The Character Differential =========================== To talk about the differential of a character let us use the example of a complex torus:: atlas> set H=torus(0,1,0) Identifier H: RealForm (hiding previous one of type string (constant)) If we have a parameter ``p`` we can extract the coordinates of the parameter when needed:: atlas> set p=trivial(H) Identifier p: Param atlas> p Value: final parameter (x=0,lambda=[0,0]/1,nu=[0,0]/1) atlas> x(p) Value: KGB element #0 atlas> lambda(p) Value: [ 0, 0 ]/1 atlas> nu(p) Value: [0, 0 ]/1 atlas> And remember that for now, the important piece of information about ``x`` is th\ e Cartan involution of this Cartan:: atlas> involution (x) Value: | 0, 1 | | 1, 0 | Now, when we have a parameter ``p``, we can ask for its infinitesimal character. The answer is of course more interesting for a non-trivial character:: atlas> infinitesimal_character (p) Value: [ 0, 0 ]/1 atlas> atlas> set q=parameter(x,[1,0],[2,-2]) Identifier q: Param (hiding previous one of type Param) atlas> q Value: final parameter (x=0,lambda=[1,0]/1,nu=[2,-2]/1) atlas> infinitesimal_character (q) Value: [ 5, -3 ]/2 atlas> If we have ``q=(x, lambda, nu)`` the differential of this character is the infinitesimal character which equals :math:`{(1+ \theta )\over 2} \lambda +{(1- \theta )\over 2} \nu`. But ``nu`` is already averaged so this equals :math:`{(1+ \theta )\over 2}\lambda +\nu`:: atlas> infinitesimal_character (q) Value: [ 5, -3 ]/2 atlas> (1+theta)*lambda(q)/2 Value: [ 1, 1 ]/2 atlas> (1+theta)*lambda(q)/2+nu(q) Value: [ 5, -3 ]/2 atlas> It is less information than ``lambda`` and ``nu``. This is because :math:`{(1+ \theta )\over 2}` looses some of it.