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Fg is a Lie group
Lie groups are the mathematics of Symmetry

Evariste Galois Sophus Lie
France, 1811-1832 Norway, 1842-1899

Groups Lie groups



An object is symmetric if it looks the same from different
directions.
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SYMMETRY GROUPS or tuE PLATONIC SOLIDS 1800s

Platonic Solid Symmetry group Number of symmetries

(even 4-permutations) 12

I 4 (4-permutations) 24

As (even 5-permutations) 60
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APPLICATIONS OF SYMMETRY

Symmetry plays an important role in many areas of human
endeavor.

Physics (conservation laws, symmetries of space-time. .. )
Crystallography (the 230 crystallographic groups. .. )
Chemistry (atomic orbitals and the periodic table. .. )

Mathematics (geometry, number theory, algebra. .. )

6 &6 6 6 ¢

Architecture, painting, textiles, music. . .
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CONTINUOUS SYMMETRY GROUPS 1890s

Example: Rotations of a sphere

@ axis of rotation
(point on sphere: 2
dimensions of choice)

@ angle of rotation
(0° —360°: 1
dimensional choice)

This is the Rotation Group SO(3), a 3 dimensional Lie group



We also want to understand:
What are all the ways a single Lie group G can appear as the
symmetry group of something?



We also want to understand:
What are all the ways a single Lie group G can appear as the
symmetry group of something? These are called representations
of G.



REPRESENTATIONS

We also want to understand:
What are all the ways a single Lie group GG can appear as the
symmetry group of something? These are called representations
of G.

The periodic table is explained by representations of SO(3)



Here is how one element of As (even permutations of 5
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Here is how one element of As (even permutations of 5
elements) appears in two different representations:

Symmetric Object Symmetry operation
cos(2w/5)  sin(27/5)

—sin(27/5) cos(27/5)
0 0

0
0
1



EXAMPLE: REPRESENTATION OF As

Here is how one element of As (even permutations of 5
elements) appears in two different representations:

Symmetric Object Symmetry operation
cos(2w/5) sin(2w/5) 0

—sin(27/5) cos(27/5) 0
0 0 1

5-dimensional cube

= O O O O
O O OO
O O O+~ O
O O+~ OO
o = O O O



The symmetry group of a cone:




The symmetry group of a cone:

is rotations:

cos(f) sin(d) O
—sin(f) cos(6)
0 0 1




EXAMPLE: REPRESENTATIONS OF THE CIRCLE

The symmetry group of a cone:

-

|
Y
cos(8) sin(6) 0

—sin(f) cos(6)
0 0 1

is rotations:

a representation of the Lie group {e? |0 < 6 < 27} (the circle)
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CLASSIFYING REPRESENTATIONS 1920s

What are all of the representations of G?7
Every representation can be built up out of atomic ones, so we
only need to find the atoms: irreducible representations.

We are particularly interested in unitary representations: the
symmetry operations are all rotations (no stretching allowed).

The Unitary Dual of G is the collection of all of its irreducible
unitary representations.
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UNITARY DUAL 1950s

Problem of the Unitary Dual:
Find all the irreducible unitary representations of G.

This is a major unsolved problem in pure mathematics. Many
people have worked on this for the past 50 years or so, with
only limited success.

This is abstract paper and pencil mathematics: computers have
been of very little use.
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UNITARY DUAL 1980s

Theorem (... Vogan): There is a finite algorithm to find the
unitary dual of G.

Until a few years ago we believed:

@ It is impossible to formulate the algorithm in a usable form

@ Even if we could, it would be impossible to implement it on
a computer

Computer Science and Mathematics have both seen significant

advances recently. . .

Goal of the Atlas of Lie Groups and Representations:
Use computers to help find the Unitary Dual
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COMPUTERS AND PURE MATHEMATICS 1990s

This is a new kind of pure mathematics, arising in the last 10
years:

@ Applying computers to a very abstract mathematical
problem

@ Collaboration between a large number of mathematicians
and computer programmers

@ “Computerizing” a whole branch of mathematics (Lie
groups), not just a single problem (Four color theorem)

@ It requires new mathematics (understanding Lie groups in
new ways)

@ It requires new methods in computer science
(unprecedented problems in algorithms and computation)
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Goals
Tools for education: teaching Lie groups to graduate
students and researchers

Tools for non-specialists who apply Lie groups in other
areas

Tools for studying other problems in Lie groups
Deepen our understanding of the mathematics

Compute the unitary dual

T’ll discuss where we are, with an emphasis on our recent
calulation of Eg.
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Fokko pu CLoux 2002

In 2002 we decided to try attacking the unitary dual by
computer. I knew right away who we needed:

Fokko du Cloux
Université de Lyon
(author of Coxeter software)




Abstract Mathematics
Lie Groups
Representation Theory
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Abstract Mathematics — Algorithm —  Software
Lie Groups Combinatorial Set C++ code
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WHAT FOKKO DID 2003-2005

Abstract Mathematics — Algorithm —  Software
Lie Groups Combinatorial Set C++ code
Representation Theory

The first arrow requires someone with very high level knowledge
of both the mathematics and computers.
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CHARACTER TABLE

The details about the representations of G are contained in its
character table. This is a matrix with one row and one column
for each irreducible representation.

Character table of Asg

1 1 1 1 1
3 -1 0 + T
3 -1 0 7T 7
4 0 1 -1 -1

7 = Golden Ratio 1+v5
1-+/5
2

T =



The character table of G is like the genome of a cell.
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THE “GENOME” OF A LIE GROUP

The character table of G is like the genome of a cell.

The genome of a cell encodes all of the information the cell

needs to operate.
...CTGTACATGACGTAGCGAGCTAC ...

The character table of G encodes all of the information about G
and its representations.

Just like for the genome, it can be very hard to extract this
information: difficult problems in data mining
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Here are some Lie groups
(1) Symmetry group of n-dimensional sphere

ot =1

(The rotation groups SO(n+ 1), n=1,2,3,...)

These are labelled:
Bl, BQ, B3, e ,(H Odd)
D1, Dy, D3, ...(n even)

(2) Invertible linear transformations in dimension n (GL(n)):
A17 A27 A37 s

(3) The symplectic group Sp(2n) (arising in quantum
mechanics):
Cla 027 037 v
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Dy,D5, D3, ...

(well known to Sophus Lie)



CrassicaL, GROUPS 1890s

These are the Classical Groups:
A17 A27 A37 s
B17 B2)B37 s
C1,C5,C5, . ..
Dl)D27D3)' ..
(well known to Sophus Lie)

Surprise (Wilhelm Killing, 1896):
There are exactly 5 more Lie groups:



CrAssicAL GROUPS

1890s

These are the Classical Groups:

A17A27A37"'

B17B2)B37"'

C1,C2,C5,. ..

Dl)D27D3)"'
(well known to Sophus Lie)

Surprise (Wilhelm Killing, 1896):

There are exactly 5 more Lie groups:

Group Dimension

G> 14
Fy 52
Es 78
E; 133
Eg 248

These are the exceptional groups
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EXCEPTIONAL GROUPS 1896

Some of the most complicated and fascinating objects in
mathematics

FEg is 248-dimensional: it can be described by equations with
2482 = 61,504 variables z1, 2, . .. ,Te1,504- It is the symmetry
group of a 57-dimensional geometric object.

Mathematicians like to think about things like this, and Fjg
arises in surprising ways in mathematics (geometry, lattices and
codes, sphere packing, .. .)

Some physicists think that Eg plays an important role in
mathematical physics and string theory: as a symmetry group
of the laws of the universe
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We set as our goal:
Compute the Character Table of Fg

This is a matrix of polynomials (coefficients are positive whole
numbers), for example

1+ q+37¢" +19¢%% + 10143
These are called Kazhdan-Lusztig-Vogan (KLV) polynomials
The KLV matrix has 453,060 rows and columns
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Fokko du Cloux began writing code to compute the KLV matrix
in late 2004. Amazingly, by November 2005 it was working.

In November 2005 Fokko computed the KLV matrix for all
exceptional groups except Ejg.
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spring.
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In November of 2005, Fokko was diagnosed with Charcot’s
disease. He continued to work on the Fg calculation into the
spring.

Marc van Leeuwen
Université de Poitiers

In June 2006 Marc switched from other atlas tasks to working
on Eg



Fokko pu CLoux MAY 2006

By May of 2006, Fokko
was confined to his bed
in Lyon. With help from
friends and his dedicated
life assistant Ange he con-
tinued to work on the
software, using a video
projector pointed at the
ceiling, operated remotely
by his collaborators.
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Input: graph S with 453,060 vertices (one for each irreducible
representation of Eg)
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Graph for SO(5,5) with 251 vertices

=7
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Closeup of SO(5,5) graph
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Output: Matrix M = M(xz,y) of KLV polynomials, with one
row and column for every x € S

M(z,y) =1+ q+37¢" + 19¢%? + 10143
(degree < 31)
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M(z,z)=1
The matrix is lower triangular: M (x,y) =0 unless z <y

Recursion relations: compute M(x,y) like this:

M(0,0)

M(0,1) «M(L,1)

M(0,2) «M(1,2) «M(2,2)

M(0,3) «M(1,3) «—M(2,3) «M(3,3)

M(0,4) «M(14) «M(24) «—M(34) «—M(4,4)



Compute M (z,y) in terms of the previously computed
M(z',y'):

M(x,y) = Z c(2',y )M (2, )
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Compute M (z,y) in terms of the previously computed
M2, y):

M(x,y) = Z c(2',y )M (2, )

7 ay
Ty

M(0,5) M(1,5) M(2,5)
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Compute M(x,y) in terms of the previously computed
M(z',y"):

M(z,y) = Z C(ajl’ y,)M(xla y/)

Y
I’y

TR W~ o

M(3,3)
M(34) M(44)
M(3,5)] | M(4,5) M(5,5)

Y
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The constants ¢(2’,y’) are very complicated
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Compute M(x,y) in terms of the previously computed
M(z',y"):

M(z,y) = Z C(ajl’ y')M(x’, y/)

Y
I’y

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)

The constants ¢(2’,y’) are very complicated

M(3,3)
M(34) M(44)
M(3,5)] | M(4,5) M(5,5)

) Y

ZEEESS
o cocoooo
ZEEER

)
)
)
)

TR W~ o

Average number of non-zero terms: 150
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Problem: To compute M(x,y) you need to use (potentially)
all of the previously computed M (z/,y)

Keep all M(z',y") in RAM
All accessible from a single processor

NOT parallelizable
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How much RAM do we need?

Big Problem: We don’t know a priori how many non-zero terms
there are. Roughly:

453,0602 = 205, 263,363, 600 (205 billion)
Hope: the coefficients are < 232 ~ 4 billion (4 bytes of storage)
With some luck, and hard work, it looks like we’ll need
1,000 gigabytes of RAM
(your PC has about 1 gigabyte of RAM)
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SAGE AucusT 2006

Dan Barbasch (Cornell) and Birne Binegar (Oklahoma) did
some experiments:

Hope: we can make do with “only” 150 gigabytes

64 gigabytes of RAM/75 GB of swap/16 processors
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We considered our options:

Can we squeeze the computation into 64 or 128 gigabytes of
RAM?

Can we find a machine with that much RAM (all accessible
from one processor)?

Should we buy such a machine, for about $150,0007
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Noam Elkies (Harvard):
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Moral: Always think more before buying a bigger computer
Noam Elkies (Harvard): 1 byte: integer < 256

Calculate coefficients mod 256 (divide all numbers by 256, keep
only the remainder)
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Moral: Always think more before buying a bigger computer
Noam Elkies (Harvard): 1 byte: integer < 256

Calculate coefficients mod 256 (divide all numbers by 256, keep
only the remainder)

4 bytes/number — 1 byte/number — 25% as much RAM

Do calculation 4 times: mod 251, mod 253, mod 255, and mod
256



Combine the answer using the Chinese Remainder Theorem:
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CHINES REMAINDER THEOREM DECEMBER 2006

Combine the answer using the Chinese Remainder Theorem:

Least Common Multiple(251,253,255,256)= 4,145,475,840

mod 251
mod 253
mod 255
mod 256

— mod 4,145,475, 840
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COMPUTING MOD N

DEec. 6 - JAN. 3, 2007

By early December Marc van Leeuwen had converted the code
to run mod n

Date
Dec.
Dec.
Dec.
Dec.
Dec.
Dec.

6

19
22
22
26
27

Jan. 3

mod
251
251
256
256
255
253
253

Status
crash
complete
crash
complete
complete
crash
complete

Result

16 hours

11 hours
12 hours

12 hours



MoD N DATA JANUARY 3, 2007

We now have 132 gigabytes of data
(19 gigabytes data + 14 gigabytes index)x4

-rw-r—--r-- 1 root atlas 19G Jan 9 2007 E8coef-mod251
-rw-r—--r-—- 1 root atlas 19G Jan 8 2007 E8coef-mod253
-rw-r—--r-- 1 root atlas 19G Jan 8 2007 E8coef-mod255
-rw-r—--r-- 1 root atlas 19G Jan 6 2007 E8coef-mod256
-rw-r—--r-- 1 root atlas 14G Jan 8 2007 E8mat-mod251
-rw-r—--r-—- 1 root atlas 14G Jan 6 2007 E8mat-mod253
-rw-r—--r-- 1 root atlas 14G Jan 5 2007 E8mat-mod255
-rw-r—--r-- 1 root atlas 14G Jan 6 2007 E8mat-mod256
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6 AM, Sunday January T7:
Marc van Leeuwen started his Chinese Remainder Theorem
program

25 hours later ...
Monday, January 8 at 9 AM

SAGE printed out the answer:

KLV Matrix M(x,y) of size 453,060x453,060
60 gigabytes of data
(60 times the size of the human genome)

Printed out in standard type, this data would cover Manhattan

(Avec une impression normale, ces données couvriraient Lyon)
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Number of distinct polynomials: 1,181,642,979 (1 billion)
Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:

152¢% + 3,472¢%1 + 38,791¢%° + 293,021¢'° + 1,370, 892¢'8 +
4,067,059¢'7 + 7,964,012¢'% + 11,159, 003¢"® +

11,808, 808¢* + 9,859,915¢'3 + 6,778,9564'2 + 3,964, 369¢* +
2,015,441¢° 4 906,567¢° + 363,611¢% + 129, 820¢" +

41,239¢% + 11,426¢° + 2,677¢* + 492¢3 + 61¢° + 3¢



SOME STATISTICS

Number of distinct polynomials: 1,181,642,979 (1 billion)
Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:

152¢% + 3,472¢%1 + 38,791¢%° + 293,021¢'° + 1,370, 892¢'8 +
4,067,059¢'7 + 7,964,012¢'% + 11,159, 003¢"® +

11,808, 808¢* + 9,859,915¢'3 + 6,778,9564'2 + 3,964, 369¢* +
2,015,441¢° 4 906,567¢° + 363,611¢% + 129, 820¢" +

41,239¢% + 11,426¢° + 2,677¢* + 492¢3 + 61¢° + 3¢

Value of this polynomial at q=1: 60,779,787
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WHERE DO WE GO FROM HERE?

The Ejg calculation is just the beginning of the story. ..
We now want to use this data to answer some questions, for any
Lie group G:
©@ What are the Unipotent Representations of G7
© Are they unitary? (Arthur’s conjecture)
© What is the unitary dual of G (all unitary representations)?
© Can we apply what we’ve learned to other related fields
(e.g. p-adic groups)?
© What does this tell us about number theory and
automorphic forms?
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