THE REAL CHEVALLEY INVOLUTION AMERICAN UNIVERSITY JUNE 20, 2012

Jeffrey Adams

www.liegroups.org/talks arXiv 1203:1901

THE CHEVALLEY INVOLUTION

G: connected, reductive, $H: \operatorname{Cartan}$ subgroup

Theorem

(1) There is an involution C of G satisfying: $C(h) = h^{-1}$ $(h \in H)$;

(2) $C(g) \sim g^{-1}$ for all semisimple elements g;

(3) Any two such involutions are conjugate by an inner automorphism;

C is the Chevalley involution of G

Example: $G = GL(n), SL(n) :, C(g) = {}^tg^{-1}$ (outer)

Example: C is inner $\Leftrightarrow -1 \in W$

C is the Cartan involution of the split real form of $G(\mathbb{C})$.

$$(\pi, V)$$

$$V^* = \operatorname{Hom}(V, \mathbb{C})$$

$$\pi^*(g)(f)(v) = f(g^{-1}v)$$
Character: $\theta_{\pi^*}(g) = \theta_{\pi}(g^{-1})$

On the Dual Side

G defined over F (local)

 $\phi: W'_F \to {}^L\!G \twoheadrightarrow \Pi(\phi) \text{ (L-packet)}$

What is the effect of $\phi \to C \circ \phi$?

 $\pi^*, \Pi(\phi)^*$: contragredient

<u>Theo</u>rem (A/VOGAN)

 $F = \mathbb{R}$:

$$\Pi(C\circ\phi)=\Pi(\phi)^*$$

(Mumbai 2012, arXiv 1201.0496)

(Conjecturally true over arbitrary F).

COROLLARY

Every L-packet is self-dual if and only if $-1 \in W(G, H)$

 $(W(G,H) = W(G(\mathbb{C}),H(\mathbb{C})))$

What is the effect of the Chevalley automorphism on the group side?

QUESTION

(1) Is C defined over F?

(2) Does it satisfy
$$\pi^C \simeq \pi^*$$
?

Character:

(2')
$$C(g) \sim_{G(F)} g^{-1}$$
 for all $g \in G(F)$?
Note: (1) $\Rightarrow C(g) \sim_{G(\overline{F})} g^{-1}$

- General question: automorphisms of G, (e.g. outer involutions), effect on representations, also on the dual side
- Character theory, relation with automorphisms
- Frobenius-Schur (symplectic/orthogonal) indicator
- Applications to L-functions (contragredient)
- recent paper of D. Prasad and Ramakrishnan
- Hermitian dual, (closely related to an automorphism on the space of representations), applications to unitarity

EXAMPLE (D. PRASAD)

 $G = F_4, G_2, E_8, F$ p-adic, G(F) split

There are Chevalley involutions C of G, defined over F

None of them satisfy: $C(g) \sim_{G(F)} g^{-1}$ (only $C(g) \sim_{G(\overline{F})} g^{-1}$)

(since every automorphism of G(F) is inner, and G(F) has non-self dual representations)

EXAMPLE

 $G = SL(2, \mathbb{R})$

$$\tau(g) = xgx^{-1} \quad \left(x = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right)$$

 $\tau(g) \sim g^{-1} \ (g \in \text{split Cartan subgroup})$ But $\tau(g) \neq g^{-1} \quad (g \in \text{compact Cartan})$ Better:

$$\tau(g) = ygy^{-1} \quad (y = \begin{pmatrix} i \\ & -i \end{pmatrix})$$

Then:

 $C(g) = ygy^{-1}, C(g) \sim g^{-1}$ for all g

Moral: Focus on the fundamental (most compact) Cartan subgroup

G defined over $\mathbb{R},\,\theta$ = Cartan involution

H is fundamental if the split rank of $H_f(\mathbb{R})$ is minimal

Example: $H_f(\mathbb{R})$ is compact

DEFINITION

A Chevalley involution is fundamental if $C(g) = g^{-1}$ for all g in some fundamental Cartan subgroup of G.

Theorem

- (1) There is a fundamental Chevalley involution C of G;
- (2) C is defined over \mathbb{R} , $C: G(\mathbb{R}) \to G(\mathbb{R})$;
- (3) $C(g) \sim_{G(\mathbb{R})} g^{-1}$ ($g \in G(\mathbb{R})$ semisimple)

(4) Any two fundamental Chevalley involutions are conjugate by an inner automorphism of $G(\mathbb{R})$.

Existence of C:

Pinning: $\mathcal{P} = (B, H, \{X_{\alpha}\})$

Line everything up with respect to \mathcal{P}

 $C(X_{\alpha}) = X_{-\alpha}, \quad \sigma_c(X_{\alpha}) = -X_{-\alpha} \ (G^{\sigma_c} \ \text{compact})$

 δ : distinguished automorphism (preserving \mathcal{P}), $x \in H^{\delta}$

 $\theta(X_{\alpha}) = \alpha(x)X_{\delta(\alpha)}$ $\sigma = \theta\sigma_{c}, \quad G(\mathbb{R}) = G^{\sigma}$

$$\theta \sigma = \sigma \theta$$

PROPOSITION (LUSZTIG)

F algebraically closed \Rightarrow

$$C(g) \sim_G g^{-1} \text{ for all } g$$

LEMMA

 $C = fundamental \ Chevalley \ involution$

$$C(g) \sim_{G(\mathbb{R})} g^{-1}$$
 for all g

(Essentially the same proof as Lusztig; thanks to Binyong Sun)

Since $C(g) \sim_{G(\mathbb{R})} g^{-1}$ (g semisimple):

COROLLARY

$$\pi \ irreducible \ \Rightarrow \pi^C \simeq \pi^*$$

COROLLARY

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if C is inner for $G(\mathbb{R})$

Necessary but not sufficient: $-1 \in W(G, H)$

$H_f(\mathbb{R})$ fundamental $W(G(\mathbb{R}), H_f(\mathbb{R})) = \operatorname{Norm}_{G(\mathbb{R})}(H_f(\mathbb{R}))/H_f(\mathbb{R}) \hookrightarrow W(G, H_f)$

PROPOSITION

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if

 $-1 \in W(G(\mathbb{R}), H_f(\mathbb{R}))$

(easy consequence of the Theorem)

 $G, G(\mathbb{R}) = G\sigma, K = G^{\theta} (K \text{ is complex})$ $H_K = H \cap K \subset H: \text{ Cartan subgroup of } K$ Equal rank case: $H_K = H$ $W(K, H) \simeq W(G(\mathbb{R}), H(\mathbb{R}))$

COROLLARY

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if

 $-1 \in W(K, H)$

Dangerous Bend In the unequal rank case

 $W(K,H) \simeq W(K,H_K)$

right hand side: Weyl group of a (disconnected) reductive group but -1 has different meaning on the two sides $x \in Norm_K(H) = Norm_K(H_K)$,

$$xhx^{-1} = h^{-1}$$
 $(h \in H_K) \neq xhx^{-1} = h^{-1}$ $(h \in H)$

PROPOSITION

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if every irreducible representation of K is self-dual, and, in the unequal rank case, $-1 \in W(G, H)$

(equal rank case: $-1 \in W(K, H_K) \Rightarrow -1 \in W(G, H)$)

PROPOSITION

 $G(\mathbb{R})$ is simple: every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if $-1 \in W(G, H)$ and, in the equal rank case, $G(\mathbb{R})$ is a pure real form.

pure: $\theta = int(x), x^2 = 1$

 $(-1 \in W(G, H) \Rightarrow Z(G) =$ two-group \Rightarrow purity independent of the choice of x) "Purity Of Essence"

Key point: $g \in Norm_G(H)$ representative of $-1 \in W(G, H)$:

$$-1 \in W(K,H) \Leftrightarrow xgx^{-1} = g \Leftrightarrow x^2g = g \Leftrightarrow x^2 = 1$$

COROLLARY

 $G \text{ adjoint, } -1 \in W(G, H) \Rightarrow$

every irreducible representation of $G(\mathbb{R})$ is self-dual

- (1) A_n : SO(2,1), SU(2) and SO(3).
- (2) B_n : Every real form of the adjoint group, Spin(2p, 2q+1) (p even).
- (3) C_n : Every real form of the adjoint group, Sp(p,q).
- (4) D_{2n+1} : none.
- (5) D_{2n} , unequal rank: all real forms
- (6) D_{2n} , equal rank (various cases...)
- (7) E_6 : none.
- (8) E_7 : Every real form of the adjoint group, simply connected compact.
- (9) G_2, F_4, E_8 : every real form.
- (10) complex groups of type $A_1, B_n, C_n, D_{2n}, G_2, F_4, E_7, E_8$

FROBENIUS-SCHUR INDICATOR

Suppose $\pi \simeq \pi^*$ $T: \pi \simeq \pi^* \rightarrow \langle v, w \rangle = (Tv)(w)$

 \langle,\rangle bilinear, symmetric or antisymmetric:

$$\langle v, w \rangle = \epsilon_{\pi} \langle w, v \rangle \quad (\epsilon_{\pi} = \pm 1)$$

 ϵ_{π} = Frobenius-Schur indicator

Problem

How do you compute ϵ_{π} ?

(interesting invariant of self-dual representations)

FROBENIUS-SCHUR INDICATOR: FINITE DIMENSIONAL REPRESENTATIONS

 $G(\mathbb{R}), \pi \simeq \pi^*$ finite dimensional,

 $\chi_{\pi}: {\rm central} \ {\rm character}$

$$z(\rho^{\vee}) = \exp(2\pi i \rho^{\vee}) \in Z(G)$$

(fixed by all automorphisms)

PROPOSITION (BOURBAKI)

$$\epsilon_{\pi} = \chi_{\pi}(z(\rho^{\vee}))$$

FROBENIUS-SCHUR INDICATOR: FINITE DIMENSIONAL REPRESENTATIONS

Key ingredient of proof:

 $w_0 \in W = W(G, H)(\text{ long element})) \rightarrow g \in \text{Norm}_H(G) \pmod{w_0}$ $\rightarrow g^2 \in H$

Lemma

We can choose g so that

$$g^2 = z(\rho^{\vee}),$$

If $-1 \in W$, g^2 is independent of all choices.

(proof: uses the Tits group)

Remark: Same fact (dual side): discrete series are parametrized by $X^*(H) + \rho$

FROBENIUS-SCHUR INDICATOR: FINITE DIMENSIONAL REPRESENTATIONS

proof of Proposition:

$$\chi_{\pi}(g^{2})\langle v, \pi(g)v \rangle = \langle \pi(g^{2})v, \pi(g)v \rangle$$
$$= \langle \pi(g)v, v \rangle$$
$$= \epsilon(\pi)\langle v, \pi(g)v \rangle$$

i.e.

$$\chi_{\pi}(g^2)\langle v, \pi(g)v\rangle = \epsilon(\pi)\langle v, \pi(g)v\rangle$$

Take $v \in V_{\lambda}$ (highest weight space), $\pi(g)v \in V_{-\lambda}$, $\langle v, \pi(g)v \rangle \neq 0$ (also see [Prasad, IMRN 1999]) Suppose every irreducible π (infinite dimensional) is self-dual μ : lowest K-type, multiplicity one, self-dual (by previous lemma)

 $\epsilon_{\pi} = \epsilon_{\mu}$

Example: Assume K is connected

Take π finite dimensional

(1) $\epsilon_{\pi} = \chi_{\pi}(z(\rho_G^{\vee}))$ (result applied to G) (2) $\epsilon_{\pi} = \epsilon_{\mu} = \chi_{\mu}(z(\rho_K^{\vee}))$ (result applied to K)

How can this be?

FROBENIUS-SCHUR INDICATOR

- $(K \text{ connected}, -1 \in W(K, H))$
- λ =highest weight

$$\Rightarrow \lambda(z(\rho_G^{\vee})) = \lambda(z(\rho_K^{\vee})) \quad (\lambda \in X^*(H))$$

$$\Rightarrow z(\rho_G^{\vee}) = z(\rho_K^{\vee})$$

Surprise:

LEMMA

Assume $-1 \in W(K, H)$. Then

 $z(\rho_G^\vee) = z(\rho_K^\vee)$

$$-1 \in W(K, H) \Rightarrow z(\rho_G^{\vee}) = z(\rho_K^{\vee}):$$

Example:
$$G = SL(2)/PGL(2)$$

 $G(\mathbb{R}) = SL(2,\mathbb{R})/PGL(2,\mathbb{R}) : z(\rho_G^{\vee}) = -I$
 $K = SO(2)/O(2) : z(\rho_K^{\vee}) = I$
 $SL(2,\mathbb{R}) : z(\rho_G^{\vee}) = -I \neq I = z(\rho_K^{\vee}) \ (-1 \notin W(K,H))$
 $PGL(2,\mathbb{R}) : z(\rho_G^{\vee}) = -I = I = z(\rho_K^{\vee}) \ (-1 \in W(K,H))$

Reduce to K^0 or $\langle K^0, C \rangle$.

LEMMA

 $K = \langle K^0, x_1, \dots, x_n \rangle \text{ where:}$ $(1) x_i^2 = 1$ $(2) x_i \text{ preserves a Borel of } K^0$ $(3) x_i, x_j \text{ commute}$

Key point: $\mu|_{K^0}$ has multiplicity one

COROLLARY

Every irreducible representation self-dual implies

$$\epsilon_{\pi} = \chi_{\pi}(z(\rho^{\vee}))$$

Proof of Lemma and corollary:

$$z(\rho_K^{\vee}) = z(\rho_G^{\vee}), \text{ minimal } K \text{-type } \mu \dots$$

Done if K is connected

delicate argument about the disconnectedness of K (previous slide...)

COROLLARY

 $-1 \in W(G, H)$, G adjoint implies every irreducible representation of $G(\mathbb{R})$ is self-dual and orthogonal.

PROBLEM

Consider the Frobenius-Schur indicator in general

(some of the same ideas apply)