$$

Exercise 1.10 Prove both of these Lemmas. The main point is that $I(\nu, \epsilon)$ is irreducible if and only if $Ev_j \neq 0$ and $Fv_j \neq 0$ for all j. Furthermore $Ev_n = 0$ if and only if $Fv_{-n} = 0$, and the behavior of the submodules/quotients depends on whether ν is positive or negative.

Here are a few useful formulas.

(1.11)

$$\pi(E)v_{j-2} = 1/2(\nu + (j-1))v_j$$

$$\pi(F)v_{j+2} = 1/2(\nu - (j+1))v_j$$

$$\pi(E)\pi(F)v_j = \frac{1}{4}(\nu^2 - (j-1)^2)v_j$$

$$\pi(F)\pi(E)v_j = \frac{1}{4}(\nu^2 - (j+1)^2)v_j$$

Let C be the Casimir element:

(1.12)

$$C = H^{2} + 2EF + 2FE + 1$$

$$= H^{2} + 2H + 4FE + 1$$

$$= H^{2} - 2H + 4EF + 1$$

This is an element of the universal enveloping algebra of \mathfrak{g} , and it acts on a representation using any one of these formulas, for example $\pi(C)(v) = (\pi(H)^2 + 2\pi(E)\pi(F) + 2\pi(F)\pi(E) + 1)v$.

Exercise 1.13 Show that $\pi(C)\pi(X) = \pi(X)\pi(C)$ for all $X \in \mathfrak{g}$, and that given ν, ϵ ,

$$\pi(C)(v) = \nu^2 v$$
 for all $v \in I(\nu, \epsilon)$.

In fact C is in the center of the universal enveloping algebra.

Theorem 1.14 Consider the irreducible (\mathfrak{g}, K) -modules:

- (a) $I(\nu, \epsilon) \quad (\nu \not\in \epsilon + 2\mathbb{Z} + 1);$
- (b) $I_0(n,\epsilon)$ (n = 1, 2, 3, ...)
- (c) $I_{\pm}(n,\epsilon)$ (n=0,1,2,3...)

In (a) $I(\nu, \epsilon) \simeq I(-\nu, \epsilon)$; there are no other isomorphisms between these modules. Every irreducible (\mathfrak{g}, K) module is isomorphic to one of these.

Most of this is straightforward, except for the fact that every irreducible representation is isomorphic to one of these. See [5, Proposition 1.2.14].

Define an action of K on the algebraic dual space $\operatorname{Hom}(V, \mathbb{C})$ as usual: $\pi(k)(f)(v) = f(\pi(k^{-1})v)$. Let V^* be the K-finite vectors. Then \mathfrak{g} acts on V^* as usual: $\pi(X)(f)(v) = -f(\pi(X)v)$.

Exercise 1.15 Show that V^* is a (\mathfrak{g}, K) -module. What is $I(\nu, \epsilon)^*$? Include the cases when this module is reducible. What about $I_0(\nu, \epsilon)^*$ and $I_{\pm}(\nu, \epsilon)^*$?

2 Hermitian forms

Given a (\mathfrak{g}, K) -module (π, V) for $SL(2, \mathbb{R})$, suppose (,) is a Hermitian form on the complex vector space V. The natural notion of invariance under the action of the Lie algebra is

(2.1)(a)
$$(\pi(X)v, w) + (v, \pi(X)w) = 0 \quad (X \in \mathfrak{g}_0).$$

It is essential that X is in the *real* Lie algebra. To give a valid formula on \mathfrak{g} observe that $\pi(iX) = i\pi(X)$, and (a) implies

(2.1)(b)
$$(\pi(iX)v, w) + (v, \pi(-iX)w) = i(\pi(X)v, w) + \overline{-i}(v, \pi(X)w) = 0$$

In other words if σ is complex conjugation of \mathfrak{g} with respect to \mathfrak{g}_0 , then (a) is equivalent to

(2.1)(c)
$$(\pi(X)v,w) + (v,\pi(\sigma(X))w) = 0 \quad (X \in \mathfrak{g}).$$

Definition 2.2 An invariant Hermitian form on a (\mathfrak{g}, K) -module (π, V) is a Hermitian form satisfying

$$\begin{aligned} (\pi(k)v,\pi(k)w) &= (v,w) \quad (k\in K)\\ (\pi(X)v,w) + (v,\pi(\sigma(X))w) &= 0 \quad (X\in\mathfrak{g}). \end{aligned}$$

Note that $K = K(\mathbb{R}) = SO(2)$. It is natural to replace K with $K(\mathbb{C}) = \mathbb{C}^*$, in which case the first formula would have an extra σ on the right. We don't do this here.

Exercise 2.3 Show that the invariance condition is equivalent to

(2.4)
$$\begin{aligned} (\pi(E)v,w) &= -(v,\pi(F)w) \\ (\pi(F)v,w) &= -(v,\pi(E)w) \\ (\pi(H)v,w) &= (v,\pi(H)w) \end{aligned}$$

Consider the module $I(\nu, \epsilon)$ with $\nu \in \mathbb{R}$, and basis $\{v_i\}$.

Exercise 2.5 Suppose (,) is an invariant Hermitian form on $I(\nu, \epsilon)$. Then $(v_j, v_k) = 0$ for $j \neq k$.

Exercise 2.6 Suppose $I(\nu, \epsilon)$ is irreducible, and $I(\nu, \epsilon)$ has a invariant form. Show that (2.4) and (1.4)(b-d) imply for all j

(2.7)
$$(v_{j+2}, v_{j+2}) = \frac{(-\overline{\nu} + (j+1))}{(\nu + (j+1))} (v_j, v_j).$$

Using the fact that $(v, v) \in \mathbb{R}$ for all v implies $I(v, \epsilon)$ supports an invariant Hermitian form if and only if $v \in i\mathbb{R} \cup \mathbb{R}$.

- (1) If $\nu \in i\mathbb{R}$ this form can be taken to be identically 1.
- (2) If $\nu \in \mathbb{R}$ and $\epsilon = 0$ this form can be uniquely normalized so that $(v_0, v_0) = 1$.
- (3) If $\nu \in \mathbb{R}^*$ and $\epsilon = 1$ then $(v_{-1}, v_{-1}) = -(v_1, v_1)$.

The irreducibility assumption is only to avoid the denominator being 0. With a little more care this can be dropped.

The representations with $\nu \in i\mathbb{R}$ are the tempered, unitary principal series. The important case is $\nu \in \mathbb{R}$ (the case of real infinitesimal character).

The last case in the exercise illustrates a crucial problem: there is no canonical way to normalize the form on the lowest K-types $v_{\pm 1}$ in this case.

The remedy is to use a modification of the invariant Hermitian form. Define

$$\sigma_c(X) = -t\overline{X}$$

Then $\mathfrak{g}^{\sigma_c} = \mathfrak{su}(2)$, the Lie algebra of the compact group SU(2), the subscript stands for compact. Notice that $\sigma_c(\operatorname{Lie}(K)) = \operatorname{Lie}(K)$.

Definition 2.8 A c-invariant Hermitian form on a (\mathfrak{g}, K) -module (π, V) is a Hermitian form $(,)_c$ satisfying

$$(\pi(k)v, \pi(k)w)_c = (v, w)_c \quad (k \in K)$$
$$(\pi(X)v, w)_c + (v, \pi(\sigma_c(X))w)_c = 0 \quad (X \in \mathfrak{g}).$$

Exercise 2.9 Suppose $I(\nu, \epsilon)$ is irreducible, and $I(\nu, \epsilon)$ has a c-invariant form. Show that (2.4) and (1.4)(b-d) imply for all j

(2.10)
$$(v_{j+2}, v_{j+2})_c = \frac{(\overline{\nu} - (j+1))}{(\nu + (j+1))} (v_j, v_j)_c$$

Conclude that if $\nu \in \mathbb{R}$ then $I(\nu, \epsilon)$ supports a unique c-invariant Hermitian form normalized so that $(v_0, v_0)_c = 1$ ($\epsilon = 0$) or $(v_1, v_1)_c = (v_{-1}, v_{-1})_c = 1$ ($\epsilon = 1$).

Exercise 2.11 Show that the *n*-dimensional irreducible representation has a positive definite c-invariant Hermitian form. It supports an invariant Hermitian form, which is not positive definite unless n = 1.

Exercise 2.12 Suppose $\nu > 0, \nu \notin \mathbb{Z}$.

- (1) Show that $I(\nu, 1)$ has an invariant Hermitian form, which is not positive definite.
- (2) Show that $I(\nu, 0)$ has an invariant Hermitian form, which is positive definite if and only if $\nu < 1$.

The representations (2) are the complementary series for $SL(2,\mathbb{R})$.

3 Tori

An important role is played by real algebraic tori and their representations. We discuss representations of real algebraic tori. For background on algebraic groups see [4], [2] or [3]. and [1, Section 3] for the representations of tori.

Start with a complex torus $H = H(\mathbb{C}) \simeq \mathbb{C}^{*n}$. Let X^* be the holomorphic characters of H. If n = 1 these are the maps $z \to z^n$ $(n \in \mathbb{Z})$. Let X_* be the algebraic co-characters, i.e. holomorphic group homomorphisms $\mathbb{C}^* \to H$. Then X^*, X_* are isomorphic to \mathbb{Z}^n , and there is a perfect pairing $\langle, \rangle : X^* \times X_* \to \mathbb{Z}$. If $\alpha(\gamma^{\vee}(z)) = z^k \ (z \in \mathbb{C}^*, k \in \mathbb{Z})$ then $\langle \alpha, \gamma^{\vee} \rangle = k$.

Lemma 3.1 Suppose θ is a holomorphic involution of $H = H(\mathbb{C})$. Then there is an isomorphism $H \simeq \mathbb{C}^{*n}$ so that

$$\theta(z_1, \dots, z_a, w_1, \dots, w_b, u_1, v_1, \dots, u_c, v_c) = (z_1, \dots, z_a, w_1^{-1}, \dots, w_b^{-1}, v_1, u_1, \dots, v_c, u_c).$$

Exercise 3.2 Try proving this result. It is *not* elementary. It is equivalent to proving that any involution in $GL(n, \mathbb{Z})$ is conjugate to a matrix with diagonal entries 1, -1, or 2×2 blocks $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Lemma 3.3 Suppose σ is an anti-holomorphic involution of H. Then there is an isomorphism $H \simeq \mathbb{C}^{*n}$ so that

$$\sigma(z_1,\ldots,z_a,w_1,\ldots,w_b,u_1,v_1,\ldots,u_c,v_c) = (\overline{z_1}^{-1},\ldots,\overline{z_a}^{-1},\overline{w_1},\ldots,\overline{w_b},\overline{v_1}^{-1},\overline{u_1}^{-1},\ldots,\overline{v_c}^{-1},\overline{u_c}^{-1}).$$

Write $H(\mathbb{R}) = H^{\sigma}$. This is a real Lie group. With these coordinates we have:

 $H(\mathbb{R}) = S^{1a} \times \mathbb{R}^{*b} \times \mathbb{C}^{*c} \quad \text{(the real torus)}$

$$\begin{split} T(\mathbb{R}) &= H(\mathbb{R})^{\theta} = S^{1a} \times (\mathbb{Z}/2\mathbb{Z})^{b} \times S^{1c} \quad \text{(the maximal compact subgroup)} \\ T(\mathbb{C}) &= H^{\theta} = \mathbb{C}^{*a} \times (\mathbb{Z}/2\mathbb{Z})^{b} \times \mathbb{C}^{*c} \quad \text{(the complexified maximal compact subgroup)} \end{split}$$

Lemma 3.4 There is a natural isomorphism $\widehat{T(\mathbb{R})} \simeq X^*/(1-\theta)X^*$.

Exercise 3.5 Prove the Lemma. First of all, the characters of $T(\mathbb{R})$ are the same thing as the algebraic characters of $T(\mathbb{C}) = H^{\theta}$. You may assume that any algebraic character of H^{θ} is the restriction of a character of H.

A character of $H(\mathbb{R})$ may be identified with a $(\mathfrak{h}, H^{\theta})$ -module.

Proposition 3.6 The $(\mathfrak{h}, H^{\theta})$ modules are parametrized by pairs (ν, κ) satisfying:

- (1) $\nu \in X^* \otimes \mathbb{C} \simeq \mathfrak{h}^*$;
- (2) $\kappa \in X^*/(1-\theta)X^*;$
- (3) $(1+\theta)\nu = (1+\theta)\kappa$.

The corresponding character ν of $H(\mathbb{R})$ has differential ν , and the restriction of ν to $H(\mathbb{R})^{\theta}$ is κ .

Exercise 3.7 Prove the Proposition. Note that $H(\mathbb{R}) = T(\mathbb{R}) \exp(\mathfrak{h}_0)$.

Example 3.8 Suppose $\theta = 1$, so $H(\mathbb{R}) \simeq S^{1n}$ is compact. The characters are parametrized by $\kappa \in X^*$.

If $\theta = -1$, $H(\mathbb{R}) \simeq \mathbb{R}^{*n}$, and characters are parametrized by pairs (ν, κ) with $\nu \in X^* \otimes \mathbb{C} \simeq \mathbb{C}^n$ and $\kappa \in X^*/2X^* (\simeq \mathbb{Z}/2\mathbb{Z})^n$.

Exercise 3.9 Work out the case of $H(\mathbb{R}) \simeq \mathbb{C}^*$. In this case $H(\mathbb{C}) = \mathbb{C}^* \times \mathbb{C}^*$, $\sigma(z, w) = (\overline{w}^{-1}, \overline{z}^{-1})$, and $\theta(z, w) = (w, z)$.

3.1 Digression: Characters of compact groups

Let G = SU(2), with $T \simeq S^1$ the diagonal Cartan subgroup. The character of the *n*-dimensional irreducible representation (n = 1, 2, ...) is

$$e^{i(-n+1)\theta} + e^{i(-n+3)\theta} + \dots e^{i(n-3)\theta} + e^{i(n-1)\theta} = \frac{e^{in\theta} - e^{-in\theta}}{e^{i\theta} - e^{-i\theta}}$$

This is the Weyl character formula in this case.

Now consider the similar case of G = SO(3). Again a Cartan subgroup T is $\begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \end{pmatrix}$

the circle, for example take $\begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$ The irreducible representa-

tions of G are odd dimensional; the character of the n-dimensional irreducible representation for (n = 1, 3, 5...) is:

$$(3.1.1)(a) \quad e^{i(\frac{-n+1}{2})\theta} + e^{i(\frac{-n+3}{2})\theta} + \dots e^{i(\frac{n-3}{2})\theta} + e^{i(\frac{n-1}{2})\theta} = \frac{e^{in\theta/2} - e^{-in\theta/2}}{e^{i\theta/2} - e^{-i\theta/2}}$$

The numerator and denominator of the quotient are not well defined functions on T, because of the 2s in the denominator. The quotient is well defined; after multiplying by $\frac{e^{i\theta/2}}{e^{i\theta/2}}$ it can be written

(3.1.1)(b)
$$\frac{e^{i(\frac{n+1}{2})\theta} - e^{i(\frac{-n+1}{2})\theta}}{1 - e^{-i\theta}}$$

Since n is odd both numerator and denominator are well defined. However (a) is clearly a more symmetric, and therefore preferable, expression.

For a general conneced compact group the Weyl denominator is

$$\prod_{\alpha>0} (e^{-\alpha/2} - e^{-\alpha/2}) = \prod_{\alpha>0} (1 - e^{-\alpha})e^{\mu}$$

Here $\rho = \frac{1}{2} \sum_{\alpha>0} \alpha$ as usual. The first expression isn't really well defined; it is shorthand for the second. The second expression is well defined if ρ exponentiates to a character of T. This holds for SL(2), but not PSL(2).

The conclusion is it is very useful to introduce a two-fold cover of the torus on which ρ is well defined. These play an important role in the Langlands classification. If ρ exponentiates this cover can be ignored, and it is reasonable to focus on this case first time around.

3.2 Covers of tori

Now fix an element $\gamma \in \frac{1}{2}X^*$. Let

(3.2.1)
$$H_{\gamma} = \{(h, z) \in H \times \mathbb{C}^* | 2\gamma(h) = z^2\}$$

This is a two-fold cover of H via the map $(h, z) \to h$; write ζ for the nontrivial element in the kernel of this map. We call this the γ -cover of H. Note that $(h, z) \to z$ is a character of H_{γ} , and is a canonical square root of 2γ , denoted γ .

Exercise 3.2.2 Prove this cover splits, i.e. $H_{\gamma} \simeq H \times \mathbb{Z}/2\mathbb{Z}$ if and only if $\gamma \in X^*$.

Now assume H is defined over \mathbb{R} , with Cartan involution θ . The γ cover of $H(\mathbb{R})$ is defined to be the inverse image of $H(\mathbb{R})$ in H_{γ} . A character of $H(\mathbb{R})_{\gamma}$ is said to be genuine if it is nontrivial on ζ .

Lemma 3.2.3 The genuine characters of $H(\mathbb{R})_{\gamma}$ are canonically parametrized by the set of pairs (ν, κ) with $\nu \in \mathfrak{h}^*$, $\kappa \in \gamma + X^*/(1-\theta)X^*$, and satisfying $(1+\theta)\nu = (1+\theta)\kappa$.

Exercise 3.2.4 Prove the Lemma.

Example 3.2.5 Suppose *H* is a Cartan subgroup of a reductive group *G*. Choose a set of positive roots Δ^+ and let $\rho = \frac{1}{2} \sum_{\Delta^+} \alpha$, and consider the cover

 H_{ρ} of H. This is independent of the choice of Δ^+ up to *canonical* isomorphism (prove this!).

Suppose $G = SL(2,\mathbb{R})$. For any real Cartan subgroup $H(\mathbb{R})_{\rho} \simeq H(\mathbb{R}) \times \mathbb{Z}/2\mathbb{Z}$.

Let $G = PSL(2, \mathbb{R}) \simeq SO(2, 1)$ (this group is disconnected). If $H(\mathbb{R}) \simeq S^1$. then $H(\mathbb{R})_{\rho} \simeq S^1$, with projection map $z \to z^2$.

If $H(\mathbb{R}) \simeq \mathbb{R}^*$ then $H(\mathbb{R})_{\rho} \simeq \mathbb{R}^* \cup i\mathbb{R}^*$. Note this has an element of order 4. Although H_{ρ} is a real algebraic group, $H(\mathbb{R})_{\rho}$ is not its real points; $H_{\rho}(\mathbb{R}) \simeq \mathbb{R}^*$ is a subgroup of index 2 in $H(\mathbb{R})_{\rho}$.

Exercise 3.2.6 Think through the final example .

4 Cartan subgroups

If G is compact or complex, its Cartan subgroups are unique up to conjugacy. In a real Lie group there are a finite number of conjugacy classes of Cartan subgroups, and these play an important role in representation theory.

If $G = SL(2, \mathbb{R})$ there are two Cartan subgroups, up to conjugacy. The diagonal $\{\operatorname{diag}(x, \frac{1}{x})\} \simeq \mathbb{R}^*$, and the circle $SO(2) \simeq S^1$.

Exercise 4.1 Show that every semisimple element of $GL(2, \mathbb{R})$ is conjugate to either diag(x, y) or $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Conclude that $GL(2, \mathbb{R})$ has two Cartan subgroups (up to conjugacy), one \mathbb{R}^{*2} and \mathbb{C}^* .

Exercise 4.2 Find representatives of all conjugacy classes of Cartan subgroups in $GL(n, \mathbb{R})$ and $SL(n, \mathbb{R})$.

References

- Jeffrey Adams and David A. Vogan Jr., L-groups, projective representations, and the Langlands classification, Amer. J. Math. 114 (1992), no. 1, 45–138. MR1147719 (93c:22021)
- [2] Armand Borel, *Linear algebraic groups*, Second, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR1102012 (92d:20001)
- [3] James E. Humphreys, *Linear algebraic groups*, Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21. MR0396773 (53 #633)
- [4] Tonny A. Springer, *Linear algebraic groups*, Second, Progress in Mathematics, vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998. MR1642713 (99h:20075)
- [5] David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser Boston, Mass., 1981. MR632407 (83c:22022)