Cells for representations of real groups

or

Carrying coals to Newcastle

Carrying coals to Newcastle:

a) to take something to a place where its kind exists in great quantity.
b) to do something wholly unnecessary.

Jeffrey Adams
MIT
February 28, 2018
Atlas Project

Jeffrey Adams
Dan Barbasch
Birne Binegar
Fokko du Cloux
Marc van Leeuwen
Annegret Paul
Susana Salamanca
Siddhartha Sahi
John Stembridge
Peter Trapa
David Vogan
Unipotent Representations

G: connected reductive group defined over a local field F of characteristic 0

For simplicity: assume $G(F)$ is (inner to) a split group

G^\vee: complex dual group of G

O^\vee: unipotent orbit in G^\vee

Conjecture (Arthur): Associated to O^\vee is a finite set $\Pi(O^\vee)$ of irreducible unitary representations of $G(F)$ satisfying certain conditions, including stability...

We call $\Pi(O^\vee)$ a **Weak unipotent Arthur packet**

(Later: honest unipotent Arthur packets)
Arthur did not define $\Pi(\mathcal{O}^\vee)$, and there is no definition in general (that I am aware of). Even if one can give conditions to determine $\Pi(\mathcal{O}^\vee)$ uniquely, computing it might be difficult.

$F = \mathbb{R}$ or \mathbb{C}: Barbasch and Vogan gave a definition of $\Pi(\mathcal{O}^\vee)$. Computing $\Pi(\mathcal{O}^\vee)$ is another matter.

Today: Defining and computing $\Pi(\mathcal{O}^\vee)$ for real groups
Representations with fixed infinitesimal character

\(\pi \): irreducible representation of \(G(\mathbb{R}) \), (a \((g,K)\)-module),

\(\chi_\pi \)=infinitesimal character

Fix an infinitesimal character \(\chi \) for \(G \), that of a finite dimensional representation of \(G \)

\(\mathcal{M}_\chi \): Grothendieck group of representations with infinitesimal character \(\chi \)

\[\mathcal{M}_\chi = \mathbb{Z}\langle \{ J(\gamma) \mid \gamma \in \mathcal{P}_\chi, J(\gamma) \text{ irreducible, } \chi_{J(\gamma)} = \chi \} \rangle \]

where \(\gamma \in \mathcal{P}(\mathcal{M}_\chi) = \) a (finite) set of parameters.

Each \(J(\gamma) \) is the unique irreducible quotient of a standard module \(I(\gamma) \) (\(I \) is for “induced”)

Fact:

\[\mathcal{M}_\chi = \mathbb{Z}\langle \{ I(\gamma) \mid \gamma \in \mathcal{P}(\mathcal{M}_\chi) \} \rangle \]
Example: $\text{SL}(2,\mathbb{R})$

Fix infinitesimal character χ of the trivial representation

There are 4 irreducible representations: \mathbb{C}, DS_+, DS_- and PS_-. These are the trivial representation, two discrete series (one holomorphic, one anti-holomorphic) and PS_- is the irreducible, non-spherical principal series.

$$\mathcal{M}_\chi = \mathbb{Z}\langle \mathbb{C}, DS_+, DS_-, PS_- \rangle$$

Let PS_+ be the reducible principal series:

$$PS_+ = \mathbb{C} + DS_+ + DS_-$$

(in the Grothendieck group).

Standard modules:

$$\mathcal{M}_\chi = \mathbb{Z}\langle PS_+, DS_+, DS_-, PS_- \rangle$$

$$\mathbb{C} = PS_+ - DS_+ - DS_-$$
Kazhdan-Lusztig-Vogan polynomials

Change of basis matrix: Kazhdan-Lusztig-Vogan polynomials evaluated at $q = 1$ (up to some elementary signs)

$SL(2, \mathbb{R})$:

\[
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Special case: ordinary Kazhdan-Lusztig modules for category O (Verma modules)
Coherent Continuation

Definition (Zuckerman): There is a natural representation of W on M_χ (the coherent continuation representation).

Theorem: (Lusztig/Vogan) $(M_\chi, \mathcal{P}(M_\chi))$ has a natural structure of W-graph in the sense of [Kazhdan-Lusztig, 1979]).

As representations of W:

$$M_\chi = B_1 \oplus \cdots \oplus B_n$$

$(B_i$ is a block: \sim generated by $\text{Ext}(X, Y) \neq 0$)

Each block has the structure of a W-graph.

$SL(2, \mathbb{R})$:

$$
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$
Definition: Given a block B, a Harish-Chandra cell is a cell for the W-graph of B (as in [KL,1979])

A cell C carries a representation of W on

$$\mathbb{Z}\langle \{J(\gamma) \mid \gamma \in C\}\rangle$$

Empirical fact (McGovern, Binegar): If $G(\mathbb{R})$ is a real form of $GL(n, \mathbb{C})$, $SO(n, \mathbb{C})$, $Sp(2n, \mathbb{C})$ or a simple exceptional group, then every Harish-Chandra cell is isomorphic to a left cell.
Theorem:
1) There is an integer $d(C)$ such that

\[\text{Hom}_W(\pi_C, \text{Sym}^k(\text{ref})) = \begin{cases}
0 & k < d(C) \\
1 & k = d(C)
\end{cases} \]

2) The cell contains a unique special representation σ_C, which also occurs in $\text{Sym}^{d(C)}(\text{ref})$.
Vogan Duality

\[G = G(\mathbb{C}), \ G(\mathbb{R}), \ \chi, \ M_\chi \supset B \]

Theorem (Vogan)
There exists a real form \(G^\vee(\mathbb{R}) \) of \(G^\vee(\mathbb{C}) \), a block \(B^\vee \), and a bijection

\[\mathcal{P}(B) \ni \gamma \rightarrow \gamma^\vee \in \mathcal{P}(B^\vee) \]

with the following property: Define a perfect pairing \(B \times B^\vee \) by:

\[\langle J(\gamma), J(\tau^\vee) \rangle = \delta_{\gamma, \tau} \]

Then:

\[\langle I(\gamma), I(\tau^\vee) \rangle = \delta_{\gamma, \tau} \]

Equivalently: the matrices of KLV polynomials for \(G(\mathbb{R}) \) and \(G^\vee(\mathbb{R}) \) are inverses.
Vogan duality:
(1) reverses inclusion of primitive ideals;
(2) takes small representations to large ones
(3) interchanges discrete series and (minimal) principal series (of a split group)
(4) takes cells to cells
(5) induces $\sigma \rightarrow \sigma^*$ on $\hat{W} \simeq \hat{W}^\vee$

If π is an irreducible representation of $G(\mathbb{R})$ we will write π^\vee for the corresponding irreducible representation of some real form of $G^\vee(\mathbb{C})$.
Infinitesimal character

\(\mathcal{O}^\vee \): nilpotent orbit for \(G^\vee \)

Jacobson-Morozov: \(\mathcal{O}^\vee \mapsto \{ H, E, F \} \)

\[
\mathcal{O}^\vee \mapsto \frac{1}{2} H \in \mathfrak{h}^\vee \simeq \mathfrak{h}^* \mapsto \chi(\mathcal{O}^\vee)
\]

For simplicity: assume \(\mathcal{O}^\vee \) is even (\(\Leftrightarrow \chi(\mathcal{O}^\vee) \) is integral).
Associated Variety

Associated to an irreducible representation π of $G(\mathbb{R})$ is a nilpotent $G(\mathbb{C})$-orbit in \mathfrak{g}.

\[I = \text{gr}(\text{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi)) \]

\[\pi \mapsto \text{gr}(I) \subset \text{gr}(\mathcal{U}(\mathfrak{g})) \cong S(\mathfrak{g}) \mapsto \mathcal{V}((\text{gr}(I)) \subset \mathfrak{g}^* \]

$\mathcal{V}(\text{gr}(I))$ is $G(\mathbb{C})$-invariant and contained in the nilpotent cone.

Fact: (Borho/Brylinski/Joseph) $\mathcal{V}(\pi)$ is the closure of a single nilpotent orbit \mathcal{O}.

Definition (Vogan): $\overline{\mathcal{O}}$ (or simply \mathcal{O}) is the Associated Variety of the annihilator of π:

\[\text{AV}(\text{Ann}(\pi)) = \overline{\mathcal{O}} \]
Definition of \(\Pi(O^\vee) \)

Given \(G = G(\mathbb{C}), G(\mathbb{R}), G^\vee(\mathbb{C}) \)
a nilpotent orbit \(O^\vee \) of \(G^\vee(\mathbb{C}) \).

Assume \(\delta^\vee(O^\vee) = O^\vee \) where \(\delta^\vee \) is the involution defining the L-group \(^LG \). This is automatic if \(G(\mathbb{R}) \) is (inner to) a split group.

Definition: \(\Pi(O^\vee) \) is the set of irreducible representations \(\pi \) of \(G(\mathbb{R}) \) satisfying:

1. \(\chi_\pi = \chi(O^\vee) \)
2. \(\text{AV}(\text{Ann}(\pi^\vee)) = \overline{O^\vee} \)
Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

0) Compute the conjugacy classes of $\mathcal{W} = \mathcal{W}(G(\mathbb{C}))$.

1) Explicitly compute \mathcal{M}_ρ, $\mathcal{P}(\mathcal{M}_\rho)$

2) Compute the blocks in \mathcal{M}_ρ, and for each block \mathcal{B} the dual block \mathcal{B}^\vee

3) Run over the blocks \mathcal{B}^\vee. Compute the KLV polynomials for each \mathcal{B}^\vee.

4) Compute the cells $\mathcal{C}_1^\vee, \ldots, \mathcal{C}_n^\vee$ in \mathcal{B}^\vee

5) For each cell \mathcal{C}^\vee compute the representation $\pi_{\mathcal{C}^\vee}$ of \mathcal{W}^\vee on \mathcal{C}^\vee, and its character $\theta_{\mathcal{C}^\vee} = \text{trace}(\pi_{\mathcal{C}^\vee})$

6) Compute $d = \min\{k \in \mathbb{Z} \mid \langle \theta_{\mathcal{C}^\vee}, \theta_{S^k(\text{ref})} \rangle \neq 0\}$
7) Let $P_{C^\vee} = \sum_{w \in W} \theta_{Sd}(\text{ref})(w)\pi_{C^\vee}(w) \in \text{End}(C^\vee)$ (this is a projection, up to scalar)

8) Compute the representation σ_{C^\vee} of W on the image of P_{C^\vee}: this is the special representation in the cell C^\vee.

Fix a complex even nilpotent orbit O^\vee

9) Check if the nilpotent orbit attached to σ_{C^\vee} (by the Springer correspondence) is equal to O^\vee. If so: translate (apply a Zuckerman translation functor to) the irreducible representations in C to infinitesimal character $\chi(O^\vee)$

10) $\Pi(O^\vee)$ is the set of (non-zero) irreducible representations obtained this way.
Primitive Ideals

11) The columns of P_C correspond to the irreducible representations in the cell. Two such representations have the same primitive ideal \iff the corresponding columns are multiples of each other.
[Interlude: some examples]
An honest unipotent Arthur packet is attached to a homomorphism

$$\Psi : \mathbb{Z}_2 \times SL(2, \mathbb{C}) \rightarrow^L G$$

(Note: $W_\mathbb{R}/W_\mathbb{R}^0 \simeq \mathbb{Z}_2$

So a weak unipotent Arthur packet is the union (not necessarily disjoint) of honest ones.

Recall $\Pi(O^\vee)$ was defined in terms of $AV(Ann(\pi^\vee))$, the closure of single complex nilpotent orbit.

There is a finer invariant $AV(\pi)$ which is a union nilpotent $K(\mathbb{C})$ orbits on $(\mathfrak{g}/\mathfrak{k})^*$ (in bijection with: nilpotent $G(\mathbb{R})$-orbits on \mathfrak{g}_0). These “honest” Arthur packets are defined in [Adams/Barbasch/Vogan, 1992].
Another Algorithm: Vogan has given an outline of an explicit algorithm to compute the K-equivariant K-theory of the nilpotent cone. Assuming this can be made precise:

a) This will prove a version of the Lusztig-Vogan conjecture for real groups (complex case: Lusztig/Bezrukavnikov)

b) This gives an effective algorithm to compute $AV(\pi)$, and therefore honest unipotent Arthur packets.