.. _induction.at_ref: induction.at Function References ======================================================= | .. _embed_kgb_kgbelt_x_l,realform_g->kgbelt1: embed_KGB ------------------------------------------------- | ``embed_KGB:KGBElt x_L,RealForm G->KGBElt`` Defined in line number 89. | | If L is a theta-stable Levi factor in G, KGB for L embeds in KGB for G. | .. _inverse_embed_kgb_kgbelt_x_g,realform_l->kgbelt1: inverse_embed_KGB ------------------------------------------------- | ``inverse_embed_KGB:KGBElt x_G,RealForm L->KGBElt`` Defined in line number 93. | | Given a KGB element of G, find one for the theta-stable Levi L which maps to it. | .. _makes_mat_theta,rootdatum_rd->mat1: makeS ------------------------------------------------- | ``makeS:mat theta,RootDatum rd->mat`` Defined in line number 102. | | Given an involution theta and a root datum, return the set S of complex roots containing the first positive representative of each quadruple ( :math:`\pm` alpha, :math:`\pm` theta(alpha)). | .. _makes_kgbelt_x->mat1: makeS ------------------------------------------------- | ``makeS:KGBElt x->mat`` Defined in line number 107. | | As the previous function, with argument a KGB element x determining the involution and root datum | .. _rho_s_(mat,rootdatum)pair->ratvec1: rho_S ------------------------------------------------- | ``rho_S:(mat,RootDatum)pair->ratvec`` Defined in line number 110. | | Half sum of roots in chosen set S of complex roots, described above. | .. _rho_s_kgbelt_x->ratvec1: rho_S ------------------------------------------------- | ``rho_S:KGBElt x->ratvec`` Defined in line number 113. | | As previous function, with argument KGB element x. | .. _make_parabolic_realform_l,realform_g->parabolic1: make_parabolic ------------------------------------------------- | ``make_parabolic:RealForm L,RealForm G->Parabolic`` Defined in line number 117. | | Given a Levi subgroup L of G, construct the parabolic with Levi L (this reverses Levi(P) defined in parabolics.at). | .. _real_induce_standard_param_p_l,realform_g->param1: real_induce_standard ------------------------------------------------- | ``real_induce_standard:Param p_L,RealForm G->Param`` Defined in line number 125. | | Real parabolic induction of a standard module of real Levi L (i.e., L must be the Levi factor of a real parabolic subgroup) to G | .. _real_induce_standard_parampol_p,realform_g->parampol1: real_induce_standard ------------------------------------------------- | ``real_induce_standard:ParamPol P,RealForm G->ParamPol`` Defined in line number 136. | | Real parabolic induction of standards, applied to a formal sum of parameters (ParamPol). | .. _real_induce_irreducible_as_sum_of_standards_param_p_l,_realform_g->parampol1: real_induce_irreducible_as_sum_of_standards ------------------------------------------------- | ``real_induce_irreducible_as_sum_of_standards:Param p_L, RealForm G->ParamPol`` Defined in line number 142. | | Write the (real) induced of an irreducible J(p_L) of L as a formal sum of standards for G; uses the character formula to write J(p_L) as a formal sum of standards for L first. (Auxiliary function) | .. _real_induce_irreducible_final_param_p_l,_realform_g->parampol1: real_induce_irreducible_final ------------------------------------------------- | ``real_induce_irreducible_final:Param p_L, RealForm G->ParamPol`` Defined in line number 151. | | Write the (real) induced :math:`Ind(J(p_L))` of an irreducible of |L| as a sum of irreducibles for |G|; uses composition series to convert output of the |real_induce_irreducible_as_sum_of_standards| into sum of irreducibles. The real form |L| of |p_L| must be the Levi factor of a real parabolic subgroup; and the parameter p_L must be final. | .. _real_induce_irreducible_parampol_p,realform_g->parampol1: real_induce_irreducible ------------------------------------------------- | ``real_induce_irreducible:ParamPol P,RealForm G->ParamPol`` Defined in line number 156. | | Given a polynomial of parameters of L, real induce each term, and write the result as a polynomial of parameters for G. | .. _cuspidal_data_param_p->(parabolic,param)1: cuspidal_data ------------------------------------------------- | ``cuspidal_data:Param p->(Parabolic,Param)`` Defined in line number 170. | | Cuspidal data associated to a parameter p: a cuspidal parabolic subgroup P=MN and parameter p_M for a relative limit of discrete series so that Ind(I(p_M))=I(p); uses real_parabolic(x) of parabolics.at | .. _theta_stable_data_param_p->(parabolic,param)1: theta_stable_data ------------------------------------------------- | ``theta_stable_data:Param p->(Parabolic,Param)`` Defined in line number 191. | | Theta-stable data associated to a parameter p: a theta-stable parabolic P=LN with L relatively split, and parameter p_L for a principal series representation so that p is obtained by cohomological parabolic induction from p_L; uses theta_stable_parabolic(x) of parabolics.at. | .. _coherent_std_imaginary_w_word_w,param_p->parampol1: coherent_std_imaginary ------------------------------------------------- | ``coherent_std_imaginary:W_word w,Param p->ParamPol`` Defined in line number 208. | | Auxiliary function | .. _standardize_param_p->parampol1: standardize ------------------------------------------------- | ``standardize:Param p->ParamPol`` Defined in line number 224. | | Convert a possibly non-standard parameter into a linear combination of standard ones | .. _standardize_parampol_p->parampol1: standardize ------------------------------------------------- | ``standardize:ParamPol P->ParamPol`` Defined in line number 235. | | Standardize a formal linear combination of possibly non-standard parameters | .. _theta_induce_standard_param_p_l,realform_g->parampol1: theta_induce_standard ------------------------------------------------- | ``theta_induce_standard:Param p_L,RealForm G->ParamPol`` Defined in line number 242. | | Theta-stable (cohomological) parabolic induction of a standard module for the Levi L of a theta-stable parabolic; if outside of weakly good range, must apply standardize. | .. _theta_induce_parampol_parampol_p,_realform_g->parampol1: theta_induce_parampol ------------------------------------------------- | ``theta_induce_parampol:ParamPol P, RealForm G->ParamPol`` Defined in line number 270. | | Given a ParamPol P, form a new ParamPol by theta-inducing each summand. | .. _theta_induce_irreducible_as_sum_of_standards_param_p_l,_realform_g->parampol1: theta_induce_irreducible_as_sum_of_standards ------------------------------------------------- | ``theta_induce_irreducible_as_sum_of_standards:Param p_L, RealForm G->ParamPol`` Defined in line number 280. | | Write the (theta-stable) induced of an irreducible J(p_L) of L as a formal sum of standards for G; uses the character formula to write J(p_L) as a formal sum of standards for L first. (Auxiliary function) | .. _theta_induce_irreducible_final_param_p_l,_realform_g->parampol1: theta_induce_irreducible_final ------------------------------------------------- | ``theta_induce_irreducible_final:Param p_L, RealForm G->ParamPol`` Defined in line number 295. | | Write the (theta-stable) induced Ind(J(p_L)) of an irreducible of L as a sum of irreducibles for G; uses composition series to convert output of the previous function into sum of irreducibles. The subgroup L must be the Levi factor of a theta-stable parabolic. The parameter p_L must be final. | .. _theta_induce_irreducible_parampol_p,realform_g->parampol1: theta_induce_irreducible ------------------------------------------------- | ``theta_induce_irreducible:ParamPol P,RealForm G->ParamPol`` Defined in line number 304. | | Given a polynomial of parameters, theta-induce each constituent, and write the result as a polynomial of parameters. | .. _map_into_distinguished_fiber_kgbelt_x->kgbelt1: map_into_distinguished_fiber ------------------------------------------------- | ``map_into_distinguished_fiber:KGBElt x->KGBElt`` Defined in line number 334. | | (Auxiliary function) | .. _strong_map_into_distinguished_fiber_kgbelt_x->kgbelt1: strong_map_into_distinguished_fiber ------------------------------------------------- | ``strong_map_into_distinguished_fiber:KGBElt x->KGBElt`` Defined in line number 351. | | Map KGB element x to x_K in the distinguished fiber; if necessary, use complex cross actions first to move x to a fiber with no C- roots. | .. _canonical_x_k_kgbelt_x->kgbelt1: canonical_x_K ------------------------------------------------- | ``canonical_x_K:KGBElt x->KGBElt`` Defined in line number 355. | | Same as previous function. | .. _canonical_x_k_param_p->kgbelt1: canonical_x_K ------------------------------------------------- | ``canonical_x_K:Param p->KGBElt`` Defined in line number 358. | | Previous function with input a parameter p; it is applied to x(p). | .. _u_kgbelt_x->mat1: u ------------------------------------------------- | ``u:KGBElt x->mat`` Defined in line number 362. | | Positive coroots in the nilradical of the theta-stable parabolic determined by x. | .. _rho_u_cx_parabolic_p->ratvec1: rho_u_cx ------------------------------------------------- | ``rho_u_cx:Parabolic P->ratvec`` Defined in line number 373. | | Half sum of positive complex roots (on fundamental Cartan) in the nilradical of P; P must be theta-stable. | .. _rho_u_cx_t_parabolic_p->vec1: rho_u_cx_T ------------------------------------------------- | ``rho_u_cx_T:Parabolic P->vec`` Defined in line number 389. | | Element of :math:`X^*` with same restriction to :math:`(X^*)^{\theta}` as rho_u_cx(P); P must be theta-stable. | .. _rho_u_ic_parabolic_p->ratvec1: rho_u_ic ------------------------------------------------- | ``rho_u_ic:Parabolic P->ratvec`` Defined in line number 399. | | Half sum of imaginary compact roots in nilradical of (theta-stable) P. | .. _two_rho_u_cap_k_parabolic_p->vec1: two_rho_u_cap_k ------------------------------------------------- | ``two_rho_u_cap_k:Parabolic P->vec`` Defined in line number 407. | | Sum of compact roots (of :math:`\mathfrak t` ) in :math:`\mathfrak u` for theta-stable parabolic P. | .. _two_rho_u_cap_s_parabolic_p->vec1: two_rho_u_cap_s ------------------------------------------------- | ``two_rho_u_cap_s:Parabolic P->vec`` Defined in line number 411. | | Sum of non-compact roots in :math:`\mathfrak u` (for theta-stable parabolic). | .. _rho_u_cap_k_parabolic_p->ratvec1: rho_u_cap_k ------------------------------------------------- | ``rho_u_cap_k:Parabolic P->ratvec`` Defined in line number 416. | | Half sum of compact roots in :math:`\mathfrak u` (for theta-stable parabolic). | .. _rho_u_cap_s_parabolic_p->ratvec1: rho_u_cap_s ------------------------------------------------- | ``rho_u_cap_s:Parabolic P->ratvec`` Defined in line number 419. | | Half sum of non-compact roots in :math:`\mathfrak u` (for theta-stable parabolic). | .. _dim_u_parabolic_p->int1: dim_u ------------------------------------------------- | ``dim_u:Parabolic P->int`` Defined in line number 422. | | Dimension of :math:`\mathfrak u` (nilrad of theta-stable parabolic). | .. _dim_u_kgbelt_x->int1: dim_u ------------------------------------------------- | ``dim_u:KGBElt x->int`` Defined in line number 425. | | Dimension of the nilradical of the theta-stable parabolic determined by KGB elt x. | .. _dim_u_cap_k_parabolic_(,x):p->int1: dim_u_cap_k ------------------------------------------------- | ``dim_u_cap_k:Parabolic (,x):P->int`` Defined in line number 431. | | Dimension of :math:`\mathfrak u\cap\mathfrak k` for theta-stable parabolic. | .. _dim_u_cap_k_kgbelt_x->int1: dim_u_cap_k ------------------------------------------------- | ``dim_u_cap_k:KGBElt x->int`` Defined in line number 442. | | Dimension of :math:`\mathfrak u\cap\mathfrak k` for theta-stable parabolic determined by x. | .. _dim_u_cap_k_ratvec_lambda,kgbelt_x->int1: dim_u_cap_k ------------------------------------------------- | ``dim_u_cap_k:ratvec lambda,KGBElt x->int`` Defined in line number 446. | | Dimension of :math:`\mathfrak u\cap\mathfrak k` for theta-stable parabolic determined by weight lambda. | .. _dim_u_cap_p_parabolic_(,x):p->int1: dim_u_cap_p ------------------------------------------------- | ``dim_u_cap_p:Parabolic (,x):P->int`` Defined in line number 451. | | Dimension of :math:`\mathfrak u\cap\mathfrak p` for theta-stable parabolic. | .. _dim_u_cap_p_kgbelt_x->int1: dim_u_cap_p ------------------------------------------------- | ``dim_u_cap_p:KGBElt x->int`` Defined in line number 462. | | Dimension of :math:`\mathfrak u \cap\mathfrak p` for theta-stable parabolic associated to x. | .. _dim_u_cap_p_ratvec_lambda,kgbelt_x->int1: dim_u_cap_p ------------------------------------------------- | ``dim_u_cap_p:ratvec lambda,KGBElt x->int`` Defined in line number 466. | | Dimension of :math:`\mathfrak u\cap\mathfrak p` for theta-stable parabolic determined by weight lambda. | .. _dim_u_cap_k_2_parabolic_p,ratvec_h->int1: dim_u_cap_k_2 ------------------------------------------------- | ``dim_u_cap_k_2:Parabolic P,ratvec H->int`` Defined in line number 471. | | (Auxiliary function) | .. _dim_u_cap_k_ge2_parabolic_p,ratvec_h->int1: dim_u_cap_k_ge2 ------------------------------------------------- | ``dim_u_cap_k_ge2:Parabolic P,ratvec H->int`` Defined in line number 482. | | (Auxiliary function) | .. _dim_u_cap_p_ge2_parabolic_p,ratvec_h->int1: dim_u_cap_p_ge2 ------------------------------------------------- | ``dim_u_cap_p_ge2:Parabolic P,ratvec H->int`` Defined in line number 493. | | (Auxiliary function) | .. _dim_u_cap_k_1_parabolic_p,ratvec_h->int1: dim_u_cap_k_1 ------------------------------------------------- | ``dim_u_cap_k_1:Parabolic P,ratvec H->int`` Defined in line number 504. | | (Auxiliary function) | .. _make_dominant_kgbelt_x_in,ratvec_lambda_in,_ratvec_lambda_q_in->(kgbelt,ratvec,ratvec)1: make_dominant ------------------------------------------------- | ``make_dominant:KGBElt x_in,ratvec lambda_in, ratvec lambda_q_in->(KGBElt,ratvec,ratvec)`` Defined in line number 537. | | Conjugate the triple (x,lambda, lambda_q) to make lambda_q weakly dominant (auxiliary function). | .. _aq_reducible_kgbelt_x_in,ratvec_lambda_in,_ratvec_lambda_q->parampol1: Aq_reducible ------------------------------------------------- | ``Aq_reducible:KGBElt x_in,ratvec lambda_in, ratvec lambda_q->ParamPol`` Defined in line number 544. | | A_q(lambda) module; :math:`\mathfrak q` is defined by the weight lambda_q; x_in must be attached to the fundamental Cartan. The module is defined as a ParamPol, in case it is reducible. | .. _aq_kgbelt_x_in,ratvec_lambda_in,_ratvec_lambda_q->param1: Aq ------------------------------------------------- | ``Aq:KGBElt x_in,ratvec lambda_in, ratvec lambda_q->Param`` Defined in line number 566. | | A_q(lambda) module defined as above, but as a parameter, assuming it is irreducible. | .. _aq_kgbelt_x,ratvec_lambda_in->param1: Aq ------------------------------------------------- | ``Aq:KGBElt x,ratvec lambda_in->Param`` Defined in line number 574. | | If not provided, assume lambda_q=lambda_in in the definition of A_q. | .. _aq_realform_g,ratvec_lambda_in,_ratvec_lambda_q->param1: Aq ------------------------------------------------- | ``Aq:RealForm G,ratvec lambda_in, ratvec lambda_q->Param`` Defined in line number 578. | | A_q(lambda), specify G, not x, to use x=KGB(G,0). | .. _aq_realform_g,ratvec_lambda_in->param1: Aq ------------------------------------------------- | ``Aq:RealForm G,ratvec lambda_in->Param`` Defined in line number 582. | | A_q(lambda), specify G, not x, and use lambda_q=lambda_in. | .. _is_one_dimensional_param_p->bool1: is_one_dimensional ------------------------------------------------- | ``is_one_dimensional:Param p->bool`` Defined in line number 589. | | Decide whether a parameter defines a one-dimensional representation. | .. _is_unitary_character_param_p->bool1: is_unitary_character ------------------------------------------------- | ``is_unitary_character:Param p->bool`` Defined in line number 593. | | Decide whether a parameter defines a unitary one-dimensional character. | .. _is_good_kgbelt_x_in,ratvec_lambda_in,ratvec_lambda_q_in->bool1: is_good ------------------------------------------------- | ``is_good:KGBElt x_in,ratvec lambda_in,ratvec lambda_q_in->bool`` Defined in line number 600. | | Decide whether A_q(lambda) is good. | .. _is_weakly_good_kgbelt_x_in,ratvec_lambda_in,ratvec_lambda_q_in->bool1: is_weakly_good ------------------------------------------------- | ``is_weakly_good:KGBElt x_in,ratvec lambda_in,ratvec lambda_q_in->bool`` Defined in line number 605. | | Decide whether A_q(lambda) is weakly good. | .. _is_fair_kgbelt_x_in,ratvec_lambda_in,ratvec_lambda_q_in->bool1: is_fair ------------------------------------------------- | ``is_fair:KGBElt x_in,ratvec lambda_in,ratvec lambda_q_in->bool`` Defined in line number 610. | | Decide whether A_q(lambda) is fair. | .. _is_weakly_fair_kgbelt_x_in,ratvec_lambda_in,ratvec_lambda_q_in->bool1: is_weakly_fair ------------------------------------------------- | ``is_weakly_fair:KGBElt x_in,ratvec lambda_in,ratvec lambda_q_in->bool`` Defined in line number 615. | | Decide whether A_q(lambda) is weakly fair. | .. _goodness_kgbelt_x,ratvec_lambda_in,ratvec_lambda_q->string1: goodness ------------------------------------------------- | ``goodness:KGBElt x,ratvec lambda_in,ratvec lambda_q->string`` Defined in line number 621. | | Determine the "goodness" of an Aq(lambda); returns "good", "weakly good", "fair", "weakly fair", or "none". | .. _is_good_param_p_l,realform_g->bool1: is_good ------------------------------------------------- | ``is_good:Param p_L,RealForm G->bool`` Defined in line number 637. | | Decide whether a parameter for L is in the good range for G; this only makes sense if L is the Levi of a (standard) theta-stable parabolic. | .. _is_weakly_good_param_p_l,realform_g->bool1: is_weakly_good ------------------------------------------------- | ``is_weakly_good:Param p_L,RealForm G->bool`` Defined in line number 651. | | Decide whether a parameter for L is in the weakly good range for G; this only makes sense if L is the Levi of a theta-stable parabolic. | .. _is_fair_param_p_l,realform_g->bool1: is_fair ------------------------------------------------- | ``is_fair:Param p_L,RealForm G->bool`` Defined in line number 662. | | Decide whether a parameter for L is in the fair range for G; this only makes sense if L is the Levi of a theta-stable parabolic, and is only defined if p_L is one_dimensional. | .. _is_weakly_fair_param_p_l,realform_g->bool1: is_weakly_fair ------------------------------------------------- | ``is_weakly_fair:Param p_L,RealForm G->bool`` Defined in line number 678. | | Decide whether a parameter for L is in the weakly fair range for G; this only makes sense if L is the Levi of a theta-stable parabolic, and is only defined if p_L is one-dimensional. | .. _goodness_param_p_l,realform_g->string1: goodness ------------------------------------------------- | ``goodness:Param p_L,RealForm G->string`` Defined in line number 690. | | Determine the "goodness" of a parameter for L; returns "good", "weakly good", "fair", "weakly fair", or "none"; only makes sense if L is Levi of theta-stable parabolic. | .. _aq_packet_realform_g,complexparabolic_p->[param]1: Aq_packet ------------------------------------------------- | ``Aq_packet:RealForm G,ComplexParabolic P->[Param]`` Defined in line number 706. | | List all A_q(0) (actually: R_q(trivial): infinitesimal character rho(G)) modules with Q a theta-stable parabolic of type P. | .. _aq_packet_realform_g,[int]_s->[param]:aq_packet(g,complexparabolic1: Aq_packet ------------------------------------------------- | ``Aq_packet:RealForm G,[int] S->[Param]:Aq_packet(G,ComplexParabolic`` Defined in line number 715. | | List all A_q(0) (infinitesimal character rho(G)) modules with Q a theta-stable parabolic of type S (list of simple roots). | .. _aq_packet_realform_g,[*]_s->[param]:aq_packet(g,[int]1: Aq_packet ------------------------------------------------- | ``Aq_packet:RealForm G,[*] S->[Param]:Aq_packet(G,[int]`` Defined in line number 717. | | .. _aq_zeros_realform_g->[param]1: Aq_zeros ------------------------------------------------- | ``Aq_zeros:RealForm G->[Param]`` Defined in line number 721. | | List all good Aq(0) (inf. char. rho) of G; this is more or less blocku (there may be duplications). | .. _theta_stable_parabolics_max_kgbelt_x->[parabolic]1: theta_stable_parabolics_max ------------------------------------------------- | ``theta_stable_parabolics_max:KGBElt x->[Parabolic]`` Defined in line number 728. | | Given a KGB element x, list all theta-stable parabolics in G with maximal element x. | .. _theta_stable_parabolics_with_kgbelt_x->[parabolic]1: theta_stable_parabolics_with ------------------------------------------------- | ``theta_stable_parabolics_with:KGBElt x->[Parabolic]`` Defined in line number 736. | | Given a KGB element x, list all theta-stable parabolics in G determined by x. | .. _theta_stable_parabolics_with_[parabolic]_tsp,kgbelt_x->[parabolic]1: theta_stable_parabolics_with ------------------------------------------------- | ``theta_stable_parabolics_with:[Parabolic] tsp,KGBElt x->[Parabolic]`` Defined in line number 743. | | Same as previous function, but takes the output of theta_stable_parabolics(G) as additional input for efficiency. | .. _is_theta_x_kgbelt_x->bool1: is_theta_x ------------------------------------------------- | ``is_theta_x:KGBElt x->bool`` Defined in line number 750. | | Decide whether there is a theta-stable parabolic determined by x. | .. _is_good_range_induced_from_param_p->[param]1: is_good_range_induced_from ------------------------------------------------- | ``is_good_range_induced_from:Param p->[Param]`` Defined in line number 754. | | List of parameters p_L in the (weakly) good range for G so that p is theta-induced from p_L; may be more than one. | .. _reduce_good_range_param_p->(parabolic,param)1: reduce_good_range ------------------------------------------------- | ``reduce_good_range:Param p->(Parabolic,Param)`` Defined in line number 776. | | Find the parabolic P and parameter p_L so that p is cohomologically induced, in the (weakly) good range, from p_L, with L minimal (may be G). | .. _is_good_aq_param_p->bool1: is_good_Aq ------------------------------------------------- | ``is_good_Aq:Param p->bool`` Defined in line number 797. | | Determine whether p is a (weakly) good unitary Aq(lambda). | .. _is_proper_aq_param_p->bool1: is_proper_Aq ------------------------------------------------- | ``is_proper_Aq:Param p->bool`` Defined in line number 802. | | Determine whether p is a proper (weakly) good unitary Aq(lambda). | .. _all_real_induced_one_dimensional_realform_g->[param]1: all_real_induced_one_dimensional ------------------------------------------------- | ``all_real_induced_one_dimensional:RealForm G->[Param]`` Defined in line number 807. | |