Translation Principle ====================== ``atlas`` also lets us change infinitesimal character using the translation principle. Let us start again with the trivial representation :: atlas> set G=SL(2,R) Variable G: RealForm (overriding previous instance, which had type RealForm) atlas> set p=trivial(G) Variable p: Param (overriding previous instance, which had type Param) atlas> p Value: final parameter (x=2,lambda=[1]/1,nu=[1]/1) atlas> infinitesimal_character(p) Value: [ 1 ]/1 atlas> is_finite_dimensional(p) Value: true atlas> dimension(p) Value: 1 We need to use the command ``T`` :: atlas> whattype T ? Overloaded instances of 'T' (Param,ratvec)->Param (ParamPol,ratvec)->ParamPol atlas> We want to use the first format :: atlas> set q= T(p,[2]) Variable q: Param (overriding previous instance, which had type Param) atlas> q Value: final parameter (x=2,lambda=[2]/1,nu=[2]/1) atlas> p Value: final parameter (x=2,lambda=[1]/1,nu=[1]/1) atlas> This means translate p from ``nu = 1`` to ``nu=2`` by applying the Zuckerman translation principle. Note that you also changed ``lambda``. This is a feature of the translation principle. What representation is this new translated one? :: atlas> is_finite_dimensional(q) Value: true atlas> dimension(q) Value: 2 atlas> infinitesimal_character(q) Value: [ 2 ]/1 atlas> So, this way we obtain the two dimensional representation with infinitesimal character ``2``. The translation principle is a great tool to move around by changing infinitesimal characters without changing the nature of the representation. For example, a reducible will stay reducible. In contrast, it is interesting to see what happens when we change ``nu`` but keep ``lambda``:: atlas> set q=parameter(KGB(G,2), [1], [0]) Variable q: Param (overriding previous instance, which had type Param) atlas> q Value: final parameter (x=2,lambda=[1]/1,nu=[0]/1) atlas> infinitesimal_character(q) Value: [ 0 ]/1 atlas> Comparing composition series of these two we have:: atlas> p Value: final parameter (x=2,lambda=[1]/1,nu=[1]/1) atlas> show(composition_series(I(p))) 1*J(x=0,lambda=[1/1],nu=[0/1]) 1*J(x=1,lambda=[1/1],nu=[0/1]) 1*J(x=2,lambda=[1/1],nu=[1/1]) atlas> q Value: final parameter (x=2,lambda=[1]/1,nu=[0]/1) atlas> show(composition_series(I(q))) 1*J(x=2,lambda=[1/1],nu=[0/1]) atlas> So ``q`` is an irreducible spherical principal series at ``0``. In other words, changing ``nu`` without changing ``lambda`` changes the reducibility feature of the representation.