Computing weak packets for 21 dual orbits of connected real group with Lie algebra 'e6(so(10).u(1))'
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 2, 2, 2 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 0, 0, 0, 0, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 0, 2, 2 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 1, 2, 2, 3, 2, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 2, 0, 2 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 2, 2, 3, 4, 3, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 2, 0, 2 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 2, 3, 4, 6, 4, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 2, 0, 2 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 2, 4, 4, 6, 4, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 1, 2, 1, 0, 1, 1 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 3, 4, 5, 7, 5, 3 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 2, 0, 0 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 4, 4, 6, 8, 6, 4 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 1, 1, 1, 0, 1, 1 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[ 3, 4, 6, 8, 6, 3 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 0, 0, 2 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [  4,  6,  7, 10,  7,  4 ] dim=52
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 36, 50, 67, 94, 67, 36 ]/2
gamma_final:[  4,  6,  7, 10,  7,  4 ]/2
integral data: st_int
rd_int:root datum of Lie type 'D5.T1'
st_int.rd: simply connected root datum of Lie type 'D5'
O_check_int:(adjoint root datum of Lie type 'D5',(),[ 2, 2, 0, 0, 0 ])
computing packet for:(adjoint root datum of Lie type 'D5',(),[ 2, 2, 0, 0, 0 ])
computing springer map of[2,2,0,0,0]
O: (adjoint root datum of Lie type 'D5',(),[ 2, 2, 0, 0, 0 ])
survive:final parameter(x=65,lambda=[18,25,33,47,33,18]/1,nu=[0,0,1,0,1,0]/1) [  4,  6,  7, 10,  7,  4 ]/2
cell character: 14 springer_O:14
dim: 4 6
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 2, 0, 0 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[  4,  5,  7, 10,  7,  4 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 2, 0, 0 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[  4,  6,  8, 11,  8,  4 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 2, 0, 0 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[  4,  6,  8, 12,  8,  4 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 1, 2, 0, 0, 0, 1 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [  6,  8, 10, 14, 10,  6 ] dim=60
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 19, 26, 35, 49, 35, 19 ]/1
gamma_final:[ 3, 4, 5, 7, 5, 3 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:adjoint root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 0, 0, 2 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 0, 0, 2 ])
computing springer map of[1,2,0,0,0,1]
O: (adjoint root datum of Lie type 'E6',(),[ 1, 2, 0, 0, 0, 1 ])
survive:final parameter(x=0,lambda=[19,26,35,49,35,19]/1,nu=[0,0,0,0,0,0]/1) [ 3, 4, 5, 7, 5, 3 ]/1
survive:final parameter(x=6,lambda=[19,26,35,49,35,19]/1,nu=[0,0,0,0,0,0]/1) [ 3, 4, 5, 7, 5, 3 ]/1
survive:final parameter(x=27,lambda=[19,26,35,49,35,18]/1,nu=[0,0,0,0,0,3]/2) [ 3, 4, 5, 7, 5, 3 ]/1
survive:final parameter(x=58,lambda=[18,26,35,49,35,19]/1,nu=[3,0,0,0,0,0]/2) [ 3, 4, 5, 7, 5, 3 ]/1
survive:final parameter(x=326,lambda=[14,20,30,43,30,14]/1,nu=[15,20,15,20,15,15]/2) [ 3, 4, 5, 7, 5, 3 ]/1
survive:final parameter(x=177,lambda=[19,23,35,46,32,16]/1,nu=[0,5,0,5,5,5]/1) [ 3, 4, 5, 7, 5, 3 ]/1
cell character: 23 springer_O:23
dim: 24 81
survive:final parameter(x=196,lambda=[16,23,32,46,35,19]/1,nu=[5,5,5,5,0,0]/1) [ 3, 4, 5, 7, 5, 3 ]/1
cell character: 23 springer_O:23
dim: 64 81
dim: 20 81
dim: 64 81
dim: 20 81
dim: 45 81
dim: 20 81
dim: 6 81
dim: 6 81
dim: 1 81
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 0, 0, 2 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [  6, 10, 12, 18, 12,  6 ] dim=60
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 19, 27, 36, 51, 36, 19 ]/1
gamma_final:[ 3, 5, 6, 9, 6, 3 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:adjoint root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 2, 0, 0 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 2, 0, 0 ])
computing springer map of[2,0,0,0,0,2]
O: (adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 0, 0, 2 ])
survive:final parameter(x=1,lambda=[19,27,36,51,36,19]/1,nu=[0,0,0,0,0,0]/1) [ 3, 5, 6, 9, 6, 3 ]/1
survive:final parameter(x=105,lambda=[19,27,35,48,34,19]/1,nu=[0,0,5,10,5,0]/2) [ 3, 5, 6, 9, 6, 3 ]/1
survive:final parameter(x=158,lambda=[19,22,34,46,33,19]/1,nu=[0,8,4,8,4,0]/1) [ 3, 5, 6, 9, 6, 3 ]/1
survive:final parameter(x=392,lambda=[15,18,27,33,27,14]/1,nu=[15,30,30,60,30,15]/2) [ 3, 5, 6, 9, 6, 3 ]/1
cell character: 13 springer_O:13
dim: 20 24
dim: 20 24
dim: 20 24
dim: 6 24
dim: 6 24
dim: 1 24
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 1, 0, 0, 1, 0, 1 ])
Skipping dual orbit (simply connected root datum of Lie type 'E6',(),[  6,  8, 11, 15, 11,  6 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 1, 1, 0, 0, 0, 1 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [  7, 10, 13, 18, 13,  7 ] dim=64
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[  39,  54,  73, 102,  73,  39 ]/2
gamma_final:[  7, 10, 13, 18, 13,  7 ]/2
integral data: st_int
rd_int:root datum of Lie type 'D5.T1'
st_int.rd: simply connected root datum of Lie type 'D5'
O_check_int:(adjoint root datum of Lie type 'D5',(),[ 2, 2, 0, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'D5',(),[ 2, 2, 0, 2, 2 ])
computing springer map of[0,1,0,0,0]
O: (adjoint root datum of Lie type 'D5',(),[ 0, 1, 0, 0, 0 ])
survive:final parameter(x=166,lambda=[18,27,35,51,35,18]/1,nu=[5,0,5,0,5,5]/2) [  7, 10, 13, 18, 13,  7 ]/2
survive:final parameter(x=272,lambda=[16,27,33,47,33,16]/1,nu=[6,0,6,7,6,6]/1) [  7, 10, 13, 18, 13,  7 ]/2
survive:final parameter(x=326,lambda=[15,21,32,45,32,15]/1,nu=[15,20,15,20,15,15]/2) [  7, 10, 13, 18, 13,  7 ]/2
dim: 4 5
ALERT: , empty packet
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 0, 0, 0 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [  8, 10, 14, 19, 14,  8 ] dim=64
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[  40,  54,  74, 103,  74,  40 ]/2
gamma_final:[  8, 10, 14, 19, 14,  8 ]/2
integral data: st_int
rd_int:root datum of Lie type 'A5.A1'
st_int.rd: simply connected root datum of Lie type 'A5.A1'
O_check_int:(adjoint root datum of Lie type 'A5.A1',(),[ 2, 2, 2, 2, 2, 0 ])
computing packet for:(adjoint root datum of Lie type 'A5.A1',(),[ 2, 2, 2, 2, 2, 0 ])
computing springer map of[0,0,0,0,0,2]
O: (simply connected root datum of Lie type 'A5.A1',(),[ 0, 0, 0, 0, 0, 1 ])
survive:final parameter(x=39,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,1,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=40,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,1,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=41,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,1,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=42,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,1,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=63,lambda=[20,27,37,51,37,19]/1,nu=[0,0,0,2,0,3]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=71,lambda=[19,27,37,51,37,20]/1,nu=[3,0,0,2,0,0]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=154,lambda=[20,27,35,49,35,20]/1,nu=[0,0,7,9,7,0]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=204,lambda=[20,27,34,48,34,17]/1,nu=[0,0,5,6,5,5]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=220,lambda=[17,27,34,48,34,20]/1,nu=[5,0,5,6,5,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=272,lambda=[16,27,33,47,33,16]/1,nu=[13,0,13,15,13,13]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=43,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,1,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=157,lambda=[20,25,37,49,35,20]/1,nu=[0,7,0,9,7,0]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=209,lambda=[20,24,37,48,34,17]/1,nu=[0,5,0,6,5,5]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=350,lambda=[20,22,32,41,27,15]/1,nu=[0,17,17,36,34,17]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=407,lambda=[14,21,31,39,25,14]/1,nu=[10,10,10,21,20,10]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=44,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,1,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=160,lambda=[20,25,35,49,37,20]/1,nu=[0,7,7,9,0,0]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=225,lambda=[17,24,34,48,37,20]/1,nu=[5,5,5,6,0,0]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=356,lambda=[15,22,27,41,32,20]/1,nu=[17,17,34,36,17,0]/2) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=396,lambda=[14,21,25,39,31,14]/1,nu=[10,10,20,21,10,10]/1) [  8, 10, 14, 19, 14,  8 ]/2
survive:final parameter(x=484,lambda=[12,11,21,27,21,12]/1,nu=[27,54,54,83,54,27]/2) [  8, 10, 14, 19, 14,  8 ]/2
cell character: 1 springer_O:1
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 0, 0, 0 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [  8, 10, 14, 20, 14,  8 ] dim=66
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 20, 27, 37, 52, 37, 20 ]/1
gamma_final:[  4,  5,  7, 10,  7,  4 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:adjoint root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 2, 0, 2 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 2, 0, 0, 2, 0, 2 ])
computing springer map of[0,2,0,0,0,0]
O: (adjoint root datum of Lie type 'E6',(),[ 0, 2, 0, 0, 0, 0 ])
survive:final parameter(x=39,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=40,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=41,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=42,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=63,lambda=[20,27,37,51,37,19]/1,nu=[0,0,0,3,0,3]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=71,lambda=[19,27,37,51,37,20]/1,nu=[3,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=105,lambda=[20,27,36,49,35,20]/1,nu=[0,0,5,10,5,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=118,lambda=[20,27,37,50,35,18]/1,nu=[0,0,0,4,4,4]/1) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=144,lambda=[18,27,35,50,37,20]/1,nu=[4,0,4,4,0,0]/1) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=151,lambda=[20,27,36,48,34,17]/1,nu=[0,0,5,13,8,8]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=163,lambda=[18,27,35,48,35,20]/1,nu=[8,0,8,13,5,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=272,lambda=[16,27,33,47,33,16]/1,nu=[13,0,13,16,13,13]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=43,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=104,lambda=[20,26,37,49,35,20]/1,nu=[0,5,0,10,5,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=120,lambda=[20,27,37,50,35,18]/1,nu=[0,0,0,4,4,4]/1) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=150,lambda=[20,26,37,48,34,17]/1,nu=[0,5,0,13,8,8]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=302,lambda=[20,23,33,42,31,16]/1,nu=[0,15,15,35,20,15]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=342,lambda=[15,22,32,42,32,15]/1,nu=[9,9,9,18,9,9]/1) [  4,  5,  7, 10,  7,  4 ]/1
dim: 24 30
survive:final parameter(x=44,lambda=[20,27,37,51,37,20]/1,nu=[0,0,0,3,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=106,lambda=[20,25,36,49,37,20]/1,nu=[0,5,5,10,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=145,lambda=[18,27,35,50,37,20]/1,nu=[4,0,4,4,0,0]/1) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=164,lambda=[18,25,35,48,37,20]/1,nu=[8,5,8,13,0,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=316,lambda=[15,22,31,41,32,20]/1,nu=[15,15,20,35,15,0]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=343,lambda=[15,22,32,42,32,15]/1,nu=[9,9,9,18,9,9]/1) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=366,lambda=[15,22,32,40,30,15]/1,nu=[18,18,18,41,23,18]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=410,lambda=[12,22,29,39,29,15]/1,nu=[14,9,14,23,14,9]/1) [  4,  5,  7, 10,  7,  4 ]/1
dim: 20 30
survive:final parameter(x=367,lambda=[14,21,30,39,31,14]/1,nu=[18,18,23,41,18,18]/2) [  4,  5,  7, 10,  7,  4 ]/1
survive:final parameter(x=408,lambda=[15,22,29,39,29,12]/1,nu=[9,9,14,23,14,14]/1) [  4,  5,  7, 10,  7,  4 ]/1
dim: 20 30
survive:final parameter(x=456,lambda=[13,18,23,29,23,13]/1,nu=[25,30,50,80,50,25]/2) [  4,  5,  7, 10,  7,  4 ]/1
cell character: 14 springer_O:14
dim: 20 30
dim: 6 30
dim: 6 30
dim: 1 30
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 1, 0, 0, 0, 0, 1 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [ 10, 14, 18, 26, 18, 10 ] dim=68
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 21, 29, 39, 55, 39, 21 ]/1
gamma_final:[  5,  7,  9, 13,  9,  5 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:adjoint root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 2, 0, 2 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 0, 2, 0, 2 ])
computing springer map of[1,0,0,0,0,1]
O: (adjoint root datum of Lie type 'E6',(),[ 1, 0, 0, 0, 0, 1 ])
survive:final parameter(x=0,lambda=[21,29,39,55,39,21]/1,nu=[0,0,0,0,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=1,lambda=[21,29,39,55,39,21]/1,nu=[0,0,0,0,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=3,lambda=[21,29,39,55,39,21]/1,nu=[0,0,0,0,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=6,lambda=[21,29,39,55,39,21]/1,nu=[0,0,0,0,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=27,lambda=[21,29,39,55,39,20]/1,nu=[0,0,0,0,0,3]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=28,lambda=[21,29,39,55,39,20]/1,nu=[0,0,0,0,0,3]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=39,lambda=[21,29,39,54,39,21]/1,nu=[0,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=40,lambda=[21,29,39,54,39,21]/1,nu=[0,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=41,lambda=[21,29,39,54,39,21]/1,nu=[0,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=42,lambda=[21,29,39,54,39,21]/1,nu=[0,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=57,lambda=[20,29,39,55,39,21]/1,nu=[3,0,0,0,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=58,lambda=[20,29,39,55,39,21]/1,nu=[3,0,0,0,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=63,lambda=[21,29,39,54,39,20]/1,nu=[0,0,0,3,0,3]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=71,lambda=[20,29,39,54,39,21]/1,nu=[3,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=105,lambda=[21,29,38,52,37,21]/1,nu=[0,0,5,10,5,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=118,lambda=[21,29,39,53,37,19]/1,nu=[0,0,0,4,4,4]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=144,lambda=[19,29,37,53,39,21]/1,nu=[4,0,4,4,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=151,lambda=[21,29,38,51,36,18]/1,nu=[0,0,5,13,8,8]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=158,lambda=[21,24,37,50,36,21]/1,nu=[0,8,4,8,4,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=163,lambda=[19,29,37,51,37,21]/1,nu=[8,0,8,13,5,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=210,lambda=[21,23,37,49,35,17]/1,nu=[0,19,8,19,11,11]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=223,lambda=[18,23,36,49,36,21]/1,nu=[11,19,11,19,8,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=272,lambda=[17,29,35,50,35,17]/1,nu=[13,0,13,16,13,13]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=326,lambda=[16,22,34,48,34,16]/1,nu=[8,11,8,11,8,8]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=43,lambda=[21,29,39,54,39,21]/1,nu=[0,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=91,lambda=[21,27,39,53,39,21]/1,nu=[0,3,0,3,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=92,lambda=[21,27,39,53,39,21]/1,nu=[0,3,0,3,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=95,lambda=[21,27,39,53,39,21]/1,nu=[0,3,0,3,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=104,lambda=[21,27,39,52,38,21]/1,nu=[0,6,0,11,5,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=111,lambda=[21,27,39,53,39,20]/1,nu=[0,6,0,6,0,3]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=120,lambda=[21,29,39,53,37,19]/1,nu=[0,0,0,4,4,4]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=150,lambda=[21,27,39,51,37,19]/1,nu=[0,3,0,7,4,4]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=175,lambda=[21,26,39,52,36,18]/1,nu=[0,11,0,11,11,11]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=177,lambda=[21,26,39,52,36,18]/1,nu=[0,11,0,11,11,11]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=209,lambda=[21,26,39,51,36,18]/1,nu=[0,11,0,14,11,11]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=284,lambda=[21,24,34,45,34,16]/1,nu=[0,8,8,16,8,8]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=286,lambda=[21,24,34,45,34,16]/1,nu=[0,8,8,16,8,8]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=302,lambda=[21,24,34,44,33,16]/1,nu=[0,16,16,37,21,16]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=342,lambda=[15,23,33,43,33,15]/1,nu=[19,19,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=69,lambda=[20,29,39,55,39,20]/1,nu=[3,0,0,0,0,3]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=217,lambda=[19,29,37,50,36,18]/1,nu=[4,0,4,8,4,4]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=275,lambda=[18,22,36,48,35,17]/1,nu=[11,22,11,22,11,11]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=392,lambda=[16,19,29,35,29,16]/1,nu=[8,16,16,32,16,8]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=44,lambda=[21,29,39,54,39,21]/1,nu=[0,0,0,3,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=93,lambda=[21,27,39,53,39,21]/1,nu=[0,3,0,3,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=94,lambda=[21,27,39,53,39,21]/1,nu=[0,3,0,3,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=96,lambda=[21,27,39,53,39,21]/1,nu=[0,3,0,3,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=106,lambda=[21,27,38,52,39,21]/1,nu=[0,6,5,11,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=116,lambda=[20,27,39,53,39,21]/1,nu=[3,6,0,6,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=145,lambda=[19,29,37,53,39,21]/1,nu=[4,0,4,4,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=164,lambda=[19,27,37,51,39,21]/1,nu=[4,3,4,7,0,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=195,lambda=[18,26,36,52,39,21]/1,nu=[11,11,11,11,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=196,lambda=[18,26,36,52,39,21]/1,nu=[11,11,11,11,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=225,lambda=[18,26,36,51,39,21]/1,nu=[11,11,11,14,0,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=291,lambda=[16,24,34,45,34,21]/1,nu=[8,8,8,16,8,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=293,lambda=[16,24,34,45,34,21]/1,nu=[8,8,8,16,8,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=316,lambda=[16,24,33,44,34,21]/1,nu=[16,16,21,37,16,0]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=343,lambda=[15,23,33,43,33,15]/1,nu=[19,19,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=344,lambda=[15,23,33,43,33,15]/1,nu=[19,19,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=359,lambda=[21,22,34,43,32,16]/1,nu=[0,12,8,20,12,8]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=366,lambda=[15,23,33,42,32,15]/1,nu=[19,19,19,43,24,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=369,lambda=[14,23,32,43,33,15]/1,nu=[24,19,24,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=410,lambda=[12,23,30,40,30,15]/1,nu=[29,19,29,48,29,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=415,lambda=[15,21,33,41,31,15]/1,nu=[19,27,19,46,27,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=445,lambda=[11,19,29,39,29,15]/1,nu=[32,32,32,51,32,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=466,lambda=[10,18,23,33,28,15]/1,nu=[37,37,55,74,37,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=346,lambda=[15,23,33,43,33,15]/1,nu=[19,19,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
cell character: 10 springer_O:10
survive:final parameter(x=345,lambda=[15,23,33,43,33,15]/1,nu=[19,19,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=365,lambda=[15,23,33,43,32,14]/1,nu=[19,19,19,38,24,24]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=367,lambda=[15,23,32,42,33,15]/1,nu=[19,19,24,43,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=374,lambda=[16,22,32,43,34,21]/1,nu=[8,12,12,20,8,0]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=408,lambda=[15,23,30,40,30,12]/1,nu=[19,19,29,48,29,29]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=416,lambda=[15,21,31,41,33,15]/1,nu=[19,27,27,46,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=444,lambda=[15,19,29,39,29,11]/1,nu=[19,32,32,51,32,32]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=453,lambda=[15,18,28,33,23,10]/1,nu=[19,37,37,74,55,37]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=347,lambda=[15,23,33,43,33,15]/1,nu=[19,19,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
cell character: 10 springer_O:10
survive:final parameter(x=373,lambda=[15,22,33,43,33,15]/1,nu=[19,22,19,38,19,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=438,lambda=[15,19,29,35,29,15]/1,nu=[19,32,32,64,32,19]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=456,lambda=[13,19,23,29,23,13]/1,nu=[13,16,26,42,26,13]/1) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=484,lambda=[12,11,21,27,21,12]/1,nu=[29,58,58,90,58,29]/2) [  5,  7,  9, 13,  9,  5 ]/1
survive:final parameter(x=499,lambda=[8,16,20,29,19,8]/1,nu=[42,42,63,84,63,42]/2) [  5,  7,  9, 13,  9,  5 ]/1
cell character: 10 springer_O:10
dim: 6 20
dim: 6 20
dim: 1 20
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 1, 0, 0, 0, 0 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [ 12, 16, 22, 30, 22, 12 ] dim=70
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 22, 30, 41, 57, 41, 22 ]/1
gamma_final:[  6,  8, 11, 15, 11,  6 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:adjoint root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 0, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 0, 2, 2 ])
computing springer map of[0,1,0,0,0,0]
O: (adjoint root datum of Lie type 'E6',(),[ 0, 1, 0, 0, 0, 0 ])
survive:final parameter(x=0,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=2,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=4,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=6,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=9,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=10,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=12,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=15,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=27,lambda=[22,30,41,57,41,21]/1,nu=[0,0,0,0,0,3]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=29,lambda=[22,30,41,57,41,21]/1,nu=[0,0,0,0,0,3]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=33,lambda=[22,30,41,57,40,22]/1,nu=[0,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=34,lambda=[22,30,41,57,40,22]/1,nu=[0,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=35,lambda=[22,30,41,57,40,22]/1,nu=[0,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=45,lambda=[22,30,40,57,41,22]/1,nu=[0,0,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=46,lambda=[22,30,40,57,41,22]/1,nu=[0,0,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=47,lambda=[22,30,40,57,41,22]/1,nu=[0,0,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=58,lambda=[21,30,41,57,41,22]/1,nu=[3,0,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=60,lambda=[21,30,41,57,41,22]/1,nu=[3,0,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=64,lambda=[22,30,40,57,41,21]/1,nu=[0,0,3,0,0,3]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=65,lambda=[22,30,40,57,40,22]/1,nu=[0,0,3,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=70,lambda=[21,30,41,57,40,22]/1,nu=[3,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=73,lambda=[22,30,41,57,39,20]/1,nu=[0,0,0,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=74,lambda=[22,30,41,57,39,20]/1,nu=[0,0,0,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=97,lambda=[20,30,39,57,41,22]/1,nu=[3,0,3,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=98,lambda=[20,30,39,57,41,22]/1,nu=[3,0,3,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=103,lambda=[22,30,41,56,38,20]/1,nu=[0,0,0,5,11,6]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=107,lambda=[22,30,40,57,39,20]/1,nu=[0,0,3,0,6,6]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=109,lambda=[20,30,38,56,41,22]/1,nu=[6,0,11,5,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=115,lambda=[20,30,39,57,40,22]/1,nu=[6,0,6,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=124,lambda=[22,30,39,55,39,22]/1,nu=[0,0,4,4,4,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=125,lambda=[22,30,39,55,39,22]/1,nu=[0,0,4,4,4,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=152,lambda=[22,30,39,55,37,20]/1,nu=[0,0,4,4,7,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=155,lambda=[20,30,37,55,39,22]/1,nu=[3,0,7,4,4,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=169,lambda=[22,30,38,54,38,19]/1,nu=[0,0,11,11,11,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=170,lambda=[22,30,38,54,38,19]/1,nu=[0,0,11,11,11,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=187,lambda=[19,30,38,54,38,22]/1,nu=[11,0,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=188,lambda=[19,30,38,54,38,22]/1,nu=[11,0,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=214,lambda=[22,25,37,52,37,22]/1,nu=[0,16,11,16,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=239,lambda=[18,30,37,53,37,18]/1,nu=[7,0,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=240,lambda=[18,30,37,53,37,18]/1,nu=[7,0,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=260,lambda=[22,23,38,50,34,18]/1,nu=[0,22,11,22,22,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=265,lambda=[22,24,36,51,36,17]/1,nu=[0,19,14,19,14,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=267,lambda=[19,23,34,50,37,22]/1,nu=[11,22,22,22,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=279,lambda=[17,24,36,51,36,22]/1,nu=[14,19,14,19,14,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=326,lambda=[16,23,35,50,35,16]/1,nu=[17,22,17,22,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=17,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=20,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=36,lambda=[22,30,41,57,40,22]/1,nu=[0,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=37,lambda=[22,30,41,57,40,22]/1,nu=[0,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=50,lambda=[22,30,40,57,41,22]/1,nu=[0,0,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=51,lambda=[22,29,41,57,41,22]/1,nu=[0,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=52,lambda=[22,29,41,57,41,22]/1,nu=[0,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=54,lambda=[22,29,41,57,41,22]/1,nu=[0,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=66,lambda=[22,29,41,57,41,21]/1,nu=[0,3,0,0,0,3]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=67,lambda=[22,29,41,57,40,22]/1,nu=[0,3,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=75,lambda=[22,30,41,57,39,20]/1,nu=[0,0,0,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=77,lambda=[22,30,41,57,39,20]/1,nu=[0,0,0,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=110,lambda=[22,29,41,57,39,20]/1,nu=[0,3,0,0,6,6]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=132,lambda=[22,28,41,55,39,22]/1,nu=[0,4,0,4,4,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=134,lambda=[22,28,41,55,39,22]/1,nu=[0,4,0,4,4,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=156,lambda=[22,28,41,55,37,20]/1,nu=[0,4,0,4,7,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=177,lambda=[22,27,41,54,38,19]/1,nu=[0,11,0,11,11,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=179,lambda=[22,27,41,54,38,19]/1,nu=[0,11,0,11,11,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=181,lambda=[22,27,38,54,38,22]/1,nu=[0,11,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=183,lambda=[22,27,38,54,38,22]/1,nu=[0,11,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=185,lambda=[22,27,38,54,38,22]/1,nu=[0,11,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=202,lambda=[22,30,38,54,37,19]/1,nu=[0,0,11,11,14,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=208,lambda=[22,27,41,54,37,19]/1,nu=[0,11,0,11,14,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=211,lambda=[22,27,38,54,36,20]/1,nu=[0,11,11,11,17,6]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=213,lambda=[22,26,36,52,37,22]/1,nu=[0,11,16,16,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=233,lambda=[22,26,37,53,37,18]/1,nu=[0,7,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=235,lambda=[22,26,37,53,37,18]/1,nu=[0,7,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=237,lambda=[22,26,37,53,37,18]/1,nu=[0,7,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=245,lambda=[18,26,37,53,37,22]/1,nu=[7,7,7,7,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=254,lambda=[22,27,34,50,34,18]/1,nu=[0,11,22,22,22,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=263,lambda=[22,26,37,53,36,18]/1,nu=[0,14,14,14,17,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=264,lambda=[22,25,35,51,36,17]/1,nu=[0,14,19,19,14,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=294,lambda=[17,25,36,52,36,17]/1,nu=[17,17,17,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=330,lambda=[22,24,35,45,29,16]/1,nu=[0,19,19,38,38,19]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=332,lambda=[22,24,35,45,29,16]/1,nu=[0,19,19,38,38,19]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=385,lambda=[15,23,34,43,27,15]/1,nu=[11,11,11,22,22,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=76,lambda=[22,30,41,57,39,20]/1,nu=[0,0,0,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=99,lambda=[20,30,39,57,41,22]/1,nu=[3,0,3,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=112,lambda=[21,30,41,57,39,20]/1,nu=[3,0,0,0,6,6]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=114,lambda=[20,30,39,57,41,21]/1,nu=[6,0,6,0,0,3]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=166,lambda=[20,30,39,57,39,20]/1,nu=[3,0,3,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=205,lambda=[20,30,36,54,38,19]/1,nu=[6,0,17,11,11,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=218,lambda=[19,30,38,54,36,20]/1,nu=[11,0,11,11,17,6]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=313,lambda=[19,22,33,49,36,17]/1,nu=[11,25,25,25,14,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=321,lambda=[18,22,37,49,33,18]/1,nu=[14,25,14,25,25,11]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=362,lambda=[18,21,32,48,32,17]/1,nu=[7,14,14,14,14,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=21,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=23,lambda=[22,30,41,57,41,22]/1,nu=[0,0,0,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=38,lambda=[22,30,41,57,40,22]/1,nu=[0,0,0,0,3,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=48,lambda=[22,30,40,57,41,22]/1,nu=[0,0,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=49,lambda=[22,30,40,57,41,22]/1,nu=[0,0,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=53,lambda=[22,29,41,57,41,22]/1,nu=[0,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=55,lambda=[22,29,41,57,41,22]/1,nu=[0,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=56,lambda=[22,29,41,57,41,22]/1,nu=[0,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=68,lambda=[22,29,40,57,41,22]/1,nu=[0,3,3,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=72,lambda=[21,29,41,57,41,22]/1,nu=[3,3,0,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=100,lambda=[20,30,39,57,41,22]/1,nu=[3,0,3,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=101,lambda=[20,30,39,57,41,22]/1,nu=[3,0,3,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=117,lambda=[20,29,39,57,41,22]/1,nu=[6,3,6,0,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=139,lambda=[22,28,39,55,41,22]/1,nu=[0,4,4,4,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=141,lambda=[22,28,39,55,41,22]/1,nu=[0,4,4,4,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=161,lambda=[20,28,37,55,41,22]/1,nu=[3,4,7,4,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=182,lambda=[22,27,38,54,38,22]/1,nu=[0,11,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=184,lambda=[22,27,38,54,38,22]/1,nu=[0,11,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=186,lambda=[22,27,38,54,38,22]/1,nu=[0,11,11,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=196,lambda=[19,27,38,54,41,22]/1,nu=[11,11,11,11,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=197,lambda=[19,27,38,54,41,22]/1,nu=[11,11,11,11,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=212,lambda=[22,26,37,52,36,22]/1,nu=[0,11,11,16,16,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=215,lambda=[20,27,36,54,38,22]/1,nu=[6,11,17,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=221,lambda=[19,30,37,54,38,22]/1,nu=[11,0,14,11,11,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=226,lambda=[19,27,37,54,41,22]/1,nu=[11,11,14,11,0,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=234,lambda=[22,26,37,53,37,18]/1,nu=[0,7,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=246,lambda=[18,26,37,53,37,22]/1,nu=[7,7,7,7,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=248,lambda=[18,26,37,53,37,22]/1,nu=[7,7,7,7,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=250,lambda=[18,26,37,53,37,22]/1,nu=[7,7,7,7,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=257,lambda=[19,26,34,50,34,22]/1,nu=[11,11,22,22,22,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=277,lambda=[17,25,36,51,35,22]/1,nu=[14,14,14,19,19,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=280,lambda=[18,26,36,53,37,22]/1,nu=[14,14,17,14,14,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=295,lambda=[17,25,36,52,36,17]/1,nu=[17,17,17,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=337,lambda=[16,24,29,45,35,22]/1,nu=[19,19,38,38,19,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=339,lambda=[16,24,29,45,35,22]/1,nu=[19,19,38,38,19,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=380,lambda=[15,23,27,43,34,15]/1,nu=[11,11,22,22,11,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=247,lambda=[18,26,37,53,37,22]/1,nu=[7,7,7,7,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=270,lambda=[18,30,37,53,36,18]/1,nu=[14,0,14,14,17,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=276,lambda=[18,26,37,53,35,20]/1,nu=[7,7,7,7,10,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=278,lambda=[15,25,34,50,36,22]/1,nu=[11,7,11,11,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=296,lambda=[17,25,36,52,36,17]/1,nu=[17,17,17,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=311,lambda=[22,25,34,50,34,17]/1,nu=[0,7,11,11,11,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=312,lambda=[22,23,36,50,34,17]/1,nu=[0,11,7,11,11,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=317,lambda=[13,26,32,48,32,17]/1,nu=[14,7,14,14,14,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=324,lambda=[17,25,36,52,35,17]/1,nu=[17,17,17,17,20,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=325,lambda=[14,24,33,49,35,16]/1,nu=[25,17,25,25,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=352,lambda=[22,24,34,45,29,16]/1,nu=[0,19,22,38,38,19]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=361,lambda=[22,22,33,45,33,18]/1,nu=[0,27,27,40,27,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=375,lambda=[13,24,32,48,32,16]/1,nu=[28,17,28,28,28,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=376,lambda=[16,22,35,49,33,16]/1,nu=[17,25,17,25,25,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=387,lambda=[15,23,34,43,27,15]/1,nu=[11,11,11,22,22,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=402,lambda=[16,20,25,41,31,18]/1,nu=[19,33,52,52,33,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=409,lambda=[13,23,32,43,27,15]/1,nu=[14,11,14,22,22,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=417,lambda=[12,20,31,42,31,17]/1,nu=[33,33,33,49,33,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=421,lambda=[14,22,25,41,25,14]/1,nu=[25,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=429,lambda=[14,22,24,40,25,14]/1,nu=[25,25,55,55,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=434,lambda=[15,20,24,40,31,15]/1,nu=[22,33,55,55,33,22]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=446,lambda=[11,19,24,40,30,17]/1,nu=[36,36,55,55,36,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=467,lambda=[12,22,23,39,25,14]/1,nu=[33,25,58,58,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=470,lambda=[11,19,23,39,30,15]/1,nu=[18,18,29,29,18,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=102,lambda=[20,30,39,57,41,22]/1,nu=[3,0,3,0,0,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=249,lambda=[18,26,37,53,37,22]/1,nu=[7,7,7,7,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=298,lambda=[17,25,36,52,36,17]/1,nu=[17,17,17,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=423,lambda=[14,22,25,41,25,14]/1,nu=[25,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=440,lambda=[13,22,25,41,25,14]/1,nu=[28,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=236,lambda=[22,26,37,53,37,18]/1,nu=[0,7,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=262,lambda=[22,25,36,50,34,15]/1,nu=[0,7,7,11,11,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=266,lambda=[20,26,35,53,37,18]/1,nu=[3,7,10,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=273,lambda=[18,30,36,53,37,18]/1,nu=[14,0,17,14,14,14]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=297,lambda=[17,25,36,52,36,17]/1,nu=[17,17,17,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=306,lambda=[18,25,32,48,32,13]/1,nu=[7,7,14,14,14,14]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=323,lambda=[16,24,35,49,33,14]/1,nu=[17,17,17,25,25,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=327,lambda=[17,25,34,50,34,22]/1,nu=[7,7,11,11,11,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=328,lambda=[17,25,35,52,36,17]/1,nu=[17,17,20,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=329,lambda=[17,23,34,50,36,22]/1,nu=[7,11,11,11,7,0]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=355,lambda=[16,24,29,45,34,22]/1,nu=[19,19,38,38,22,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=358,lambda=[18,22,33,45,33,22]/1,nu=[14,27,27,40,27,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=377,lambda=[16,24,32,48,32,13]/1,nu=[17,17,28,28,28,28]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=378,lambda=[16,22,33,49,35,16]/1,nu=[17,25,25,25,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=382,lambda=[15,23,27,43,34,15]/1,nu=[11,11,22,22,11,11]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=394,lambda=[15,23,27,43,32,13]/1,nu=[11,11,22,22,14,14]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=398,lambda=[18,20,31,41,25,16]/1,nu=[14,33,33,52,52,19]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=400,lambda=[17,20,31,42,31,12]/1,nu=[17,33,33,49,33,33]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=422,lambda=[14,22,25,41,25,14]/1,nu=[25,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=428,lambda=[14,22,25,40,24,14]/1,nu=[25,25,50,55,55,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=431,lambda=[17,19,30,40,24,11]/1,nu=[17,36,36,55,55,36]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=442,lambda=[15,20,31,40,24,15]/1,nu=[22,33,33,55,55,22]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=459,lambda=[14,22,25,39,23,12]/1,nu=[25,25,50,58,58,33]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=468,lambda=[15,19,30,39,23,11]/1,nu=[11,18,18,29,29,18]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=78,lambda=[22,30,41,57,39,20]/1,nu=[0,0,0,0,3,3]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=238,lambda=[22,26,37,53,37,18]/1,nu=[0,7,7,7,7,7]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=299,lambda=[17,25,36,52,36,17]/1,nu=[17,17,17,17,17,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=424,lambda=[14,22,25,41,25,14]/1,nu=[25,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=427,lambda=[14,22,25,41,25,13]/1,nu=[25,25,50,50,50,28]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=357,lambda=[22,23,35,45,29,16]/1,nu=[0,22,19,38,38,19]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=363,lambda=[16,23,29,45,35,22]/1,nu=[19,22,38,38,19,0]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=403,lambda=[15,22,27,43,34,15]/1,nu=[22,25,44,44,22,22]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=413,lambda=[15,22,34,43,27,15]/1,nu=[22,25,22,44,44,22]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=418,lambda=[16,21,32,48,32,16]/1,nu=[17,28,28,28,28,17]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=419,lambda=[14,22,25,41,25,14]/1,nu=[25,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=420,lambda=[14,22,25,41,25,14]/1,nu=[25,25,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=433,lambda=[14,21,25,41,25,14]/1,nu=[25,28,50,50,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=461,lambda=[14,20,25,39,23,14]/1,nu=[25,33,50,58,58,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=462,lambda=[14,20,23,39,25,14]/1,nu=[25,33,58,58,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=471,lambda=[13,12,23,30,23,13]/1,nu=[15,30,30,45,30,15]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=472,lambda=[13,12,23,30,23,13]/1,nu=[15,30,30,45,30,15]/1) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=481,lambda=[14,18,21,33,21,14]/1,nu=[25,38,63,76,63,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=483,lambda=[13,12,23,30,22,13]/1,nu=[30,60,60,90,63,30]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=485,lambda=[13,12,22,30,23,13]/1,nu=[30,60,63,90,60,30]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=486,lambda=[14,19,25,38,22,11]/1,nu=[25,36,50,61,61,36]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=492,lambda=[11,19,22,38,25,14]/1,nu=[36,36,61,61,50,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=495,lambda=[14,17,20,31,20,9]/1,nu=[25,41,66,82,66,41]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=501,lambda=[9,17,20,31,20,14]/1,nu=[41,41,66,82,66,25]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=507,lambda=[8,16,19,29,19,8]/1,nu=[44,44,69,88,69,44]/2) [  6,  8, 11, 15, 11,  6 ]/1
survive:final parameter(x=502,lambda=[11,12,21,30,23,13]/1,nu=[18,30,33,45,30,15]/1) [  6,  8, 11, 15, 11,  6 ]/1
cell character: 3 springer_O:3
survive:final parameter(x=496,lambda=[13,12,23,30,21,11]/1,nu=[15,30,30,45,33,18]/1) [  6,  8, 11, 15, 11,  6 ]/1
cell character: 3 springer_O:3
dim: 1 6
Orbit by diagram: (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 0, 0, 0 ])

Computing weak packet for orbit: simply connected root datum of Lie type 'E6' [ 16, 22, 30, 42, 30, 16 ] dim=72
Computing weak packets for connected real group with Lie algebra 'e6(so(10).u(1))'
gamma:[ 24, 33, 45, 63, 45, 24 ]/1
gamma_final:[  8, 11, 15, 21, 15,  8 ]/1
Initializing CharacterTable for Lie type 'E6'
Step 1/6
Step 2/6
Step 3/6
Step 4/6
Step 5/6
Step 6/6
integral data: st_int
rd_int:adjoint root datum of Lie type 'E6'
st_int.rd: simply connected root datum of Lie type 'E6'
O_check_int:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 2, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'E6',(),[ 2, 2, 2, 2, 2, 2 ])
computing springer map of[0,0,0,0,0,0]
O: (adjoint root datum of Lie type 'E6',(),[ 0, 0, 0, 0, 0, 0 ])
survive:final parameter(x=0,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=1,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=2,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=3,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=4,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=5,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=6,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=7,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=9,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=10,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=12,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=15,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=27,lambda=[24,33,45,63,45,23]/1,nu=[0,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=28,lambda=[24,33,45,63,45,23]/1,nu=[0,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=29,lambda=[24,33,45,63,45,23]/1,nu=[0,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=33,lambda=[24,33,45,63,44,24]/1,nu=[0,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=34,lambda=[24,33,45,63,44,24]/1,nu=[0,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=35,lambda=[24,33,45,63,44,24]/1,nu=[0,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=39,lambda=[24,33,45,62,45,24]/1,nu=[0,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=40,lambda=[24,33,45,62,45,24]/1,nu=[0,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=41,lambda=[24,33,45,62,45,24]/1,nu=[0,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=42,lambda=[24,33,45,62,45,24]/1,nu=[0,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=45,lambda=[24,33,44,63,45,24]/1,nu=[0,0,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=46,lambda=[24,33,44,63,45,24]/1,nu=[0,0,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=47,lambda=[24,33,44,63,45,24]/1,nu=[0,0,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=57,lambda=[23,33,45,63,45,24]/1,nu=[3,0,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=58,lambda=[23,33,45,63,45,24]/1,nu=[3,0,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=60,lambda=[23,33,45,63,45,24]/1,nu=[3,0,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=63,lambda=[24,33,45,62,45,23]/1,nu=[0,0,0,3,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=64,lambda=[24,33,44,63,45,23]/1,nu=[0,0,3,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=65,lambda=[24,33,44,63,44,24]/1,nu=[0,0,3,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=70,lambda=[23,33,45,63,44,24]/1,nu=[3,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=71,lambda=[23,33,45,62,45,24]/1,nu=[3,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=73,lambda=[24,33,45,63,43,22]/1,nu=[0,0,0,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=74,lambda=[24,33,45,63,43,22]/1,nu=[0,0,0,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=79,lambda=[24,33,45,61,43,24]/1,nu=[0,0,0,3,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=80,lambda=[24,33,45,61,43,24]/1,nu=[0,0,0,3,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=82,lambda=[24,33,45,61,43,24]/1,nu=[0,0,0,3,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=85,lambda=[24,33,43,61,45,24]/1,nu=[0,0,3,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=86,lambda=[24,33,43,61,45,24]/1,nu=[0,0,3,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=87,lambda=[24,33,43,61,45,24]/1,nu=[0,0,3,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=97,lambda=[22,33,43,63,45,24]/1,nu=[3,0,3,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=98,lambda=[22,33,43,63,45,24]/1,nu=[3,0,3,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=103,lambda=[24,33,45,61,41,22]/1,nu=[0,0,0,3,6,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=105,lambda=[24,33,43,59,43,24]/1,nu=[0,0,3,6,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=107,lambda=[24,33,44,63,43,22]/1,nu=[0,0,3,0,6,6]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=108,lambda=[24,33,43,61,45,23]/1,nu=[0,0,6,6,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=109,lambda=[22,33,41,61,45,24]/1,nu=[3,0,6,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=113,lambda=[23,33,45,61,43,24]/1,nu=[3,0,0,6,6,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=115,lambda=[22,33,43,63,44,24]/1,nu=[6,0,6,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=118,lambda=[24,33,45,60,42,21]/1,nu=[0,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=119,lambda=[24,33,45,60,42,21]/1,nu=[0,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=124,lambda=[24,33,42,60,42,24]/1,nu=[0,0,9,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=125,lambda=[24,33,42,60,42,24]/1,nu=[0,0,9,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=142,lambda=[21,33,42,60,45,24]/1,nu=[9,0,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=144,lambda=[21,33,42,60,45,24]/1,nu=[9,0,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=151,lambda=[24,33,43,58,42,21]/1,nu=[0,0,6,15,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=152,lambda=[24,33,42,60,40,22]/1,nu=[0,0,9,9,15,6]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=154,lambda=[24,33,42,59,42,24]/1,nu=[0,0,9,12,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=155,lambda=[22,33,40,60,42,24]/1,nu=[6,0,15,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=158,lambda=[24,27,42,57,42,24]/1,nu=[0,18,9,18,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=163,lambda=[21,33,42,58,43,24]/1,nu=[9,0,9,15,6,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=169,lambda=[24,33,41,59,41,20]/1,nu=[0,0,6,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=170,lambda=[24,33,41,59,41,20]/1,nu=[0,0,6,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=187,lambda=[20,33,41,59,41,24]/1,nu=[6,0,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=188,lambda=[20,33,41,59,41,24]/1,nu=[6,0,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=201,lambda=[24,33,42,57,39,21]/1,nu=[0,0,9,18,18,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=204,lambda=[24,33,41,58,41,20]/1,nu=[0,0,12,15,12,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=206,lambda=[21,33,39,57,42,24]/1,nu=[9,0,18,18,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=210,lambda=[24,26,42,56,41,20]/1,nu=[0,21,9,21,12,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=214,lambda=[24,27,41,57,41,24]/1,nu=[0,9,6,9,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=220,lambda=[20,33,41,58,41,24]/1,nu=[12,0,12,15,12,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=223,lambda=[20,26,41,56,42,24]/1,nu=[12,21,12,21,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=239,lambda=[19,33,40,58,40,19]/1,nu=[15,0,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=240,lambda=[19,33,40,58,40,19]/1,nu=[15,0,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=260,lambda=[24,25,41,55,37,20]/1,nu=[0,12,6,12,12,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=265,lambda=[24,26,40,56,40,19]/1,nu=[0,21,15,21,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=267,lambda=[20,25,37,55,41,24]/1,nu=[6,12,12,12,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=272,lambda=[19,33,40,57,40,19]/1,nu=[15,0,15,18,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=279,lambda=[19,26,40,56,40,24]/1,nu=[15,21,15,21,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=326,lambda=[18,25,39,55,39,18]/1,nu=[9,12,9,12,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=8,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=13,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=14,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=17,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=20,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=22,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=31,lambda=[24,33,45,63,45,23]/1,nu=[0,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=36,lambda=[24,33,45,63,44,24]/1,nu=[0,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=37,lambda=[24,33,45,63,44,24]/1,nu=[0,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=43,lambda=[24,33,45,62,45,24]/1,nu=[0,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=50,lambda=[24,33,44,63,45,24]/1,nu=[0,0,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=51,lambda=[24,32,45,63,45,24]/1,nu=[0,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=52,lambda=[24,32,45,63,45,24]/1,nu=[0,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=54,lambda=[24,32,45,63,45,24]/1,nu=[0,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=66,lambda=[24,32,45,63,45,23]/1,nu=[0,3,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=67,lambda=[24,32,45,63,44,24]/1,nu=[0,3,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=75,lambda=[24,33,45,63,43,22]/1,nu=[0,0,0,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=77,lambda=[24,33,45,63,43,22]/1,nu=[0,0,0,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=81,lambda=[24,33,45,61,43,24]/1,nu=[0,0,0,3,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=83,lambda=[24,33,45,61,43,24]/1,nu=[0,0,0,3,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=89,lambda=[24,33,43,61,45,24]/1,nu=[0,0,3,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=91,lambda=[24,31,45,61,45,24]/1,nu=[0,3,0,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=92,lambda=[24,31,45,61,45,24]/1,nu=[0,3,0,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=95,lambda=[24,31,45,61,45,24]/1,nu=[0,3,0,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=104,lambda=[24,31,45,59,43,24]/1,nu=[0,3,0,6,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=110,lambda=[24,32,45,63,43,22]/1,nu=[0,3,0,0,6,6]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=111,lambda=[24,31,45,61,45,23]/1,nu=[0,6,0,6,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=120,lambda=[24,33,45,60,42,21]/1,nu=[0,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=122,lambda=[24,33,45,60,42,21]/1,nu=[0,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=126,lambda=[24,33,42,60,42,24]/1,nu=[0,0,9,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=128,lambda=[24,33,42,60,42,24]/1,nu=[0,0,9,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=130,lambda=[24,30,45,60,42,24]/1,nu=[0,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=132,lambda=[24,30,45,60,42,24]/1,nu=[0,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=134,lambda=[24,30,45,60,42,24]/1,nu=[0,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=136,lambda=[24,30,42,60,45,24]/1,nu=[0,9,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=137,lambda=[24,30,42,60,45,24]/1,nu=[0,9,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=140,lambda=[24,30,42,60,45,24]/1,nu=[0,9,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=149,lambda=[24,33,45,60,41,21]/1,nu=[0,0,0,9,12,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=150,lambda=[24,31,45,58,42,21]/1,nu=[0,6,0,15,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=153,lambda=[24,30,39,57,42,24]/1,nu=[0,9,18,18,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=156,lambda=[24,30,45,60,40,22]/1,nu=[0,9,0,9,15,6]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=157,lambda=[24,30,45,59,42,24]/1,nu=[0,9,0,12,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=159,lambda=[24,30,42,60,45,23]/1,nu=[0,9,9,9,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=171,lambda=[24,33,41,59,41,20]/1,nu=[0,0,6,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=173,lambda=[24,33,41,59,41,20]/1,nu=[0,0,6,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=175,lambda=[24,29,45,59,41,20]/1,nu=[0,6,0,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=177,lambda=[24,29,45,59,41,20]/1,nu=[0,6,0,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=179,lambda=[24,29,45,59,41,20]/1,nu=[0,6,0,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=181,lambda=[24,29,41,59,41,24]/1,nu=[0,6,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=183,lambda=[24,29,41,59,41,24]/1,nu=[0,6,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=185,lambda=[24,29,41,59,41,24]/1,nu=[0,6,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=193,lambda=[20,29,41,59,45,24]/1,nu=[6,6,6,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=200,lambda=[24,30,45,57,39,21]/1,nu=[0,9,0,18,18,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=202,lambda=[24,33,41,59,40,20]/1,nu=[0,0,12,12,15,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=203,lambda=[24,30,38,56,41,20]/1,nu=[0,9,21,21,12,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=208,lambda=[24,29,45,59,40,20]/1,nu=[0,12,0,12,15,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=209,lambda=[24,29,45,58,41,20]/1,nu=[0,12,0,15,12,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=211,lambda=[24,29,41,59,39,22]/1,nu=[0,6,6,6,9,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=213,lambda=[24,29,39,57,41,24]/1,nu=[0,6,9,9,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=227,lambda=[24,28,40,53,40,24]/1,nu=[0,15,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=229,lambda=[24,28,40,53,40,24]/1,nu=[0,15,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=231,lambda=[24,28,40,53,40,24]/1,nu=[0,15,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=233,lambda=[24,28,40,58,40,19]/1,nu=[0,15,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=235,lambda=[24,28,40,58,40,19]/1,nu=[0,15,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=237,lambda=[24,28,40,58,40,19]/1,nu=[0,15,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=245,lambda=[19,28,40,58,40,24]/1,nu=[15,15,15,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=251,lambda=[24,28,40,50,37,21]/1,nu=[0,15,15,39,24,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=254,lambda=[24,29,37,55,37,20]/1,nu=[0,6,12,12,12,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=263,lambda=[24,28,40,58,39,19]/1,nu=[0,15,15,15,18,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=264,lambda=[24,28,38,56,40,19]/1,nu=[0,15,21,21,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=282,lambda=[24,27,39,51,39,18]/1,nu=[0,9,9,18,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=284,lambda=[24,27,39,51,39,18]/1,nu=[0,9,9,18,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=286,lambda=[24,27,39,51,39,18]/1,nu=[0,9,9,18,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=288,lambda=[18,27,39,51,39,24]/1,nu=[9,9,9,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=294,lambda=[18,27,39,57,39,18]/1,nu=[9,9,9,9,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=302,lambda=[24,27,39,49,37,18]/1,nu=[0,9,9,21,12,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=330,lambda=[24,26,38,49,31,17]/1,nu=[0,21,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=332,lambda=[24,26,38,49,31,17]/1,nu=[0,21,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=342,lambda=[17,26,38,49,38,17]/1,nu=[21,21,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=350,lambda=[24,26,38,48,31,17]/1,nu=[0,21,21,45,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=385,lambda=[16,25,37,47,29,16]/1,nu=[12,12,12,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=11,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=30,lambda=[24,33,45,63,45,23]/1,nu=[0,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=59,lambda=[23,33,45,63,45,24]/1,nu=[3,0,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=69,lambda=[23,33,45,63,45,23]/1,nu=[3,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=76,lambda=[24,33,45,63,43,22]/1,nu=[0,0,0,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=99,lambda=[22,33,43,63,45,24]/1,nu=[3,0,3,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=112,lambda=[23,33,45,63,43,22]/1,nu=[3,0,0,0,6,6]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=114,lambda=[22,33,43,63,45,23]/1,nu=[6,0,6,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=121,lambda=[24,33,45,60,42,21]/1,nu=[0,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=143,lambda=[21,33,42,60,45,24]/1,nu=[9,0,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=162,lambda=[23,33,45,60,42,21]/1,nu=[3,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=165,lambda=[21,33,42,60,45,23]/1,nu=[9,0,9,9,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=166,lambda=[22,33,43,63,43,22]/1,nu=[3,0,3,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=205,lambda=[22,33,39,59,41,20]/1,nu=[3,0,9,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=217,lambda=[21,33,42,57,42,21]/1,nu=[9,0,9,18,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=218,lambda=[20,33,41,59,39,22]/1,nu=[6,0,6,6,9,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=258,lambda=[21,33,38,56,41,20]/1,nu=[9,0,21,21,12,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=269,lambda=[20,33,41,56,38,21]/1,nu=[12,0,12,21,21,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=275,lambda=[20,25,41,55,41,20]/1,nu=[6,12,6,12,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=307,lambda=[20,33,37,55,37,20]/1,nu=[6,0,12,12,12,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=313,lambda=[20,24,36,54,40,19]/1,nu=[12,27,27,27,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=321,lambda=[19,24,40,54,36,20]/1,nu=[15,27,15,27,27,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=362,lambda=[19,23,35,53,35,19]/1,nu=[15,30,30,30,30,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=392,lambda=[18,21,33,39,33,18]/1,nu=[9,18,18,36,18,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=16,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=18,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=19,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=21,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=23,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=25,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=38,lambda=[24,33,45,63,44,24]/1,nu=[0,0,0,0,3,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=44,lambda=[24,33,45,62,45,24]/1,nu=[0,0,0,3,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=48,lambda=[24,33,44,63,45,24]/1,nu=[0,0,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=49,lambda=[24,33,44,63,45,24]/1,nu=[0,0,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=53,lambda=[24,32,45,63,45,24]/1,nu=[0,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=55,lambda=[24,32,45,63,45,24]/1,nu=[0,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=56,lambda=[24,32,45,63,45,24]/1,nu=[0,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=61,lambda=[23,33,45,63,45,24]/1,nu=[3,0,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=68,lambda=[24,32,44,63,45,24]/1,nu=[0,3,3,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=72,lambda=[23,32,45,63,45,24]/1,nu=[3,3,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=84,lambda=[24,33,45,61,43,24]/1,nu=[0,0,0,3,3,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=88,lambda=[24,33,43,61,45,24]/1,nu=[0,0,3,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=90,lambda=[24,33,43,61,45,24]/1,nu=[0,0,3,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=93,lambda=[24,31,45,61,45,24]/1,nu=[0,3,0,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=94,lambda=[24,31,45,61,45,24]/1,nu=[0,3,0,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=96,lambda=[24,31,45,61,45,24]/1,nu=[0,3,0,3,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=100,lambda=[22,33,43,63,45,24]/1,nu=[3,0,3,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=101,lambda=[22,33,43,63,45,24]/1,nu=[3,0,3,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=106,lambda=[24,31,43,59,45,24]/1,nu=[0,3,3,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=116,lambda=[23,31,45,61,45,24]/1,nu=[3,6,0,6,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=117,lambda=[22,32,43,63,45,24]/1,nu=[6,3,6,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=127,lambda=[24,33,42,60,42,24]/1,nu=[0,0,9,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=129,lambda=[24,33,42,60,42,24]/1,nu=[0,0,9,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=131,lambda=[24,30,45,60,42,24]/1,nu=[0,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=133,lambda=[24,30,45,60,42,24]/1,nu=[0,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=135,lambda=[24,30,45,60,42,24]/1,nu=[0,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=138,lambda=[24,30,42,60,45,24]/1,nu=[0,9,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=139,lambda=[24,30,42,60,45,24]/1,nu=[0,9,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=141,lambda=[24,30,42,60,45,24]/1,nu=[0,9,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=145,lambda=[21,33,42,60,45,24]/1,nu=[9,0,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=146,lambda=[21,33,42,60,45,24]/1,nu=[9,0,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=148,lambda=[24,30,42,57,39,24]/1,nu=[0,9,9,18,18,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=160,lambda=[24,30,42,59,45,24]/1,nu=[0,9,9,12,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=161,lambda=[22,30,40,60,45,24]/1,nu=[6,9,15,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=164,lambda=[21,31,42,58,45,24]/1,nu=[9,6,9,15,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=167,lambda=[21,33,41,60,45,24]/1,nu=[9,0,12,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=168,lambda=[23,30,45,60,42,24]/1,nu=[3,9,0,9,9,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=176,lambda=[24,29,45,59,41,20]/1,nu=[0,6,0,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=182,lambda=[24,29,41,59,41,24]/1,nu=[0,6,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=184,lambda=[24,29,41,59,41,24]/1,nu=[0,6,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=186,lambda=[24,29,41,59,41,24]/1,nu=[0,6,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=190,lambda=[20,33,41,59,41,24]/1,nu=[6,0,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=192,lambda=[20,33,41,59,41,24]/1,nu=[6,0,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=195,lambda=[20,29,41,59,45,24]/1,nu=[6,6,6,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=196,lambda=[20,29,41,59,45,24]/1,nu=[6,6,6,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=197,lambda=[20,29,41,59,45,24]/1,nu=[6,6,6,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=207,lambda=[21,30,39,57,45,24]/1,nu=[9,9,18,18,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=212,lambda=[24,29,41,57,39,24]/1,nu=[0,6,6,9,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=215,lambda=[22,29,39,59,41,24]/1,nu=[3,6,9,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=216,lambda=[20,30,41,56,38,24]/1,nu=[12,9,12,21,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=221,lambda=[20,33,40,59,41,24]/1,nu=[12,0,15,12,12,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=225,lambda=[20,29,41,58,45,24]/1,nu=[12,12,12,15,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=226,lambda=[20,29,40,59,45,24]/1,nu=[12,12,15,12,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=228,lambda=[24,28,40,53,40,24]/1,nu=[0,15,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=230,lambda=[24,28,40,53,40,24]/1,nu=[0,15,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=232,lambda=[24,28,40,53,40,24]/1,nu=[0,15,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=234,lambda=[24,28,40,58,40,19]/1,nu=[0,15,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=246,lambda=[19,28,40,58,40,24]/1,nu=[15,15,15,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=248,lambda=[19,28,40,58,40,24]/1,nu=[15,15,15,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=250,lambda=[19,28,40,58,40,24]/1,nu=[15,15,15,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=253,lambda=[21,28,37,50,40,24]/1,nu=[9,15,24,39,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=257,lambda=[20,29,37,55,37,24]/1,nu=[6,6,12,12,12,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=277,lambda=[19,28,40,56,38,24]/1,nu=[15,15,15,21,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=280,lambda=[19,28,39,58,40,24]/1,nu=[15,15,18,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=283,lambda=[24,27,39,51,39,18]/1,nu=[0,9,9,18,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=289,lambda=[18,27,39,51,39,24]/1,nu=[9,9,9,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=291,lambda=[18,27,39,51,39,24]/1,nu=[9,9,9,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=293,lambda=[18,27,39,51,39,24]/1,nu=[9,9,9,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=295,lambda=[18,27,39,57,39,18]/1,nu=[9,9,9,9,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=316,lambda=[18,27,37,49,39,24]/1,nu=[9,9,12,21,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=337,lambda=[17,26,31,49,38,24]/1,nu=[21,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=339,lambda=[17,26,31,49,38,24]/1,nu=[21,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=343,lambda=[17,26,38,49,38,17]/1,nu=[21,21,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=356,lambda=[17,26,31,48,38,24]/1,nu=[21,21,42,45,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=380,lambda=[16,25,29,47,37,16]/1,nu=[12,12,24,24,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=189,lambda=[20,33,41,59,41,24]/1,nu=[6,0,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=194,lambda=[20,29,41,59,45,24]/1,nu=[6,6,6,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=219,lambda=[16,29,37,55,41,24]/1,nu=[12,6,12,12,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=224,lambda=[20,29,41,59,45,23]/1,nu=[12,12,12,12,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=241,lambda=[19,33,40,58,40,19]/1,nu=[15,0,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=247,lambda=[19,28,40,58,40,24]/1,nu=[15,15,15,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=255,lambda=[24,33,41,57,39,20]/1,nu=[0,0,6,9,9,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=256,lambda=[24,28,39,53,40,24]/1,nu=[0,15,18,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=259,lambda=[24,29,45,57,39,20]/1,nu=[0,6,0,9,9,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=270,lambda=[19,33,40,58,39,19]/1,nu=[15,0,15,15,18,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=271,lambda=[15,29,36,54,40,19]/1,nu=[27,12,27,27,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=276,lambda=[19,28,40,58,38,22]/1,nu=[15,15,15,15,21,6]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=278,lambda=[16,28,37,55,40,24]/1,nu=[24,15,24,24,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=290,lambda=[18,27,39,51,39,24]/1,nu=[9,9,9,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=296,lambda=[18,27,39,57,39,18]/1,nu=[9,9,9,9,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=304,lambda=[24,28,36,49,36,20]/1,nu=[0,15,27,42,27,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=305,lambda=[24,27,38,51,39,18]/1,nu=[0,18,21,36,18,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=308,lambda=[24,24,40,49,36,20]/1,nu=[0,27,15,42,27,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=311,lambda=[24,28,37,55,37,19]/1,nu=[0,15,24,24,24,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=312,lambda=[24,25,40,55,37,19]/1,nu=[0,24,15,24,24,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=314,lambda=[18,27,39,48,36,21]/1,nu=[18,18,18,45,27,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=317,lambda=[14,28,35,53,35,19]/1,nu=[30,15,30,30,30,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=318,lambda=[19,33,40,56,38,19]/1,nu=[15,0,15,21,21,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=319,lambda=[16,27,37,51,39,24]/1,nu=[12,9,12,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=324,lambda=[18,27,39,57,38,18]/1,nu=[18,18,18,18,21,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=325,lambda=[15,27,36,54,39,18]/1,nu=[27,18,27,27,18,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=334,lambda=[24,26,38,49,31,17]/1,nu=[0,21,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=338,lambda=[17,26,31,49,38,24]/1,nu=[21,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=344,lambda=[17,26,38,49,38,17]/1,nu=[21,21,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=352,lambda=[24,26,37,49,31,17]/1,nu=[0,21,24,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=353,lambda=[24,27,36,48,36,18]/1,nu=[0,18,27,45,27,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=354,lambda=[17,26,27,45,34,20]/1,nu=[21,21,54,54,33,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=359,lambda=[24,24,39,48,36,18]/1,nu=[0,27,18,45,27,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=361,lambda=[24,23,35,48,35,19]/1,nu=[0,30,30,45,30,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=366,lambda=[17,26,38,47,36,17]/1,nu=[21,21,21,48,27,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=368,lambda=[13,27,34,46,34,19]/1,nu=[33,18,33,51,33,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=369,lambda=[15,26,36,49,38,17]/1,nu=[27,21,27,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=372,lambda=[18,23,39,47,35,20]/1,nu=[9,15,9,24,15,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=375,lambda=[14,27,35,53,35,18]/1,nu=[15,9,15,15,15,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=376,lambda=[18,24,39,54,36,18]/1,nu=[18,27,18,27,27,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=381,lambda=[16,25,29,47,37,16]/1,nu=[12,12,24,24,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=387,lambda=[16,25,37,47,29,16]/1,nu=[12,12,12,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=393,lambda=[24,26,36,47,31,17]/1,nu=[0,21,27,48,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=395,lambda=[16,25,26,44,34,16]/1,nu=[24,24,57,57,33,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=401,lambda=[24,23,35,47,35,18]/1,nu=[0,15,15,24,15,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=402,lambda=[17,21,26,44,33,19]/1,nu=[21,36,57,57,36,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=407,lambda=[16,25,37,46,29,16]/1,nu=[24,24,24,51,48,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=409,lambda=[14,25,35,47,29,16]/1,nu=[15,12,15,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=410,lambda=[13,26,34,45,34,17]/1,nu=[33,21,33,54,33,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=411,lambda=[12,26,26,44,33,19]/1,nu=[36,21,57,57,36,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=415,lambda=[17,23,38,46,35,17]/1,nu=[21,30,21,51,30,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=417,lambda=[12,21,33,45,33,18]/1,nu=[18,18,18,27,18,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=421,lambda=[15,24,27,45,27,15]/1,nu=[27,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=426,lambda=[17,20,25,37,32,18]/1,nu=[21,39,60,78,39,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=429,lambda=[15,24,25,43,27,15]/1,nu=[27,27,60,60,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=434,lambda=[16,21,25,43,33,16]/1,nu=[12,18,30,30,18,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=439,lambda=[13,25,34,44,29,16]/1,nu=[33,24,33,57,48,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=441,lambda=[12,25,25,43,33,16]/1,nu=[18,12,30,30,18,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=445,lambda=[12,21,33,44,33,17]/1,nu=[36,36,36,57,36,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=446,lambda=[11,20,25,43,32,18]/1,nu=[39,39,60,60,39,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=449,lambda=[14,23,25,33,25,14]/1,nu=[15,15,30,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=466,lambda=[10,19,24,35,31,17]/1,nu=[42,42,63,84,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=467,lambda=[12,24,24,42,27,15]/1,nu=[36,27,63,63,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=470,lambda=[11,20,24,42,32,16]/1,nu=[39,39,63,63,39,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=24,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=62,lambda=[23,33,45,63,45,24]/1,nu=[3,0,0,0,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=102,lambda=[22,33,43,63,45,24]/1,nu=[3,0,3,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=147,lambda=[21,33,42,60,45,24]/1,nu=[9,0,9,9,0,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=191,lambda=[20,33,41,59,41,24]/1,nu=[6,0,6,6,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=198,lambda=[20,29,41,59,45,24]/1,nu=[6,6,6,6,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=243,lambda=[19,33,40,58,40,19]/1,nu=[15,0,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=249,lambda=[19,28,40,58,40,24]/1,nu=[15,15,15,15,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=292,lambda=[18,27,39,51,39,24]/1,nu=[9,9,9,18,9,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=298,lambda=[18,27,39,57,39,18]/1,nu=[9,9,9,9,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=340,lambda=[17,26,31,49,38,24]/1,nu=[21,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=346,lambda=[17,26,38,49,38,17]/1,nu=[21,21,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=371,lambda=[16,26,31,49,38,24]/1,nu=[24,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=383,lambda=[16,25,29,47,37,16]/1,nu=[12,12,24,24,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=389,lambda=[16,25,37,47,29,16]/1,nu=[12,12,12,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=412,lambda=[15,25,29,47,37,16]/1,nu=[27,24,48,48,24,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=423,lambda=[15,24,27,45,27,15]/1,nu=[27,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=440,lambda=[14,24,27,45,27,15]/1,nu=[30,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=451,lambda=[14,23,25,33,25,14]/1,nu=[15,15,30,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=465,lambda=[13,23,25,33,25,14]/1,nu=[33,30,60,90,60,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=172,lambda=[24,33,41,59,41,20]/1,nu=[0,0,6,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=178,lambda=[24,29,45,59,41,20]/1,nu=[0,6,0,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=199,lambda=[24,29,41,55,37,16]/1,nu=[0,6,6,12,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=222,lambda=[23,29,45,59,41,20]/1,nu=[3,12,0,12,12,12]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=236,lambda=[24,28,40,58,40,19]/1,nu=[0,15,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=242,lambda=[19,33,40,58,40,19]/1,nu=[15,0,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=252,lambda=[24,28,40,53,39,24]/1,nu=[0,15,15,30,18,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=262,lambda=[24,28,40,55,37,16]/1,nu=[0,15,15,24,24,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=266,lambda=[22,28,38,58,40,19]/1,nu=[6,15,21,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=268,lambda=[19,29,40,54,36,15]/1,nu=[15,12,15,27,27,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=273,lambda=[19,33,39,58,40,19]/1,nu=[15,0,18,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=274,lambda=[20,33,39,57,41,24]/1,nu=[6,0,9,9,6,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=281,lambda=[20,29,39,57,45,24]/1,nu=[6,6,9,9,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=285,lambda=[24,27,39,51,39,18]/1,nu=[0,9,9,18,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=297,lambda=[18,27,39,57,39,18]/1,nu=[9,9,9,9,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=300,lambda=[20,28,36,49,36,24]/1,nu=[12,15,27,42,27,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=301,lambda=[24,27,39,51,37,16]/1,nu=[0,9,9,18,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=303,lambda=[21,27,36,48,39,18]/1,nu=[9,18,27,45,18,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=306,lambda=[19,28,35,53,35,14]/1,nu=[15,15,30,30,30,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=310,lambda=[20,24,36,49,40,24]/1,nu=[12,27,27,42,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=315,lambda=[18,27,39,51,38,24]/1,nu=[18,18,18,36,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=320,lambda=[19,33,38,56,40,19]/1,nu=[15,0,21,21,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=323,lambda=[18,27,39,54,36,15]/1,nu=[18,18,18,27,27,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=327,lambda=[19,28,37,55,37,24]/1,nu=[15,15,24,24,24,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=328,lambda=[18,27,38,57,39,18]/1,nu=[18,18,21,18,18,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=329,lambda=[19,25,37,55,40,24]/1,nu=[15,24,24,24,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=333,lambda=[24,26,38,49,31,17]/1,nu=[0,21,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=341,lambda=[17,26,31,49,38,24]/1,nu=[21,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=345,lambda=[17,26,38,49,38,17]/1,nu=[21,21,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=349,lambda=[20,26,34,45,27,17]/1,nu=[12,21,33,54,54,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=351,lambda=[19,27,34,46,34,13]/1,nu=[15,18,33,51,33,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=355,lambda=[17,26,31,49,37,24]/1,nu=[21,21,42,42,24,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=358,lambda=[19,23,35,48,35,24]/1,nu=[15,30,30,45,30,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=360,lambda=[20,23,35,47,39,18]/1,nu=[6,15,15,24,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=364,lambda=[18,27,36,48,36,24]/1,nu=[18,18,27,45,27,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=365,lambda=[17,26,38,49,36,15]/1,nu=[21,21,21,42,27,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=367,lambda=[17,26,36,47,38,17]/1,nu=[21,21,27,48,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=374,lambda=[18,24,36,48,39,24]/1,nu=[18,27,27,45,18,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=377,lambda=[18,27,35,53,35,14]/1,nu=[9,9,15,15,15,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=378,lambda=[18,24,36,54,39,18]/1,nu=[18,27,27,27,18,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=382,lambda=[16,25,29,47,37,16]/1,nu=[12,12,24,24,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=388,lambda=[16,25,37,47,29,16]/1,nu=[12,12,12,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=391,lambda=[19,26,33,44,26,12]/1,nu=[15,21,36,57,57,36]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=394,lambda=[16,25,29,47,35,14]/1,nu=[12,12,24,24,15,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=396,lambda=[16,25,29,46,37,16]/1,nu=[24,24,48,51,24,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=397,lambda=[17,26,31,47,36,24]/1,nu=[21,21,42,48,27,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=398,lambda=[19,21,33,44,26,17]/1,nu=[15,36,36,57,57,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=400,lambda=[18,21,33,45,33,12]/1,nu=[9,18,18,27,18,18]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=406,lambda=[16,25,34,44,26,16]/1,nu=[24,24,33,57,57,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=408,lambda=[17,26,34,45,34,13]/1,nu=[21,21,33,54,33,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=414,lambda=[18,23,35,47,35,24]/1,nu=[9,15,15,24,15,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=416,lambda=[17,23,35,46,38,17]/1,nu=[21,30,30,51,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=422,lambda=[15,24,27,45,27,15]/1,nu=[27,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=425,lambda=[18,20,32,37,25,17]/1,nu=[18,39,39,78,60,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=428,lambda=[15,24,27,43,25,15]/1,nu=[27,27,54,60,60,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=430,lambda=[16,25,29,44,34,13]/1,nu=[24,24,48,57,33,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=431,lambda=[18,20,32,43,25,11]/1,nu=[18,39,39,60,60,39]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=437,lambda=[16,25,33,43,25,12]/1,nu=[12,12,18,30,30,18]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=442,lambda=[16,21,33,43,25,16]/1,nu=[12,18,18,30,30,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=444,lambda=[17,21,33,44,33,12]/1,nu=[21,36,36,57,36,36]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=450,lambda=[14,23,25,33,25,14]/1,nu=[15,15,30,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=453,lambda=[17,19,31,35,24,10]/1,nu=[21,42,42,84,63,42]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=459,lambda=[15,24,27,42,24,12]/1,nu=[27,27,54,63,63,36]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=468,lambda=[16,20,32,42,24,11]/1,nu=[24,39,39,63,63,39]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=26,lambda=[24,33,45,63,45,24]/1,nu=[0,0,0,0,0,0]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=32,lambda=[24,33,45,63,45,23]/1,nu=[0,0,0,0,0,3]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=78,lambda=[24,33,45,63,43,22]/1,nu=[0,0,0,0,3,3]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=123,lambda=[24,33,45,60,42,21]/1,nu=[0,0,0,9,9,9]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=174,lambda=[24,33,41,59,41,20]/1,nu=[0,0,6,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=180,lambda=[24,29,45,59,41,20]/1,nu=[0,6,0,6,6,6]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=238,lambda=[24,28,40,58,40,19]/1,nu=[0,15,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=244,lambda=[19,33,40,58,40,19]/1,nu=[15,0,15,15,15,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=287,lambda=[24,27,39,51,39,18]/1,nu=[0,9,9,18,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=299,lambda=[18,27,39,57,39,18]/1,nu=[9,9,9,9,9,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=335,lambda=[24,26,38,49,31,17]/1,nu=[0,21,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=347,lambda=[17,26,38,49,38,17]/1,nu=[21,21,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=348,lambda=[24,26,38,49,31,16]/1,nu=[0,21,21,42,42,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=384,lambda=[16,25,29,47,37,16]/1,nu=[12,12,24,24,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=390,lambda=[16,25,37,47,29,16]/1,nu=[12,12,12,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=405,lambda=[16,25,37,47,29,15]/1,nu=[24,24,24,48,48,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=424,lambda=[15,24,27,45,27,15]/1,nu=[27,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=427,lambda=[15,24,27,45,27,14]/1,nu=[27,27,54,54,54,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=452,lambda=[14,23,25,33,25,14]/1,nu=[15,15,30,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=454,lambda=[14,23,25,33,25,13]/1,nu=[30,30,60,90,60,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=261,lambda=[24,27,40,53,40,24]/1,nu=[0,18,15,30,15,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=309,lambda=[24,26,39,51,39,18]/1,nu=[0,21,18,36,18,18]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=322,lambda=[18,26,39,51,39,24]/1,nu=[18,21,18,36,18,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=331,lambda=[24,26,38,49,31,17]/1,nu=[0,21,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=336,lambda=[17,26,31,49,38,24]/1,nu=[21,21,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=357,lambda=[24,25,38,49,31,17]/1,nu=[0,24,21,42,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=363,lambda=[17,25,31,49,38,24]/1,nu=[21,24,42,42,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=370,lambda=[19,33,37,55,37,19]/1,nu=[15,0,24,24,24,15]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=373,lambda=[17,25,38,49,38,17]/1,nu=[21,24,21,42,21,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=379,lambda=[16,25,29,47,37,16]/1,nu=[12,12,24,24,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=386,lambda=[16,25,37,47,29,16]/1,nu=[12,12,12,24,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=399,lambda=[24,24,38,47,31,17]/1,nu=[0,27,21,48,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=403,lambda=[16,24,29,47,37,16]/1,nu=[24,27,48,48,24,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=404,lambda=[17,24,31,47,38,24]/1,nu=[21,27,42,48,21,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=413,lambda=[16,24,37,47,29,16]/1,nu=[24,27,24,48,48,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=418,lambda=[18,23,35,53,35,18]/1,nu=[9,15,15,15,15,9]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=419,lambda=[15,24,27,45,27,15]/1,nu=[27,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=420,lambda=[15,24,27,45,27,15]/1,nu=[27,27,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=433,lambda=[15,23,27,45,27,15]/1,nu=[27,30,54,54,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=436,lambda=[16,23,29,45,37,16]/1,nu=[12,15,24,27,12,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=438,lambda=[17,21,33,39,33,17]/1,nu=[21,36,36,72,36,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=443,lambda=[16,23,37,45,29,16]/1,nu=[12,15,12,27,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=447,lambda=[14,23,25,33,25,14]/1,nu=[15,15,30,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=448,lambda=[14,23,25,33,25,14]/1,nu=[15,15,30,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=455,lambda=[14,23,25,33,24,14]/1,nu=[30,30,60,90,63,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=456,lambda=[14,21,25,31,25,14]/1,nu=[15,18,30,48,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=458,lambda=[14,23,24,33,25,14]/1,nu=[30,30,63,90,60,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=460,lambda=[16,20,24,37,32,16]/1,nu=[24,39,63,78,39,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=461,lambda=[15,21,27,42,24,15]/1,nu=[27,36,54,63,63,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=462,lambda=[15,21,24,42,27,15]/1,nu=[27,36,63,63,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=464,lambda=[16,20,32,37,24,16]/1,nu=[24,39,39,78,63,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=471,lambda=[13,11,23,30,23,13]/1,nu=[33,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=472,lambda=[13,11,23,30,23,13]/1,nu=[33,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=473,lambda=[13,11,23,30,23,13]/1,nu=[33,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=474,lambda=[13,11,23,30,23,13]/1,nu=[33,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=478,lambda=[14,20,25,30,22,14]/1,nu=[30,39,60,99,69,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=480,lambda=[14,20,22,30,25,14]/1,nu=[30,39,69,99,60,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=481,lambda=[15,19,22,35,22,15]/1,nu=[27,42,69,84,69,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=483,lambda=[13,11,23,30,22,13]/1,nu=[33,66,66,99,69,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=484,lambda=[13,11,23,29,23,13]/1,nu=[33,66,66,102,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=485,lambda=[13,11,22,30,23,13]/1,nu=[33,66,69,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=494,lambda=[14,19,21,29,21,14]/1,nu=[15,21,36,51,36,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=497,lambda=[13,11,23,28,21,13]/1,nu=[33,66,66,105,72,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=498,lambda=[13,11,21,28,23,13]/1,nu=[33,66,72,105,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=505,lambda=[13,11,20,27,20,13]/1,nu=[33,66,75,108,75,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=432,lambda=[24,23,35,46,31,17]/1,nu=[0,30,30,51,42,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=435,lambda=[17,23,31,46,35,24]/1,nu=[21,30,42,51,30,0]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=457,lambda=[17,19,24,35,24,17]/1,nu=[21,42,63,84,63,21]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=463,lambda=[16,21,29,43,33,12]/1,nu=[12,18,24,30,18,18]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=469,lambda=[12,21,33,43,29,16]/1,nu=[18,18,18,30,24,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=479,lambda=[16,18,22,33,23,9]/1,nu=[24,45,69,90,66,45]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=486,lambda=[15,20,27,41,23,11]/1,nu=[27,39,54,66,66,39]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=487,lambda=[16,19,31,35,23,10]/1,nu=[12,21,21,42,33,21]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=488,lambda=[9,18,23,33,22,16]/1,nu=[45,45,66,90,69,24]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=490,lambda=[10,19,23,35,31,16]/1,nu=[21,21,33,42,21,12]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=492,lambda=[11,20,23,41,27,15]/1,nu=[39,39,66,66,54,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=493,lambda=[14,19,25,29,21,10]/1,nu=[15,21,30,51,36,21]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=495,lambda=[15,18,21,33,21,9]/1,nu=[27,45,72,90,72,45]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=499,lambda=[8,17,21,31,21,8]/1,nu=[24,24,36,48,36,24]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=500,lambda=[10,19,21,29,25,14]/1,nu=[21,21,36,51,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=501,lambda=[9,18,21,33,21,15]/1,nu=[45,45,72,90,72,27]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=503,lambda=[14,18,20,28,20,9]/1,nu=[30,45,75,105,75,45]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=506,lambda=[9,18,20,28,20,14]/1,nu=[45,45,75,105,75,30]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=507,lambda=[8,17,20,31,20,8]/1,nu=[48,48,75,96,75,48]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=510,lambda=[8,17,19,27,19,8]/1,nu=[24,24,39,54,39,24]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=475,lambda=[13,11,23,30,23,13]/1,nu=[33,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=489,lambda=[12,23,23,33,25,14]/1,nu=[18,15,33,45,30,15]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=491,lambda=[12,11,23,30,23,13]/1,nu=[36,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=502,lambda=[11,11,21,30,23,13]/1,nu=[39,66,72,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=508,lambda=[10,11,20,27,23,13]/1,nu=[42,66,75,108,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=511,lambda=[9,11,19,26,19,13]/1,nu=[45,66,78,111,78,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=476,lambda=[13,11,23,30,23,13]/1,nu=[33,66,66,99,66,33]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=477,lambda=[14,23,25,33,23,12]/1,nu=[15,15,30,45,33,18]/1) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=482,lambda=[13,11,23,30,23,12]/1,nu=[33,66,66,99,66,36]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=496,lambda=[13,11,23,30,21,11]/1,nu=[33,66,66,99,72,39]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=504,lambda=[13,11,23,27,20,10]/1,nu=[33,66,66,108,75,42]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=509,lambda=[13,11,19,26,19,9]/1,nu=[33,66,78,111,78,45]/2) [  8, 11, 15, 21, 15,  8 ]/1
survive:final parameter(x=512,lambda=[8,11,18,25,18,8]/1,nu=[48,66,81,114,81,48]/2) [  8, 11, 15, 21, 15,  8 ]/1
cell character: 1 springer_O:1
Computing weak packets for 12 dual orbits of connected real group with Lie algebra 'so(7,1).gl(1,C)'
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -6,  2,  2,  2,  2, -6 ])
Skipping dual orbit (root datum of Lie type 'D4.T1.T1',(),[ 0, 0, 0, 0, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -4,  2,  2,  0,  2, -4 ])
Skipping dual orbit (root datum of Lie type 'D4.T1.T1',(),[ 0, 1, 1, 2, 1, 0 ]) (d(O_check) has no real forms for G)
Skipping orbit: dual orbit is not delta_check fixed
Skipping orbit: dual orbit is not delta_check fixed
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -3,  2,  0,  2,  0, -3 ])
Skipping dual orbit (root datum of Lie type 'D4.T1.T1',(),[ 0, 2, 1, 2, 1, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -2,  0,  0,  2,  0, -2 ])
Skipping dual orbit (root datum of Lie type 'D4.T1.T1',(),[ 0, 2, 2, 3, 2, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -2,  0,  0,  2,  0, -2 ])
Skipping dual orbit (root datum of Lie type 'D4.T1.T1',(),[ 0, 2, 2, 4, 2, 0 ]) (d(O_check) has no real forms for G)
Skipping orbit: dual orbit is not delta_check fixed
Skipping orbit: dual orbit is not delta_check fixed
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -1,  2,  0,  0,  0, -1 ])

Computing weak packet for orbit: root datum of Lie type 'D4.T1.T1' [ 0, 4, 3, 6, 3, 0 ] dim=20
Computing weak packets for connected real group with Lie algebra 'so(7,1).gl(1,C)'
gamma:[  0, 16, 15, 26, 15,  0 ]/2
gamma_final:[ 0, 4, 3, 6, 3, 0 ]/2
integral data: st_int
rd_int:root datum of Lie type 'D4.T1.T1'
st_int.rd: simply connected root datum of Lie type 'D4'
O_check_int:(adjoint root datum of Lie type 'D4',(),[ 2, 2, 0, 0 ])
computing packet for:(adjoint root datum of Lie type 'D4',(),[ 2, 2, 0, 0 ])
computing springer map of[2,0,0,0]
O: (adjoint root datum of Lie type 'D4',(),[ 2, 0, 0, 0 ])
survive:final parameter(x=0,lambda=[0,8,8,13,7,0]/1,nu=[0,0,0,0,0,0]/1) [ 0, 4, 3, 6, 3, 0 ]/2
cell character: 5 springer_O:5
dim: 1 3
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ -1,  0,  0,  1,  0, -1 ])
Skipping dual orbit (root datum of Lie type 'D4.T1.T1',(),[ 0, 4, 4, 6, 4, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'D4.T1.T1',(),[ 0, 0, 0, 0, 0, 0 ])

Computing weak packet for orbit: root datum of Lie type 'D4.T1.T1' [  0,  6,  6, 10,  6,  0 ] dim=24
Computing weak packets for connected real group with Lie algebra 'so(7,1).gl(1,C)'
gamma:[  0,  9,  9, 15,  9,  0 ]/1
gamma_final:[ 0, 3, 3, 5, 3, 0 ]/1
integral data: st_int
rd_int:root datum of Lie type 'D4.T1.T1'
st_int.rd: simply connected root datum of Lie type 'D4'
O_check_int:(adjoint root datum of Lie type 'D4',(),[ 2, 2, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'D4',(),[ 2, 2, 2, 2 ])
computing springer map of[0,0,0,0]
O: (adjoint root datum of Lie type 'D4',(),[ 0, 0, 0, 0 ])
survive:final parameter(x=0,lambda=[0,9,9,15,9,0]/1,nu=[0,0,0,0,0,0]/1) [ 0, 3, 3, 5, 3, 0 ]/1
survive:final parameter(x=1,lambda=[0,9,8,15,8,0]/1,nu=[0,0,3,0,3,0]/2) [ 0, 3, 3, 5, 3, 0 ]/1
survive:final parameter(x=2,lambda=[0,9,7,11,7,0]/1,nu=[0,0,3,6,3,0]/1) [ 0, 3, 3, 5, 3, 0 ]/1
survive:final parameter(x=3,lambda=[0,3,6,9,6,0]/1,nu=[0,18,9,18,9,0]/2) [ 0, 3, 3, 5, 3, 0 ]/1
cell character: 4 springer_O:4
Computing weak packets for 11 dual orbits of connected real group with Lie algebra 'su(5,1).gl(1,R)'
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  2, -9,  2,  2,  2,  2 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 0, 0, 0, 0, 0, 0 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  2, -6,  2,  0,  2,  2 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 1, 0, 1, 1, 1, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  2, -5,  0,  2,  0,  2 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 1, 0, 2, 2, 2, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  2, -4,  1,  0,  1,  2 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 2, 0, 2, 2, 2, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  0, -4,  2,  0,  2,  0 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 1, 0, 2, 3, 2, 1 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  1, -3,  1,  0,  1,  1 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 2, 0, 3, 3, 3, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  2, -2,  0,  0,  0,  2 ])

Computing weak packet for orbit: root datum of Lie type 'A5.T1' [ 3, 0, 4, 4, 4, 3 ] dim=24
Computing weak packets for connected real group with Lie algebra 'su(5,1).gl(1,R)'
gamma:[ 13,  0, 20, 22, 20, 13 ]/2
gamma_final:[ 3, 0, 4, 4, 4, 3 ]/2
integral data: st_int
rd_int:root datum of Lie type 'A3.A1.T1.T1'
st_int.rd: simply connected root datum of Lie type 'A3.A1'
O_check_int:(adjoint root datum of Lie type 'A3.A1',(),[ 2, 2, 2, 0 ])
computing packet for:(adjoint root datum of Lie type 'A3.A1',(),[ 2, 2, 2, 0 ])
computing springer map of[0,0,0,2]
O: (simply connected root datum of Lie type 'A3.A1',(),[ 0, 0, 0, 1 ])
survive:final parameter(x=8,lambda=[13,0,20,21,20,13]/2,nu=[0,0,0,1,0,0]/1) [ 3, 0, 4, 4, 4, 3 ]/2
cell character: 1 springer_O:1
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  0, -3,  0,  2,  0,  0 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 2, 0, 4, 4, 4, 2 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  0, -2,  1,  0,  1,  0 ])
Skipping dual orbit (root datum of Lie type 'A5.T1',(),[ 3, 0, 4, 5, 4, 3 ]) (d(O_check) has no real forms for G)
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[  1, -1,  0,  0,  0,  1 ])

Computing weak packet for orbit: root datum of Lie type 'A5.T1' [ 4, 0, 6, 6, 6, 4 ] dim=28
Computing weak packets for connected real group with Lie algebra 'su(5,1).gl(1,R)'
gamma:[  7,  0, 11, 12, 11,  7 ]/1
gamma_final:[ 2, 0, 3, 3, 3, 2 ]/1
integral data: st_int
rd_int:root datum of Lie type 'A5.T1'
st_int.rd: simply connected root datum of Lie type 'A5'
O_check_int:(adjoint root datum of Lie type 'A5',(),[ 2, 2, 0, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'A5',(),[ 2, 2, 0, 2, 2 ])
computing springer map of[1,0,0,0,1]
O: (simply connected root datum of Lie type 'A5',(),[ 1, 0, 0, 0, 0 ])
survive:final parameter(x=1,lambda=[15,2,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 2, 0, 3, 3, 3, 2 ]/1
survive:final parameter(x=3,lambda=[15,2,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 2, 0, 3, 3, 3, 2 ]/1
survive:final parameter(x=7,lambda=[15,2,24,27,22,15]/2,nu=[0,0,0,0,3,0]/2) [ 2, 0, 3, 3, 3, 2 ]/1
survive:final parameter(x=9,lambda=[15,2,22,27,24,15]/2,nu=[0,0,3,0,0,0]/2) [ 2, 0, 3, 3, 3, 2 ]/1
survive:final parameter(x=11,lambda=[15,2,24,27,20,11]/2,nu=[0,0,0,0,3,3]/1) [ 2, 0, 3, 3, 3, 2 ]/1
cell character: 1 springer_O:1
survive:final parameter(x=14,lambda=[11,2,20,27,24,15]/2,nu=[3,0,3,0,0,0]/1) [ 2, 0, 3, 3, 3, 2 ]/1
cell character: 1 springer_O:1
dim: 1 5
Orbit by diagram: (root datum of Lie type 'A5.T1',(),[ 0, 0, 0, 0, 0, 0 ])

Computing weak packet for orbit: root datum of Lie type 'A5.T1' [ 5, 0, 8, 9, 8, 5 ] dim=30
Computing weak packets for connected real group with Lie algebra 'su(5,1).gl(1,R)'
gamma:[ 15,  0, 24, 27, 24, 15 ]/2
gamma_final:[ 5, 0, 8, 9, 8, 5 ]/2
integral data: st_int
rd_int:root datum of Lie type 'A5.T1'
st_int.rd: simply connected root datum of Lie type 'A5'
O_check_int:(adjoint root datum of Lie type 'A5',(),[ 2, 2, 2, 2, 2 ])
computing packet for:(adjoint root datum of Lie type 'A5',(),[ 2, 2, 2, 2, 2 ])
computing springer map of[0,0,0,0,0]
O: (simply connected root datum of Lie type 'A5',(),[ 0, 0, 0, 0, 0 ])
survive:final parameter(x=0,lambda=[15,0,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=1,lambda=[15,0,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=3,lambda=[15,0,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=4,lambda=[15,0,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=7,lambda=[15,0,24,27,22,15]/2,nu=[0,0,0,0,3,0]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=8,lambda=[15,0,24,25,24,15]/2,nu=[0,0,0,3,0,0]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=9,lambda=[15,0,22,27,24,15]/2,nu=[0,0,3,0,0,0]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=12,lambda=[15,0,24,23,20,15]/2,nu=[0,0,0,3,3,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=13,lambda=[15,0,20,23,24,15]/2,nu=[0,0,3,3,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=16,lambda=[15,0,18,21,18,15]/2,nu=[0,0,9,9,9,0]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=2,lambda=[15,0,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=6,lambda=[15,0,24,27,24,13]/2,nu=[0,0,0,0,0,3]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=11,lambda=[15,0,24,27,20,11]/2,nu=[0,0,0,0,3,3]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=15,lambda=[15,0,24,21,18,9]/2,nu=[0,0,0,9,9,9]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=18,lambda=[15,0,16,19,16,7]/2,nu=[0,0,6,6,6,6]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=5,lambda=[15,0,24,27,24,15]/2,nu=[0,0,0,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=10,lambda=[13,0,24,27,24,15]/2,nu=[3,0,0,0,0,0]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=14,lambda=[11,0,20,27,24,15]/2,nu=[3,0,3,0,0,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=17,lambda=[9,0,18,21,24,15]/2,nu=[9,0,9,9,0,0]/2) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=19,lambda=[7,0,16,19,16,15]/2,nu=[6,0,6,6,6,0]/1) [ 5, 0, 8, 9, 8, 5 ]/2
survive:final parameter(x=20,lambda=[5,0,14,17,14,5]/2,nu=[15,0,15,15,15,15]/2) [ 5, 0, 8, 9, 8, 5 ]/2
cell character: 0 springer_O:0

===============================================================================
Orbits for the dual group: connected split real group with Lie algebra 'e6(R)'

complex nilpotent orbits for inner class
Complex reductive group of type E6, with involution defining
inner class of type 's', with 2 real forms and 3 dual real forms
root datum of inner class: simply connected root datum of Lie type 'E6'
i: orbit number
H: semisimple element
BC Levi:  Bala-Carter Levi
Cent_0: identity component of Cent(SL(2))
Z(Cent^0): order of center of derived group of id. comp. of Centralizer
C_2: conjugacy classes in Cent(SL(2))_0 with square 1
A(O): orders of conj. classes in component group of centralizer of O
#RF: number of real forms of O for all real forms (of integrality datum) in inner class
#AP: number of Arthur parameters for O
i   diagram        dim  BC Levi     Cent_0 Z  C_2  A(O)           #RF    #AP
0   [0,0,0,0,0,0]  0    6T1         E6     3  3    [1]            [1,1]  2
1   [0,1,0,0,0,0]  22   A1+5T1      A5     6  4    [1]            []     2
2   [1,0,0,0,0,1]  32   2A1+4T1     B3+T1  2  5    [1]            []     2
3   [0,0,0,1,0,0]  40   3A1+3T1     A1+A2  6  4    [1]            []     2
4   [0,2,0,0,0,0]  42   A2+4T1      2A2    9  4    [1,2]          [0,2]  2
5   [1,1,0,0,0,1]  46   A1+A2+3T1   A2+T1  3  4    [1]            []     0
6   [2,0,0,0,0,2]  48   2A2+2T1     G2     1  2    [1,3,3]        [1,1]  2
7   [0,0,1,0,1,0]  50   2A1+A2+2T1  A1+T1  2  3    [1]            []     1
8   [1,2,0,0,0,1]  52   A3+3T1      B2+T1  2  4    [1]            []     2
9   [1,0,0,1,0,1]  54   A1+2A2+T1   A1     2  2    [1,3,3]        []     2
10  [0,1,1,0,1,0]  56   A1+A3+2T1   A1+T1  2  4    [1]            []     2
11  [0,0,0,2,0,0]  58   D4+2T1      2T1    1  4    [1,2,3]        [0,2]  2
12  [2,2,0,0,0,2]  60   A4+2T1      A1+T1  2  3    [1]            [0,1]  1
13  [0,2,0,2,0,0]  60   D4+2T1      A2     3  2    [1]            [0,1]  1
14  [1,1,1,0,1,1]  62   A1+A4+T1    T1     1  2    [1]            []     0
15  [1,2,1,0,1,1]  64   D5+T1       T1     1  2    [1]            []     0
16  [2,1,1,0,1,2]  64   A5+T1       A1     2  2    [1,3,3]        []     2
17  [2,0,0,2,0,2]  66   E6          e      1  1    [1,2,3,3,6,6]  [0,2]  2
18  [2,2,0,2,0,2]  68   D5+T1       T1     1  2    [1]            [0,1]  1
19  [2,2,2,0,2,2]  70   E6          e      1  1    [1,3,3]        [0,1]  1
20  [2,2,2,2,2,2]  72   E6          e      1  1    [1,3,3]        [0,1]  1

Information about orbit centralizers:
orbit#: 0 diagram: [0,0,0,0,0,0]
isogeny information:
Centralizer: E6
Group is semisimple
center=Z/3Z
simply connected root datum of Lie type 'E6'
-------------
orbit#: 1 diagram: [0,1,0,0,0,0]
isogeny information:
Centralizer: A5
Group is semisimple
center=Z/6Z
simply connected root datum of Lie type 'A5'
-------------
orbit#: 2 diagram: [1,0,0,0,0,1]
isogeny information:
Centralizer: B3+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'B3'
-------------
orbit#: 3 diagram: [0,0,0,1,0,0]
isogeny information:
Centralizer: A1+A2
Group is semisimple
center=Z/6Z
simply connected root datum of Lie type 'A2'
simply connected root datum of Lie type 'A1'
-------------
orbit#: 4 diagram: [0,2,0,0,0,0]
isogeny information:
Centralizer: 2A2
Group is semisimple
center=Z/3Z x Z/3Z
simply connected root datum of Lie type 'A2'
simply connected root datum of Lie type 'A2'
-------------
orbit#: 5 diagram: [1,1,0,0,0,1]
isogeny information:
Centralizer: A2+T1
Split exact sequence:
1->S->Z->Z/S->1
S=complex torus of rank 1
Z/S=Center(G/S)=Z/3Z
simply connected root datum of Lie type 'A2'
-------------
orbit#: 6 diagram: [2,0,0,0,0,2]
isogeny information:
Centralizer: G2
Center is trivial
simply connected adjoint root datum of Lie type 'G2'
-------------
orbit#: 7 diagram: [0,0,1,0,1,0]
isogeny information:
Centralizer: A1+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'A1'
-------------
orbit#: 8 diagram: [1,2,0,0,0,1]
isogeny information:
Centralizer: B2+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'B2'
-------------
orbit#: 9 diagram: [1,0,0,1,0,1]
isogeny information:
Centralizer: A1
Group is semisimple
center=Z/2Z
simply connected root datum of Lie type 'A1'
-------------
orbit#: 10 diagram: [0,1,1,0,1,0]
isogeny information:
Centralizer: A1+T1
Split exact sequence:
1->S->Z->Z/S->1
S=complex torus of rank 1
Z/S=Center(G/S)=Z/2Z
simply connected root datum of Lie type 'A1'
-------------
orbit#: 11 diagram: [0,0,0,2,0,0]
isogeny information:
Centralizer: 2T1
Center is a connected complex torus of rank 2
-------------
orbit#: 12 diagram: [2,2,0,0,0,2]
isogeny information:
Centralizer: A1+T1
Center is a connected complex torus of rank 1
simply connected root datum of Lie type 'A1'
-------------
orbit#: 13 diagram: [0,2,0,2,0,0]
isogeny information:
Centralizer: A2
Group is semisimple
center=Z/3Z
simply connected root datum of Lie type 'A2'
-------------
orbit#: 14 diagram: [1,1,1,0,1,1]
isogeny information:
Centralizer: T1
Center is a connected complex torus of rank 1
-------------
orbit#: 15 diagram: [1,2,1,0,1,1]
isogeny information:
Centralizer: T1
Center is a connected complex torus of rank 1
-------------
orbit#: 16 diagram: [2,1,1,0,1,2]
isogeny information:
Centralizer: A1
Group is semisimple
center=Z/2Z
simply connected root datum of Lie type 'A1'
-------------
orbit#: 17 diagram: [2,0,0,2,0,2]
isogeny information:
Centralizer: e
Center is trivial
-------------
orbit#: 18 diagram: [2,2,0,2,0,2]
isogeny information:
Centralizer: T1
Center is a connected complex torus of rank 1
-------------
orbit#: 19 diagram: [2,2,2,0,2,2]
isogeny information:
Centralizer: e
Center is trivial
-------------
orbit#: 20 diagram: [2,2,2,2,2,2]
isogeny information:
Centralizer: e
Center is trivial
-------------

Arthur parameters listed by orbit:
#parameters by orbit: [2,2,2,2,2,0,2,1,2,2,2,2,1,1,0,0,2,2,1,1,1]
Total: 30

orbit #0 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 0, 0, 0, 0 ]  [0,0,0,0]  0    1
adjoint root datum of Lie type 'C4'                   [ 0, 0, 0, 0 ]  [0,0,0,0]  0    1

orbit #1 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 1, 2, 2, 3 ]  [1,0,0,0]  16   1
adjoint root datum of Lie type 'C4'                   [ 1, 1, 2, 3 ]  [0,0,0,1]  8    1

orbit #2 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 2, 3, 4 ]  [0,0,1,0]  22   1
adjoint root datum of Lie type 'C4'                   [ 2, 2, 3, 4 ]  [0,1,0,0]  14   1

orbit #3 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 3, 4, 6 ]  [0,1,0,0]  28   1
adjoint root datum of Lie type 'C4'                   [ 2, 3, 4, 5 ]  [0,0,1,0]  18   1

orbit #4 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 2, 4, 4, 6 ]  [2,0,0,0]  30   1
adjoint root datum of Lie type 'C4'                   [ 2, 4, 4, 6 ]  [2,0,0,0]  20   1

orbit #5 for G
#orbits for (disconnected) Cent(O): 0
K_0  H  diagram  dim  mult

orbit #6 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 4, 4, 6, 8 ]  [0,0,2,0]  30   1
adjoint root datum of Lie type 'C4'                   [ 4, 4, 6, 8 ]  [0,2,0,0]  22   1

orbit #7 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H               diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 3, 4, 6, 8 ]  [0,0,0,1]  34   1

orbit #8 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  4,  6,  7, 10 ]  [2,0,1,0]  36   1
adjoint root datum of Lie type 'C4'                   [  4,  4,  7, 10 ]  [0,1,0,2]  20   1

orbit #9 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  4,  5,  7, 10 ]  [0,1,1,0]  36   1
adjoint root datum of Lie type 'C4'                   [ 4, 5, 7, 9 ]      [0,1,1,0]  24   1

orbit #10 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  4,  6,  8, 11 ]  [1,0,0,1]  38   1
adjoint root datum of Lie type 'C4'                   [  4,  5,  8, 11 ]  [0,0,1,2]  24   1

orbit #11 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  4,  6,  8, 12 ]  [0,2,0,0]  40   1
adjoint root datum of Lie type 'C4'                   [  4,  6,  8, 12 ]  [2,0,0,2]  26   1

orbit #12 for G
#orbits for (disconnected) Cent(O): 1
K_0                                  H                   diagram    dim  mult
adjoint root datum of Lie type 'C4'  [  6,  8, 10, 14 ]  [2,2,0,0]  28   1

orbit #13 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  6, 10, 12, 18 ]  [2,2,0,0]  42   1

orbit #14 for G
#orbits for (disconnected) Cent(O): 0
K_0  H  diagram  dim  mult

orbit #15 for G
#orbits for (disconnected) Cent(O): 0
K_0  H  diagram  dim  mult

orbit #16 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  8, 10, 14, 19 ]  [1,0,2,1]  42   1
adjoint root datum of Lie type 'C4'                   [  8,  9, 14, 19 ]  [0,2,1,2]  28   1

orbit #17 for G
#orbits for (disconnected) Cent(O): 2
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [  8, 10, 14, 20 ]  [0,2,2,0]  44   1
adjoint root datum of Lie type 'C4'                   [  8, 10, 14, 20 ]  [2,2,0,2]  30   1

orbit #18 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 10, 14, 18, 26 ]  [2,2,2,0]  46   1

orbit #19 for G
#orbits for (disconnected) Cent(O): 1
K_0                                  H                   diagram    dim  mult
adjoint root datum of Lie type 'C4'  [ 12, 16, 22, 30 ]  [2,2,2,2]  32   1

orbit #20 for G
#orbits for (disconnected) Cent(O): 1
K_0                                                   H                   diagram    dim  mult
simply connected adjoint root datum of Lie type 'F4'  [ 16, 22, 30, 42 ]  [2,2,2,2]  48   1

orbit  |packet|
8      1
12     2
13     1
16     1
17     1
18     3
19     2
20     1
Total  12

*: dual(cell) contains an Aq(lambda)
orbit#  block#  cell#  parameters
8       0       0      1
12      0       1      1
12      0       3      1
13      0       2      1
16      0       3      1
17      0       8      1
18      0       5      1
18      0       7      1
18      0       9      1
19      0       10     1
19      0       11     1
20      0       12     1
Total           12

orbit#   block#  cell#  parameters                                                                   inf. char.
8        0       0      final parameter(x=65,lambda=[2,3,4,5,4,2]/1,nu=[0,0,0,0,0,0]/1)(I)           [  4,  6,  7, 10,  7,  4 ]/2
12       0       1      final parameter(x=177,lambda=[3,5,5,8,6,4]/1,nu=[0,1,0,1,1,1]/1)(I)          [ 3, 4, 5, 7, 5, 3 ]/1
12       0       3      final parameter(x=196,lambda=[4,5,6,8,5,3]/1,nu=[1,1,1,1,0,0]/1)(I)          [ 3, 4, 5, 7, 5, 3 ]/1
13       0       2      final parameter(x=392,lambda=[5,8,9,15,9,4]/1,nu=[3,6,6,12,6,3]/2)(I)        [ 3, 5, 6, 9, 6, 3 ]/1
16       0       3      final parameter(x=484,lambda=[7,11,13,19,13,7]/1,nu=[5,10,10,15,10,5]/2)(I)  [  8, 10, 14, 19, 14,  8 ]/2
17       0       8      final parameter(x=456,lambda=[7,8,13,19,13,7]/1,nu=[5,6,10,16,10,5]/2)       [  4,  5,  7, 10,  7,  4 ]/1
18       0       5      final parameter(x=346,lambda=[6,8,10,15,10,6]/1,nu=[5,5,5,10,5,5]/2)         [  5,  7,  9, 13,  9,  5 ]/1
18       0       7      final parameter(x=347,lambda=[6,8,10,15,10,6]/1,nu=[5,5,5,10,5,5]/2)         [  5,  7,  9, 13,  9,  5 ]/1
18       0       9      final parameter(x=499,lambda=[8,10,14,19,13,8]/1,nu=[10,10,15,20,15,10]/2)   [  5,  7,  9, 13,  9,  5 ]/1
19       0       10     final parameter(x=502,lambda=[8,12,15,21,15,8]/1,nu=[5,8,9,12,8,4]/1)        [  6,  8, 11, 15, 11,  6 ]/1
19       0       11     final parameter(x=496,lambda=[8,12,15,21,15,8]/1,nu=[4,8,8,12,9,5]/1)        [  6,  8, 11, 15, 11,  6 ]/1
20       0       12     final parameter(x=512,lambda=[8,11,15,21,15,8]/1,nu=[16,22,27,38,27,16]/2)   [  8, 11, 15, 21, 15,  8 ]/1
Total                   12
Induced                 5

set parameters=[
parameter(G,65,[ 2, 3, 4, 5, 4, 2 ]/1,[ 0, 0, 0, 0, 0, 0 ]/1),
parameter(G,177,[ 3, 5, 5, 8, 6, 4 ]/1,[ 0, 1, 0, 1, 1, 1 ]/1),
parameter(G,196,[ 4, 5, 6, 8, 5, 3 ]/1,[ 1, 1, 1, 1, 0, 0 ]/1),
parameter(G,392,[  5,  8,  9, 15,  9,  4 ]/1,[  3,  6,  6, 12,  6,  3 ]/2),
parameter(G,484,[  7, 11, 13, 19, 13,  7 ]/1,[  5, 10, 10, 15, 10,  5 ]/2),
parameter(G,456,[  7,  8, 13, 19, 13,  7 ]/1,[  5,  6, 10, 16, 10,  5 ]/2),
parameter(G,346,[  6,  8, 10, 15, 10,  6 ]/1,[  5,  5,  5, 10,  5,  5 ]/2),
parameter(G,347,[  6,  8, 10, 15, 10,  6 ]/1,[  5,  5,  5, 10,  5,  5 ]/2),
parameter(G,499,[  8, 10, 14, 19, 13,  8 ]/1,[ 10, 10, 15, 20, 15, 10 ]/2),
parameter(G,502,[  8, 12, 15, 21, 15,  8 ]/1,[  5,  8,  9, 12,  8,  4 ]/1),
parameter(G,496,[  8, 12, 15, 21, 15,  8 ]/1,[  4,  8,  8, 12,  9,  5 ]/1),
parameter(G,512,[  8, 11, 15, 21, 15,  8 ]/1,[ 16, 22, 27, 38, 27, 16 ]/2)
]