Example :math:`Sp(6,\mathbb R)` ================================ Let us find the discrete series for this group:: atlas> G:=Sp(6,R) Value: connected split real group with Lie algebra 'sp(6,R)' atlas> set F=distinguished_fiber (G) Variable F: [int] atlas> F Value: [0,1,2,3,4,5,6,7] atlas> atlas> ds:=all_discrete_series (G,rho(G)) Value: [final parameter(x=0,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=1,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=2,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=3,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=4,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=5,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=6,lambda=[3,2,1]/1,nu=[0,0,0]/1),final parameter(x=7,lambda=[3,2,1]/1,nu=[0,0,0]/1)] atlas> show(ds) final parameter(x=0,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=1,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=2,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=3,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=4,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=5,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=6,lambda=[3,2,1]/1,nu=[0,0,0]/1) final parameter(x=7,lambda=[3,2,1]/1,nu=[0,0,0]/1) Again, like in the case of :math:`Sp(4,\mathbb R)` we can try to write each parameter in terms of a single ``x`` that has the usual compact simple roots. By looking at each ``x``. A more efficient way to do this is the following:: atlas> void: for i in F do prints(i," ",rho_K(KGB(G,i))) od 0 [ 1, 1, 0 ]/1 1 [ 1, 1, 0 ]/1 2 [ 1, 0, 1 ]/1 3 [ 1, 1, 0 ]/1 4 [ 1, 1, 0 ]/1 5 [ 1, 0, -1 ]/1 6 [ 1, 0, 1 ]/1 7 [ 1, 0, -1 ]/1 atlas> We have two choices of ``x`` with the standard ``rho``: ``x=5`` and ``x=7``. We choose one:: atlas> x_b:=KGB(G,5) Value: KGB element #5 atlas> simple_roots(K_0(x_b)) Value: | 1, 0 | | -1, 1 | | 0, -1 | atlas> atlas> void: for p in ds do prints(x(p), " ", hc_parameter (p, x_b)) od KGB element #0 [ 3, 1, -2 ]/1 KGB element #1 [ 2, 1, -3 ]/1 KGB element #2 [ 3, 2, -1 ]/1 KGB element #3 [ 3, -1, -2 ]/1 KGB element #4 [ 2, -1, -3 ]/1 KGB element #5 [ 3, 2, 1 ]/1 KGB element #6 [ 1, -2, -3 ]/1 KGB element #7 [ -1, -2, -3 ]/1 atlas> These ``lambdas`` are the conjugates of ``rho`` which are :math:`K`-dominant. That is, modulo :math:`W_K`. They are all decreasing. So they are the usual Harish-Candra parameters for the eight discrete series of :math:`Sp(6,\mathbb R)`. Now, as for previous examples we can write:: atlas> p:=discrete_series (x_b,[-1,-2,-3]) Value: final parameter(x=7,lambda=[3,2,1]/1,nu=[0,0,0]/1) atlas> So ``atlas`` knows what this is and makes ``lambda`` dominant and conjugates ``x_b`` to ``x_7``.