Cuspidal Data for Representations ================================== Given a parameter ``(x, lambda, nu)`` we can obtain information about the cuspidal data used to construct the representation. Let us review the parameters of all the representations of :math:`G=SL(2,\mathbb R)` with infinitesimal character ``rho`` :: atlas> set G=SL(2,R) Variable G: RealForm atlas> G Value: connected split real group with Lie algebra 'sl(2,R)' atlas> rho(G) Value: [ 1 ]/1 atlas> set parameters=all_parameters_gamma(G,rho(G)) Variable parameters: [Param] atlas> void: for p in parameters do prints(p) od final parameter (x=0,lambda=[1]/1,nu=[0]/1) final parameter (x=1,lambda=[1]/1,nu=[0]/1) final parameter (x=2,lambda=[1]/1,nu=[1]/1) final parameter (x=2,lambda=[2]/1,nu=[1]/1) atlas> atlas> set t=trivial(G) Variable t: Param atlas> t Value: final parameter (x=2,lambda=[1]/1,nu=[1]/1) atlas> Now, let us find the cuspidal data for``t`` :: atlas> set (P,q)=cuspidal_data(t) Variable P: ([int],KGBElt) Variable q: Param atlas> q Value: final parameter (x=0,lambda=[0]/1,nu=[1]/1) atlas> Levi(P) Value: disconnected split real group with Lie algebra 'gl(1,R)' atlas> real_form(q) Value: disconnected split real group with Lie algebra 'gl(1,R)' atlas> Recall that the Cartan subgroup for this parameter is the split Cartan subgroup:: atlas> set x=x(t) Variable x: KGBElt atlas> x Value: KGB element #2 atlas> set H=Cartan_class(x) Variable H: CartanClass (overriding previous instance, which had type string (constant)) atlas> H Value: Cartan class #1, occurring for 1 real form and for 2 dual real forms atlas> print_Cartan_info(H) compact: 0, complex: 0, split: 1 canonical twisted involution: 1 twisted involution orbit size: 1; fiber size: 1; strong inv: 1 imaginary root system: empty real root system: A1 complex factor: empty atlas> So, we can extract the character of the Cartan subgroup by finding the Cuspidal data for the representation with parameter ``t``. The standard representation containing the trivial is induced from a parabolic subgroup P with Levi factor equal to :math:`GL(1,R)` and a character ``q`` of :math:`GL(1,R)` with ``lambda=0`` and ``nu=1``. Moreover, we can see that when we induce we obtain the composition series of the spherical principal series that contains the trivial representation and the two discrete series :: atlas> induce_irreducible (q,P,G) Value: 1*final parameter (x=0,lambda=[1]/1,nu=[0]/1) 1*final parameter (x=1,lambda=[1]/1,nu=[0]/1) 1*final parameter (x=2,lambda=[1]/1,nu=[1]/1) atlas> atlas> t Value: final parameter (x=2,lambda=[1]/1,nu=[1]/1) atlas> For more on induction, see the Section Parabolic Induction in this tutorial. Similarly we can do the same for the non-spherical principal series :: atlas> set p=parameters[3] Variable p: Param atlas> p Value: final parameter (x=2,lambda=[2]/1,nu=[1]/1) atlas> set (P,q)=cuspidal_data(p) Variable P: ([int],KGBElt) (overriding previous instance, which had type ([int],KGBElt)) Variable q: Param (overriding previous instance, which had type Param) atlas> real_form(q) Value: disconnected split real group with Lie algebra 'gl(1,R)' atlas> q Value: final parameter (x=0,lambda=[1]/1,nu=[1]/1) atlas> induce_irreducible (q,P,G) Value: 1*final parameter (x=2,lambda=[2]/1,nu=[1]/1) atlas> atlas> p Value: final parameter (x=2,lambda=[2]/1,nu=[1]/1) atlas> So, we get the irreducible, non-spherical principal series by inducing the character on :math:`GL(1,R)` with ``lambda`` and ``nu`` both equal to ``1`` and from the same parabolic subgroup as in the previous case. We can look at another example with non-integral infinitesimal character:: atlas> set u=parameter(x, [2], [3/2]) Variable u: Param atlas> u Value: final parameter (x=2,lambda=[2]/1,nu=[3]/2) atlas> atlas> set (P,q)=cuspidal_data(u) Variable P: ([int],KGBElt) (overriding previous instance, which had type ([int],KGBElt)) Variable q: Param (overriding previous instance, which had type Param) atlas> q Value: final parameter (x=0,lambda=[1]/1,nu=[3]/2) atlas> Levi(P) Value: disconnected split real group with Lie algebra 'gl(1,R)' atlas> induce_irreducible(q,P,G) Value: 1*final parameter (x=2,lambda=[2]/1,nu=[3]/2) atlas> u Value: final parameter (x=2,lambda=[2]/1,nu=[3]/2) atlas> So the induced representation is also irreducible as was expected.