

Cells for representations of real groups or Carrying coals to Newcastle

Carrying coals to Newcastle:

a) to take something to a place where its kind exists in great quantity.

b) to do something wholly unnecessary.

Jeffrey Adams MIT February 28, 2018

Atlas Project

Jeffrey Adams Dan Barbasch **Birne Binegar** Fokko du Cloux Marc van Leeuwen Annegret Paul Susana Salamanca Siddhartha Sahi John Stembridge Peter Trapa David Vogan

 $G\colon$ connected reductive group defined over a local field ${\sf F}$ of characteristic 0

For simplicity: assume G(F) is (inner to) a split group

- G^{\vee} : complex dual group of G
- $\mathcal{O}^{\vee}:$ unipotent orbit in ${\mathcal{G}}^{\vee}$

Conjecture (Arthur): Associated to \mathcal{O}^{\vee} is a finite set $\Pi(\mathcal{O}^{\vee})$ of irreducible unitary representations of G(F) satisfying certain conditions, including stability...

We call $\Pi(\mathcal{O}^{\vee})$ a Weak unipotent Arthur packet

(Later: honest unipotent Arthur packets)

Arthur did not define $\Pi(\mathcal{O}^{\vee})$, and there is no definition in general (that I am aware of). Even if one can give conditions to determine $\Pi(\mathcal{O}^{\vee})$ uniquely, computing it might be difficult.

 $F = \mathbb{R}$ or \mathbb{C} : Barbasch and Vogan gave a definition of $\Pi(\mathcal{O}^{\vee})$. Computing $\Pi(\mathcal{O}^{\vee})$ is another matter.

Today: Defining and computing $\Pi(\mathcal{O}^{\vee})$ for real groups

Representations with fixed infinitesimal character

 π : irreducible representation of $G(\mathbb{R})$, (a (\mathfrak{g}, K)-module), χ_{π} =infinitesimal character

Fix an infinitesimal character χ for ${\it G},$ that of a finite dimensional representation of ${\it G}$

 $\mathcal{M}_{\chi}:$ Grothendieck group of representations with infinitesimal character χ

$$\mathcal{M}_{\chi} = \mathbb{Z} \langle \{ J(\gamma) \mid \gamma \in \mathcal{P}_{\chi}, J(\gamma) \text{ irreducible}, \chi_{J(\gamma)} = \chi \} \rangle$$

where $\gamma \in \mathcal{P}(\mathcal{M}_{\chi}) = a$ (finite) set of parameters.

Each $J(\gamma)$ is the unique irreducible quotient of a standard module $I(\gamma)$ (*I* is for "induced")

Fact:

$$\mathcal{M}_{\chi} = \mathbb{Z} \langle \{ I(\gamma) \mid \gamma \in \mathcal{P}(\mathcal{M}_{\chi}) \} \rangle$$

Example: $SL(2, \mathbb{R})$

Fix infinitesimal character χ of the trivial representation

There are 4 irreducible representations: \mathbb{C} , DS_+ , DS_- and PS_- . These are the trivial representation, two discrete series (one holomorphic, one anti-holomorphic) and PS_- is the irreducible, non-spherical principal series.

 $\mathcal{M}_{\chi} = \mathbb{Z} \langle \mathbb{C}, \textit{DS}_{+}, \textit{DS}_{-}, \textit{PS}_{-} \rangle$

Let PS_+ be the reducible principal series:

$$PS_+ = \mathbb{C} + DS_+ + DS_-$$

(in the Grothendieck group).

Standard modules:

$$\mathcal{M}_{\chi} = \mathbb{Z} \langle PS_+, DS_+, DS_-, PS_- \rangle$$

$$\mathbb{C} = PS_+ - DS_+ - DS_-$$

Change of basis matrix: Kazhdan-Lusztig-Vogan polynomials evaluated at q = 1 (up to some elementary signs) SL(2, \mathbb{R}):

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Special case: ordinary Kazhdan-Lusztig modules for category *O* (Verma modules)

COHERENT CONTINUATION

Definition (Zuckerman): There is a natural representation of W on \mathcal{M}_{χ} (the coherent continuation representation)

Theorem: (Lusztig/Vogan) $(\mathcal{M}_{\chi}, \mathcal{P}(\mathcal{M}_{\chi}))$ has a natural structure of W-graph in the sense of [Kazhdan-Lusztig, 1979]).

As representations of W:

$$\mathcal{M}_{\chi} = \mathcal{B}_1 \oplus \cdots \oplus \mathcal{B}_n$$

 $(\mathcal{B}_i \text{ is a block: } \sim \text{generated by } \text{Ext}(X, Y) \neq 0)$ Each block has the structure of a W-graph. $SL(2, \mathbb{R})$:

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Definition: Given a block \mathcal{B} , a Harish-Chandra cell is a cell for the W-graph of \mathcal{B} (as in [KL,1979])

A cell $\mathcal C$ carries a representation of W on

 $\mathbb{Z}\langle\{J(\gamma)\mid\gamma\in\mathcal{C}\}\rangle$

Empirical fact (McGovern, Binegar): If $G(\mathbb{R})$ is a real form of $GL(n, \mathbb{C})$, $SO(n, \mathbb{C})$, $Sp(2n, \mathbb{C})$ or a simple exceptional group, then every Harish-Chandra cell is isomorphic to a left cell.

Theorem:

1) There is an integer $d(\mathcal{C})$ such that

$$\mathsf{Hom}_W(\pi_\mathcal{C},\mathsf{Sym}^k(\mathsf{ref})) = egin{cases} 0 & k < d(\mathcal{C}) \ 1 & k = d(\mathcal{C}) \end{cases}$$

2) The cell contains a unique special representation $\sigma_{\mathcal{C}}$, which also occurs in Sym^{$d(\mathcal{C})$}(ref).

VOGAN DUALITY

 $G = G(\mathbb{C}), \ G(\mathbb{R}), \ \chi, \ M_{\chi} \supset \mathcal{B}$

Theorem (Vogan) There exists a real form $G^{\vee}(\mathbb{R})$ of $G^{\vee}(\mathbb{C})$, a block \mathcal{B}^{\vee} , and a bijection

$$\mathcal{P}(\mathcal{B}) \ni \gamma \to \gamma^{\vee} \in \mathcal{P}(\mathcal{B}^{\vee})$$

with the following property: Define a perfect pairing $\mathcal{B} \times \mathcal{B}^{\vee}$ by:

$$\langle J(\gamma), J(\tau^{\vee}) \rangle = \delta_{\gamma, \tau}$$

Then:

$$\langle I(\gamma), I(\tau^{\vee}) \rangle = \delta_{\gamma, \tau}$$

Equivalently: the matrices of KLV polynomials for $G(\mathbb{R})$ and $G^{\vee}(\mathbb{R})$ are inverses.

Vogan duality:

(1) reverses inclusion of primitive ideals;

(2) takes small representations to large ones

(3) interchanges discrete series and (minimal) principal series (of a split group)

(4) takes cells to cells

(5) induces $\sigma \to \sigma^*$ on $\widehat{W} \simeq \widehat{W^{\vee}}$

If π is an irreducible representation of $G(\mathbb{R})$ we will write π^{\vee} for the corresponding irreducible representation of some real form of $G^{\vee}(\mathbb{C})$.

 \mathcal{O}^{\vee} : nilpotent orbit for G^{\vee} Jacobson-Morozov: $\mathcal{O}^{\vee} \mapsto \{H, E, F\}$

$$\mathcal{O}^{\vee} \mapsto \frac{1}{2} H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* \mapsto \chi(\mathcal{O}^{\vee})$$

For simplicity: assume \mathcal{O}^{\vee} is even ($\Leftrightarrow \chi(\mathcal{O}^{\vee})$ is integral).

Associated Variety

Associated to an irreducible representation π of $G(\mathbb{R})$ is a nilpotent $G(\mathbb{C})$ -orbit in \mathfrak{g} .

 $I = \mathsf{gr}(\mathsf{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi))$

$$\pi\mapsto \operatorname{\mathsf{gr}}(I)\subset\operatorname{\mathsf{gr}}(\mathcal{U}(\mathfrak{g}))\simeq S(\mathfrak{g})\mapsto \mathcal{V}(\operatorname{\mathsf{gr}}(I))\subset \mathfrak{g}^*$$

 $\mathcal{V}(\text{gr}(I))$ is $G(\mathbb{C})$ -invariant and contained in the nilpotent cone. Fact: (Borho/Brylinski/Joseph) $\mathcal{V}(\pi)$ is the closure of a single nilpotent orbit \mathcal{O} .

Definition (Vogan): $\overline{\mathcal{O}}$ (or simply \mathcal{O}) is the Associated Variety of the annihilator of π :

 $AV(Ann(\pi)) = \overline{\mathcal{O}}$

Given $G = G(\mathbb{C}), G(\mathbb{R}), G^{\vee}(\mathbb{C})$

a nilpotent orbit \mathcal{O}^{\vee} of $\mathcal{G}^{\vee}(\mathbb{C})$.

Assume $\delta^{\vee}(\mathcal{O}^{\vee}) = \mathcal{O}^{\vee}$ where δ^{\vee} is the involution defining the L-group ^{*L*}G. This is automatic if $G(\mathbb{R})$ is (inner to) a split group.

Definition: $\Pi(\mathcal{O}^{\vee})$ is the set of irreducible representations π of $G(\mathbb{R})$ satisfying:

(1) $\chi_{\pi} = \chi(\mathcal{O}^{\vee})$ (2) AV(Ann(π^{\vee})) = $\overline{\mathcal{O}^{\vee}}$

Algorithm

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute $\mathcal{M}_{
 ho}$, $\mathcal{P}(\mathcal{M}_{
 ho})$
- 2) Compute the blocks in $\mathcal{M}_\rho,$ and for each block $\mathcal B$ the dual block $\mathcal B^\vee$

3) Run over the blocks \mathcal{B}^{\vee} . Compute the KLV polynomials for each \mathcal{B}^{\vee} .

4) Compute the cells $\mathcal{C}_1^{\vee}, \ldots, \mathcal{C}_n^{\vee}$ in \mathcal{B}^{\vee}

5) For each cell \mathcal{C}^{\vee} compute the representation $\pi_{\mathcal{C}^{\vee}}$ of W^{\vee} on \mathcal{C}^{\vee} , and its character $\theta_{\mathcal{C}^{\vee}} = \text{trace}(\pi_{\mathcal{C}^{\vee}})$

6) Compute $d = \min\{k \in \mathbb{Z} \mid \langle \theta_{\mathcal{C}^{\vee}}, \theta_{\mathcal{S}^{k}(\text{ref})} \rangle \neq 0\}$

7) Let $P_{\mathcal{C}^{\vee}} = \sum_{w \in W} \theta_{S^d}(\operatorname{ref})(w) \pi_{\mathcal{C}^{\vee}}(w) \in \operatorname{End}(\mathcal{C}^{\vee})$ (this is a projection, up to scalar)

8) Compute the representation $\sigma_{\mathcal{C}^{\vee}}$ of W on the image of $P_{\mathcal{C}^{\vee}}$: this is the special representation in the cell \mathcal{C}^{\vee} .

Fix a complex even nilpotent orbit \mathcal{O}^{\vee}

9) Check if the nilpotent orbit attached to $\sigma_{\mathcal{C}^{\vee}}$ (by the Springer correspondence) is equal to \mathcal{O}^{\vee} . If so: translate (apply a Zuckerman translation functor to) the irreducible representations in \mathcal{C} to infinitesimal character $\chi(\mathcal{O}^{\vee})$

10) $\Pi(\mathcal{O}^{\vee})$ is the set of (non-zero) irreducible representations obtained this way.

Primitive Ideals

11) The columns of $P_{\mathcal{C}^{\vee}}$ correspond to the irreducible representations in the cell. Two such representations have the same primitive ideal \Leftrightarrow the corresponding columns are multiples of each other.

[Interlude: some examples]

CODA: HONEST ARTHUR PACKETS

An honest unipotent Arthur packet is attached to a homomorphism

 $\Psi:\mathbb{Z}_2\times SL(2,\mathbb{C})\to^L G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0 \simeq \mathbb{Z}_2$)

So a weak unipotent Arthur packet is the union (not necessarily disjoint) of honest ones.

Recall $\Pi(\mathcal{O}^{\vee})$ was defined in terms of AV(Ann(π^{\vee})), the closure of single complex nilpotent orbit.

There is a finer invariant AV(π) which is a union nilpotent $K(\mathbb{C})$ orbits on $(\mathfrak{g}/\mathfrak{k})^*$ (in bijection with: nilpotent $G(\mathbb{R})$ -orbits on \mathfrak{g}_0). These "honest" Arthur packets are defined in [Adams/Barbasch/Vogan, 1992]. Another Algorithm: Vogan has given an outline of an explicit algorithm to compute the K-equivariant K-theory of the nilpotent cone. Assuming this can be made precise:

a) This will prove a version of the Lusztig-Vogan conjecture for real groups (complex case: Lusztig/Bezrukavnikov)

b) This gives an effective algorithm to compute AV(π), and therefore honest unipotent Arthur packets.