


Cells for representations of real groups
or

Carrying coals to Newcastle

Carrying coals to Newcastle:

a) to take something to a place where its kind exists in great
quantity.
b) to do something wholly unnecessary.
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Unipotent Representations

G : connected reductive group defined over a local field F of
characteristic 0

For simplicity: assume G (F ) is (inner to) a split group

G∨: complex dual group of G

O∨: unipotent orbit in G∨

Conjecture (Arthur): Associated to O∨ is a finite set Π(O∨) of
irreducible unitary representations of G (F ) satisfying certain
conditions, including stability. . .

We call Π(O∨) a Weak unipotent Arthur packet

(Later: honest unipotent Arthur packets)



Unipotent Arthur packets

Arthur did not define Π(O∨), and there is no definition in general
(that I am aware of). Even if one can give conditions to determine
Π(O∨) uniquely, computing it might be difficult.

F = R or C: Barbasch and Vogan gave a definition of Π(O∨).
Computing Π(O∨) is another matter.

Today: Defining and computing Π(O∨) for real groups



Representations with fixed infinitesimal
character

π: irreducible representation of G (R), (a (g,K )-module),
χπ=infinitesimal character

Fix an infinitesimal character χ for G , that of a finite dimensional
representation of G

Mχ : Grothendieck group of representations with infinitesimal
character χ

Mχ = Z〈{J(γ) | γ ∈ Pχ, J(γ) irreducible, χJ(γ) = χ}〉

where γ ∈ P(Mχ) = a (finite) set of parameters.

Each J(γ) is the unique irreducible quotient of a standard module
I (γ) (I is for “induced”)

Fact:

Mχ = Z〈{I (γ) | γ ∈ P(Mχ)}〉



Example: SL(2,R)

Fix infinitesimal character χ of the trivial representation

There are 4 irreducible representations: C,DS+,DS− and PS−.
These are the trivial representation, two discrete series (one
holomorphic, one anti-holomorphic) and PS− is the irreducible,
non-spherical principal series.

Mχ = Z〈C,DS+,DS−,PS−〉

Let PS+ be the reducible principal series:

PS+ = C + DS+ + DS−

(in the Grothendieck group).

Standard modules:

Mχ = Z〈PS+,DS+,DS−,PS−〉

C = PS+ − DS+ − DS−



Kazhdan-Lusztig-Vogan polynomials

Change of basis matrix: Kazhdan-Lusztig-Vogan polynomials
evaluated at q = 1 (up to some elementary signs)

SL(2,R): 
1 0 1 0
0 1 −1 0
0 0 −1 0

0 0 0 1


Special case: ordinary Kazhdan-Lusztig modules for category O
(Verma modules)



Coherent Continuation
Definition (Zuckerman): There is a natural representation of W on
Mχ (the coherent continuation representation)

Theorem: (Lusztig/Vogan) (Mχ,P(Mχ)) has a natural structure
of W-graph in the sense of [Kazhdan-Lusztig, 1979]).

As representations of W :

Mχ = B1 ⊕ · · · ⊕ Bn

(Bi is a block: ∼ generated by Ext(X ,Y ) 6= 0)

Each block has the structure of a W-graph.

SL(2,R): 
1 0 1 0
0 1 −1 0
0 0 −1 0

0 0 0 1





Cells

Definition: Given a block B, a Harish-Chandra cell is a cell for the
W-graph of B (as in [KL,1979])

A cell C carries a representation of W on

Z〈{J(γ) | γ ∈ C}〉

Empirical fact (McGovern, Binegar): If G (R) is a real form of
GL(n,C),SO(n,C),Sp(2n,C) or a simple exceptional group, then
every Harish-Chandra cell is isomorphic to a left cell.



Special Representations

Theorem:
1) There is an integer d(C) such that

HomW (πC ,Symk(ref)) =

{
0 k < d(C)

1 k = d(C)

2) The cell contains a unique special representation σC , which also
occurs in Symd(C)(ref).



Vogan Duality

G = G (C), G (R), χ, Mχ ⊃ B

Theorem (Vogan)
There exists a real form G∨(R) of G∨(C), a block B∨, and a
bijection

P(B) 3 γ → γ∨ ∈ P(B∨)

with the following property: Define a perfect pairing B × B∨ by:

〈J(γ), J(τ∨)〉 = δγ,τ

Then:
〈I (γ), I (τ∨)〉 = δγ,τ

Equivalently: the matrices of KLV polynomials for G (R) and
G∨(R) are inverses.



Vogan Duality

Vogan duality:
(1) reverses inclusion of primitive ideals;

(2) takes small representations to large ones

(3) interchanges discrete series and (minimal) principal series (of a
split group)

(4) takes cells to cells

(5) induces σ → σ∗ on Ŵ ' Ŵ ∨

If π is an irreducible representation of G (R) we will write π∨ for
the corresponding irreducible representation of some real form of
G∨(C).



Infinitesimal character

O∨: nilpotent orbit for G∨

Jacobson-Morozov: O∨ 7→ {H,E ,F}

O∨ 7→ 1

2
H ∈ h∨ ' h∗ 7→ χ(O∨)

For simplicity: assume O∨ is even (⇔ χ(O∨) is integral).



Associated Variety

Associated to an irreducible representation π of G (R) is a
nilpotent G (C)-orbit in g.

I = gr(AnnU(g)(π))

π 7→ gr(I ) ⊂ gr(U(g)) ' S(g) 7→ V(gr(I )) ⊂g∗

V(gr(I )) is G (C)-invariant and contained in the nilpotent cone.

Fact: (Borho/Brylinski/Joseph) V(π) is the closure of a single
nilpotent orbit O.

Definition (Vogan): O (or simply O) is the Associated Variety of
the annihlator of π:

AV(Ann(π)) = O



Definition of Π(O∨)

Given G = G (C),G (R),G∨(C)

a nilpotent orbit O∨ of G∨(C).

Assume δ∨(O∨) = O∨ where δ∨ is the involution defining the
L-group LG . This is automatic if G (R) is (inner to) a split group.

Definition: Π(O∨) is the set of irreducible representations π of
G (R) satisfying:

(1) χπ = χ(O∨)

(2) AV(Ann(π∨)) = O∨



Algorithm

Fix G (C), G (R). For simplicity assume G (C) is simply connected.

0) Compute the conjugacy classes of W = W (G (C)).

1) Explicitly compute Mρ, P(Mρ)

2) Compute the blocks in Mρ, and for each block B the dual
block B∨

3) Run over the blocks B∨. Compute the KLV polynomials for
each B∨.

4) Compute the cells C∨1 , . . . , C∨n in B∨

5) For each cell C∨ compute the representation πC∨ of W ∨ on C∨,
and its character θC∨ = trace(πC∨)

6) Compute d = min{k ∈ Z | 〈θC∨ , θSk (ref)〉 6= 0}



Algorithm

7) Let PC∨ =
∑

w∈W θSd (ref)(w)πC∨(w)∈ End(C∨) (this is a
projection, up to scalar)

8) Compute the representation σC∨ of W on the image of PC∨ :
this is the special representation in the cell C∨.

Fix a complex even nilpotent orbit O∨

9) Check if the nilpotent orbit attached to σC∨ (by the Springer
correspondence) is equal to O∨. If so: translate (apply a
Zuckerman translation functor to) the irreducible representations in
C to infinitesimal character χ(O∨)

10) Π(O∨) is the set of (non-zero) irreducible representations
obtained this way.



The Algorithm: Primitive Ideals

Primitive Ideals
11) The columns of PC∨ correspond to the irreducible
representations in the cell. Two such representations have the
same primitive ideal ⇔ the corresponding columns are multiples of
each other.



[Interlude: some examples]



Coda: Honest Arthur packets

An honest unipotent Arthur packet is attached to a homomorphism

Ψ : Z2 × SL(2,C)→LG

(Note: WR/W
0
R ' Z2)

So a weak unipotent Arthur packet is the union (not necessarily
disjoint) of honest ones.

Recall Π(O∨) was defined in terms of AV(Ann(π∨)), the closure of
single complex nilpotent orbit.

There is a finer invariant AV(π) which is a union nilpotent K (C)
orbits on (g/k)∗ (in bijection with: nilpotent G (R)-orbits on g0).
These “honest” Arthur packets are defined in
[Adams/Barbasch/Vogan, 1992].



Coda: Honest Arthur packets

Another Algorithm: Vogan has given an outline of an explicit
algorithm to compute the K -equivariant K -theory of the nilpotent
cone. Assuming this can be made precise:

a) This will prove a version of the Lusztig-Vogan conjecture for
real groups (complex case: Lusztig/Bezrukavnikov)

b) This gives an effective algorithm to compute AV(π), and
therefore honest unipotent Arthur packets.


