Computing weak packets for 21 dual orbits of compact connected real group with Lie algebra 'e6'
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 16, 22, 30, 42, 30, 16 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 0, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 12, 16, 22, 30, 22, 12 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 1, 0, 0, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 10, 14, 18, 26, 18, 10 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 1, 0, 0, 0, 0, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  8, 10, 14, 20, 14,  8 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 1, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  8, 10, 14, 20, 14,  8 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 0, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  7, 10, 13, 18, 13,  7 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 1, 1, 0, 0, 0, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  6, 10, 12, 18, 12,  6 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 0, 0, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  6,  8, 11, 15, 11,  6 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 0, 1, 0, 1, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  6,  8, 10, 14, 10,  6 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 1, 2, 0, 0, 0, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  4,  6,  8, 12,  8,  4 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 1, 0, 0, 1, 0, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  4,  6,  8, 12,  8,  4 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 1, 1, 0, 1, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  4,  6,  8, 12,  8,  4 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 2, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  4,  6,  7, 10,  7,  4 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 0, 0, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 4, 4, 6, 8, 6, 4 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 2, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[  4,  5,  7, 10,  7,  4 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 1, 1, 1, 0, 1, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 3, 4, 5, 7, 5, 3 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 1, 2, 1, 0, 1, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 2, 4, 4, 6, 4, 2 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 2, 1, 1, 0, 1, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 2, 4, 4, 6, 4, 2 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 2, 0, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 2, 2, 3, 4, 3, 2 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 2, 0, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 1, 2, 2, 3, 2, 1 ])
Skipping dual orbit (adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 0, 2, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (simply connected root datum of Lie type 'E6',(),[ 0, 0, 0, 0, 0, 0 ])

Computing weak packet for orbit: adjoint root datum of Lie type 'E6' [ 2, 2, 2, 2, 2, 2 ] dim=72
Computing weak packets for compact connected real group with Lie algebra 'e6'
gamma:[ 3, 3, 3, 3, 3, 3 ]/1
gamma_final:[ 1, 1, 1, 1, 1, 1 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:simply connected root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 2, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 2, 2, 2 ])
computing springer map of[0,0,0,0,0,0]
O: (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 0, 0, 0 ])
survive:final parameter(x=0,lambda=[3,3,3,3,3,3]/1,nu=[0,0,0,0,0,0]/1) [ 1, 1, 1, 1, 1, 1 ]/1
cell character: 1 springer_O:1

===============================================================================
Orbits for the dual group: connected split real group with Lie algebra 'e6(R)'

complex nilpotent orbits for inner class
Complex reductive group of type E6, with involution defining
inner class of type 's', with 2 real forms and 3 dual real forms
root datum of inner class: adjoint root datum of Lie type 'E6'
i: orbit number
H: semisimple element
BC Levi:  Bala-Carter Levi
Cent_0: identity component of Cent(SL(2))
Z(Cent^0): order of center of derived group of id. comp. of Centralizer
C_2: conjugacy classes in Cent(SL(2))_0 with square 1
A(O): orders of conj. classes in component group of centralizer of O
#RF: number of real forms of O for all real forms (of integrality datum) in inner class
#AP: number of Arthur parameters for O
i   diagram        dim  BC Levi     Cent_0 Z  C_2  A(O)     #RF    #AP
0   [0,0,0,0,0,0]  0    6T1         E6     1  3    [1]      [1,1]  2
1   [0,1,0,0,0,0]  22   A1+5T1      A5     2  4    [1]      []     2
2   [1,0,0,0,0,1]  32   2A1+4T1     B3+T1  2  5    [1]      []     2
3   [0,0,0,1,0,0]  40   3A1+3T1     A1+A2  2  4    [1]      []     2
4   [0,2,0,0,0,0]  42   A2+4T1      2A2    3  4    [1,2]    [0,2]  2
5   [1,1,0,0,0,1]  46   A1+A2+3T1   A2+T1  3  4    [1]      []     0
6   [2,0,0,0,0,2]  48   2A2+2T1     G2     1  2    [1]      [1,1]  2
7   [0,0,1,0,1,0]  50   2A1+A2+2T1  A1+T1  2  3    [1]      []     1
8   [1,2,0,0,0,1]  52   A3+3T1      B2+T1  2  4    [1]      []     2
9   [1,0,0,1,0,1]  54   A1+2A2+T1   A1     2  2    [1]      []     2
10  [0,1,1,0,1,0]  56   A1+A3+2T1   A1+T1  2  4    [1]      []     2
11  [0,0,0,2,0,0]  58   D4+2T1      2T1    1  4    [1,2,3]  [0,2]  2
12  [2,2,0,0,0,2]  60   A4+2T1      A1+T1  2  3    [1]      [0,1]  1
13  [0,2,0,2,0,0]  60   D4+2T1      A2     1  2    [1]      [0,1]  1
14  [1,1,1,0,1,1]  62   A1+A4+T1    T1     1  2    [1]      []     0
15  [1,2,1,0,1,1]  64   D5+T1       T1     1  2    [1]      []     0
16  [2,1,1,0,1,2]  64   A5+T1       A1     2  2    [1]      []     2
17  [2,0,0,2,0,2]  66   E6          e      1  1    [1,2]    [0,2]  2
18  [2,2,0,2,0,2]  68   D5+T1       T1     1  2    [1]      [0,1]  1
19  [2,2,2,0,2,2]  70   E6          e      1  1    [1]      [0,1]  1
20  [2,2,2,2,2,2]  72   E6          e      1  1    [1]      [0,1]  1

Information about orbit centralizers:
orbit#: 0 diagram: [0,0,0,0,0,0]
isogeny information:
Centralizer: E6
Center is trivial
adjoint root datum of Lie type 'E6'
-------------
orbit#: 1 diagram: [0,1,0,0,0,0]
isogeny information:
Centralizer: A5
Group is semisimple
center=Z/2Z
root datum of Lie type 'A5'
-------------
orbit#: 2 diagram: [1,0,0,0,0,1]
isogeny information:
Centralizer: B3+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'B3'
-------------
orbit#: 3 diagram: [0,0,0,1,0,0]
isogeny information:
Centralizer: A1+A2
Group is semisimple
center=Z/2Z
adjoint root datum of Lie type 'A2'
simply connected root datum of Lie type 'A1'
-------------
orbit#: 4 diagram: [0,2,0,0,0,0]
isogeny information:
Centralizer: 2A2
Group is semisimple
center=Z/3Z
simply connected root datum of Lie type 'A2'
simply connected root datum of Lie type 'A2'
-------------
orbit#: 5 diagram: [1,1,0,0,0,1]
isogeny information:
Centralizer: A2+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'A2'
-------------
orbit#: 6 diagram: [2,0,0,0,0,2]
isogeny information:
Centralizer: G2
Center is trivial
simply connected adjoint root datum of Lie type 'G2'
-------------
orbit#: 7 diagram: [0,0,1,0,1,0]
isogeny information:
Centralizer: A1+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'A1'
-------------
orbit#: 8 diagram: [1,2,0,0,0,1]
isogeny information:
Centralizer: B2+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'B2'
-------------
orbit#: 9 diagram: [1,0,0,1,0,1]
isogeny information:
Centralizer: A1
Group is semisimple
center=Z/2Z
simply connected root datum of Lie type 'A1'
-------------
orbit#: 10 diagram: [0,1,1,0,1,0]
isogeny information:
Centralizer: A1+T1
Split exact sequence:
1->S->Z->Z/S->1
S=complex torus of rank 1
Z/S=Center(G/S)=Z/2Z
simply connected root datum of Lie type 'A1'
-------------
orbit#: 11 diagram: [0,0,0,2,0,0]
isogeny information:
Centralizer: 2T1
Center is a connected complex torus of rank 2
-------------
orbit#: 12 diagram: [2,2,0,0,0,2]
isogeny information:
Centralizer: A1+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'A1'
-------------
orbit#: 13 diagram: [0,2,0,2,0,0]
isogeny information:
Centralizer: A2
Center is trivial
adjoint root datum of Lie type 'A2'
-------------
orbit#: 14 diagram: [1,1,1,0,1,1]
isogeny information:
Centralizer: T1
Center is a connected complex torus of rank 1
-------------
orbit#: 15 diagram: [1,2,1,0,1,1]
isogeny information:
Centralizer: T1
Center is a connected complex torus of rank 1
-------------
orbit#: 16 diagram: [2,1,1,0,1,2]
isogeny information:
Centralizer: A1
Group is semisimple
center=Z/2Z
simply connected root datum of Lie type 'A1'
-------------
orbit#: 17 diagram: [2,0,0,2,0,2]
isogeny information:
Centralizer: e
Center is trivial
-------------
orbit#: 18 diagram: [2,2,0,2,0,2]
isogeny information:
Centralizer: T1
Center is a connected complex torus of rank 1
-------------
orbit#: 19 diagram: [2,2,2,0,2,2]
isogeny information:
Centralizer: e
Center is trivial
-------------
orbit#: 20 diagram: [2,2,2,2,2,2]
isogeny information:
Centralizer: e
Center is trivial
-------------

Arthur parameters listed by orbit:
#parameters by orbit: [2,2,2,2,2,0,2,1,2,2,2,2,1,1,0,0,2,2,1,1,1]
Total: 30

orbit #0 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 0, 0, 0 ]  [0,0,0,0]  0    1
adjoint root datum of Lie type 'C4'                   [ 0, 0, 0, 0 ]  [0,0,0,0]  0    1

orbit #1 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 1, 0, 0 ]      [1,0,0,0]  16   1
adjoint root datum of Lie type 'C4'                   [  0, -1,  0,  1 ]  [0,0,0,1]  8    1

orbit #2 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 1, 0, 0, 0 ]  [0,0,1,0]  22   1
adjoint root datum of Lie type 'C4'                   [ 1, 0, 0, 0 ]  [0,1,0,0]  14   1

orbit #3 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 0, 0, 1 ]      [0,1,0,0]  28   1
adjoint root datum of Lie type 'C4'                   [  0,  1,  1, -1 ]  [0,0,1,0]  18   1

orbit #4 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 2, 0, 0 ]  [2,0,0,0]  30   1
adjoint root datum of Lie type 'C4'                   [ 0, 2, 0, 0 ]  [2,0,0,0]  20   1

orbit #5 for G
#orbits for (disconnected) Cent(O): 0
K_0  H  diagram  dim  mult

orbit #6 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 0, 0, 0 ]  [0,0,2,0]  30   1
adjoint root datum of Lie type 'C4'                   [ 2, 0, 0, 0 ]  [0,2,0,0]  22   1

orbit #7 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 0, 1, 0 ]  [0,0,0,1]  34   1

orbit #8 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 1, 2, 0, 0 ]      [2,0,1,0]  36   1
adjoint root datum of Lie type 'C4'                   [  1, -2,  0,  2 ]  [0,1,0,2]  20   1

orbit #9 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 1, 0, 0, 1 ]      [0,1,1,0]  36   1
adjoint root datum of Lie type 'C4'                   [  1,  1,  1, -1 ]  [0,1,1,0]  24   1

orbit #10 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 1, 1, 0 ]      [1,0,0,1]  38   1
adjoint root datum of Lie type 'C4'                   [  0, -1,  1,  1 ]  [0,0,1,2]  24   1

orbit #11 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 0, 0, 2 ]  [0,2,0,0]  40   1
adjoint root datum of Lie type 'C4'                   [ 0, 0, 0, 2 ]  [2,0,0,2]  26   1

orbit #12 for G
#orbits for (disconnected) Cent(O): 1
K_0                                  H               diagram    dim  mult
adjoint root datum of Lie type 'C4'  [ 2, 2, 0, 0 ]  [2,2,0,0]  28   1

orbit #13 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 2, 0, 2 ]  [2,2,0,0]  42   1

orbit #14 for G
#orbits for (disconnected) Cent(O): 0
K_0  H  diagram  dim  mult

orbit #15 for G
#orbits for (disconnected) Cent(O): 0
K_0  H  diagram  dim  mult

orbit #16 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 1, 1, 0 ]      [1,0,2,1]  42   1
adjoint root datum of Lie type 'C4'                   [  2, -1,  1,  1 ]  [0,2,1,2]  28   1

orbit #17 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 0, 0, 2 ]  [0,2,2,0]  44   1
adjoint root datum of Lie type 'C4'                   [ 2, 0, 0, 2 ]  [2,2,0,2]  30   1

orbit #18 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 2, 0, 2 ]  [2,2,2,0]  46   1

orbit #19 for G
#orbits for (disconnected) Cent(O): 1
K_0                                  H               diagram    dim  mult
adjoint root datum of Lie type 'C4'  [ 2, 2, 2, 0 ]  [2,2,2,2]  32   1

orbit #20 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 2, 2, 2 ]  [2,2,2,2]  48   1

orbit  |packet|
20     1
Total  1

*: dual(cell) contains an Aq(lambda)
orbit#  block#  cell#  parameters
20      0       0      1
Total           1

orbit#   block#  cell#  parameters                                                      inf. char.
20       0       0      final parameter(x=0,lambda=[1,1,1,1,1,1]/1,nu=[0,0,0,0,0,0]/1)  [ 1, 1, 1, 1, 1, 1 ]/1
Total                   1
Induced                 0

set parameters=[
parameter(G,0,[ 1, 1, 1, 1, 1, 1 ]/1,[ 0, 0, 0, 0, 0, 0 ]/1)
]