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1 An introduction to generalized Harish-Chandra
modules

Let g be a semisimple Lie algebra over C and Ug its universal enveloping
algebra. Finite-dimensional representations of g are well understood by now,
but what can we say about infinite-dimensional modules? It is generally agreed
that the theory of infinite-dimensional modules has revealed “wild” classification
problems. That is, there is no systematic way of listing canonical forms of
infinite-dimensional modules over a Lie algebra, even if they are simple, except
for g ' sl(2) (for this case see [B]). A standard text on the subject is J. Dixmier’s
book [D]. In general, we need to focus the problem further than just the study
of simple modules in order to make any progress in understanding the theory
of representations of semisimple Lie algebras.

One such focus is the theory of Harish-Chandra modules ([D,Ch.9],[Wa]).
Suppose σ is a nontrivial automorphism of order 2 of g. For example, if

g = sl(n), let σ(T ) = −T t for all T ∈ g. Then gσ = so(n). In general
we write k = gσ and call k a symmetric subalgebra of g. The pair (g, k) is
called a symmetric pair. Any symmetric subalgebra k is necessarily reductive
in g, i.e. the adjoint representation of any symmetric subalgebra k ⊂ g on
g is semisimple. For a given g, there are finitely many conjugacy classes of
symmetric subalgebras, and there is always at least one. E. Cartan classified all
symmetric pairs (g, k) ([H],[Kn1]).

Definition 1.1 A Harish-Chandra module for the pair (g, k) is a g-module M
satisfying:

1) M is finitely generated over g.
2) For all v ∈M , (Uk)v is a finite-dimensional semisimple k-module.
3) For any simple, finite-dimensional k-module V , dim Homk(V,M) <∞.

Lemma 1.2 If M is a Harish-Chandra module for (g, k), then we have a canon-
ical decomposition of the restriction of M to k:

M ∼=
⊕

V ∈Repk

Homk(V,M)⊗C V,

where Repk is a complete set of representatives for the isomorphism classes of
simple finite-dimensional k-modules.

See Proposition 1.13 below for a more general statement.
The following is a classical result of Harish-Chandra.

Theorem 1.3 ([HC]; see [D, Ch.9]) Suppose k is a symmetric subalgebra of g.
Let M be a simple g-module which satisfies condition 2) of Definition 1.1. Then
M satisfies condition 3) of Definition 1.1 .

Let us attempt to put Harish-Chandra’s theorem into some perspective. By
l we denote an arbitrary subalgebra of g.
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Definition 1.4 A (g, l)-module is a g-module M such that for all v ∈M , (U l)v
is a finite-dimensional l-module (not necessarily semisimple over l).

For example, let l = b be a Borel subalgebra of g, that is, a maximal solvable
subalgebra. Let E be a finite-dimensional b-module, and let M = M(E) =
Ug ⊗Ub E be the g-module algebraically induced from E. Algebraic induction
is introduced in [D, Ch.5].

When E is one dimensional, M(E) is called a Verma module (although
Harish-Chandra studied these objects long before Verma). For any finite-dimensional
E, M(E) is a (g, b)-module; this follows from the following.

Lemma 1.5 Let E be any finite-dimensional l-module. Then the induced mod-
ule Ug⊗Ul E is a (g, l)-module.

Proof Suppose Y ∈ l, u ∈ Ug and e ∈ E. Then in Ug⊗Ul E we have

Y (u⊗ e) = Y u⊗ e = [Y, u]⊗ e+ uY ⊗ e = [Y, u]⊗ e+ u⊗ Y e.

Write Uadl for Ug regarded as an l-module via the adjoint action l. The
above equation implies that we have an l-module surjection

Uadl ⊗C E → Ug⊗Ul E.

The Poincare-Birkhoff-Witt (PBW) filtration of Ug yields a filtration of Uadl

by finite-dimensional l-submodules. Thus, Uadl ⊗C E is locally finite as an l-
module. By the above surjection, Ug⊗UlE is also locally finite as an l-module.
�

Definition 1.6 Let M be a countable-dimensional (g, l)-module and let V be a
finite-dimensional simple l-module.

a) If W is a finite-dimensional l-submodule of M , let [W : V ] be the multi-
plicity of V as a Jordan-Hölder factor of W .

b) Let [M : V ] be the supremum of [W : V ] as W runs over all finite-
dimensional l-submodules of M . We call [M : V ] the multiplicity of V in M .
We have [M : V ] ∈ N ∪ {ω}, where ω stands for the countable infinite cardinal.

Lemma 1.7 If E is a finite-dimensional l-module and V is a simple finite-
dimensional l-module, then

[Ug⊗Ul E : V ] = [S(g/l)⊗C E : V ].

Proof The PBW filtration of Ug is adl-stable. This filtration yields a filtration
of Ug ⊗Ul E whose associated graded module is S(g/l) ⊗C E (here and bellow
S( ) stands for symmetric algebra). �

Definition 1.8 a) A (g, l)-module M has finite type over l if [M : V ] <∞ for
any simple finite-dimensional l-module V .

b) A generalized Harish-Chandra module is a g-module which is of finite type
for some l in g, not necessarily specified in advance.(See [PZ1], [PSZ].)
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Example 1.9

Suppose b is a Borel subalgebra and E is a finite-dimensional b-module. Then
Ug⊗Ub E has finite type over b. Indeed let h be a Cartan subalgebra of g such
that h ⊆ b. As an h-module, S(g/b) is semisimple with finite multiplicities.
Hence S(g/b) has finite multiplicities as a b-module. Now apply Lemma 1.7.

Proposition 1.10 Let b be a Borel subalgebra of g, and M be a simple (g, b)-
module.

a) M is semisimple over h with finite multiplicities.
b) There exists a unique one-dimensional b-module E such that M is a

quotient of M(E) := Ug⊗Ub E.
c) M(E) has a unique simple quotient.

Proof Part b): Let E be a one-dimensional b-submodule of M (E exists by Lie’s
Theorem). The embedding of E into M yields a surjective homomorphism of
M(E) onto M .

Part a): Follows from the same statement for M(E).
Part c): See [D, Ch.7]. �
Recall that l is an arbitrary subalgebra of g and let E be a finite-dimensional

l-module. In general, S(g/l) has infinite multiplicities as an l-module. Hence,
Ug⊗UlE has infinite multiplicities as an l-module. Now suppose M is a simple
(g, l)-module. By Schur’s Lemma [D, Ch. 2, Sec. 6], the center ZUg of the
enveloping algebra Ug will act via scalars on M . Let θM : ZUg → C be the
corresponding central character of M . Let E be a non-zero finite-dimensional
l-submodule of M . Then, M is a quotient of the (g, l)-module

P (E, θM ) = (Ug⊗Ul E)⊗ZUg
(ZUg/KerθM ).

In general P (E, θM ) has infinite multiplicities as an l-module.
The following is a crucial fact leading to the proof of Harish-Chandra’s The-

orem (Theorem 1.3).

Proposition 1.11 If k is a symmetric subalgebra of g, E is a simple finite-
dimensional k-module and θ is a homomorphism from ZUg to C, then P (E, θ)
has finite type over k.

Proof See [D, Ch.9], [W]. �
Proposition 1.11 implies Theorem 1.3 as, if M is a simple (g, k)-module

with central character θM and simple k-submodule E, then M is a quotient of
P (E, θM ).

Remark. For general E and θ, P (E, θ) could vanish.
For later use we state the following.

Lemma 1.12 If l is reductive in g and M is a simple (g, l)-module, then M is
semisimple over l.
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Proof Let E be a simple l-submodule of M . We have a canonical homomorphism
of Ug⊗UlE →M given by u⊗ e 7→ ue. Since M is simple, this homomorphism
is surjective. In turn, the homomorphism Uadl ⊗C E → Ug ⊗Ul E, given by
u ⊗ e 7→ u ⊗ e ∈ Ug ⊗Ul E, is surjective. Since l is reductive in g, Uadl is a
semisimple l-module; since the l-module E is simple, Uadl ⊗C E is a semisimple
l-module. Hence, Ug⊗Ul E and M itself are semisimple over l. �

Proposition 1.13 If l is reductive in g and M is a simple (g, l)-module, then
as an l-module, M is canonically isomorphic to⊕

V ∈Repl

Homl(V,M)⊗ V.

In particular, M has finite type over l if and only if for every V ∈ Repl,
Homl(V,M) is finite dimensional. In general, [M : V ] = dim Homl(V,M).

Proof See [Kn2]. �
Consider now the case l = n = [b, b], the maximal nilpotent subalgebra of

a Borel subalgebra b ⊂ g. For any finite-dimensional n-module F , the alge-
braically induced module Ug ⊗Un F is a (g, n)-module, and by tensoring over
ZUg with a finite-dimensional representation V of ZUg,

(Ug⊗Un F )⊗ZUg
V, (1.1)

we again obtain a (g, n)-module. Since n is not symmetric, this does not guar-
antee finite multiplicities.

Definition 1.14 A one-dimensional n-module F is generic if for each simple
root α of b in g, gα acts nontrivially on F (note that gα ⊂ n).

In fact, we have the following well-known result.

Theorem 1.15 ([Ko]) If F is one-dimensional and generic, and V is one-
dimensional, then (Ug ⊗Un F ) ⊗ZUg

V is simple, but F occurs with infinite
multiplicity.

The reader is now urged to compare Theorem 1.15 to Proposition 1.11. In
fact, one can show that the g-module (Ug ⊗Un F ) ⊗ZUg

V is not a generalized
Harish-Chandra module.

Let l = h be a Cartan subalgebra of g and M a simple (g, h)-module. By
Proposition 1.13, M is a direct sum of weight spaces (joint eigenspaces) of h.
Each weight space corresponds to a linear functional on h, so we may write

M =
⊕
λ∈h∗

M(λ). (1.2)

Although the dual space h∗ is uncountable, this sum is in fact supported on a
countable set of weights, which we denote supphM . In what follows we call any
g-module satisfying (2) an h-weight module or simply a weight module.
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The decomposition (2) should in principle allow us to understand weight
modules better since the root decomposition of g respects this decomposition of
any (g, k)-module M . That is, if α is a root of h in g, Xα a nonzero root vector,
then XαM(λ) ⊆M(λ+ α). However, there is no classification of simple weight
modules for the pair (g, h) unless g ' sl(2). The classification problem appears
to be wild already for g ' sl(3), although for sl(2) it was solved in the 1940’s,
and in fact is given as an exercise in [D].

Consider the case h ⊂ k ⊂ g = sl(n) with k the symmetric subalgebra
consisting of elements of the type below:

∗ ... ∗ 0
...

...
...

∗ ... ∗ 0
0 ... 0 ∗

 ' sl(n− 1)⊕ C (1.3)

(here h is the subalgebra of traceless diagonal matrices).
We have the following known types of simple (g, k)-modules (due to H. Kral-

jević [Kra]).

1. Those which have infinite h-multiplicities.

2. Modules which are (g, b)-modules for some Borel containing h. Such mod-
ules have finite h-multiplicities.

Kraljević gives an explicit construction of a complete set of representatives
for the isomorphism classes of simple (g, k)-modules. The completeness of this
set is implied by the Harish-Chandra subquotient theorem, see [D, Ch. 9].

For g = sl(n), there exist simple (g, h)-modules which are not (g, b)-modules
for any Borel b containing h, but which have finite h-multiplicities. Britten and
Lemire showed in 1982 that we can construct a module M such that supphM =
ν+Λ, where Λ is the root lattice of h, and ν is a completely non-integral weight
of h. Moreover, if λ ∈ supphM , then dimM(λ) = 1. (See [BL], [BBL].)

Here is an explicit construction of Britten-Lemire modules. Let
x1, x2, ..., xn be coordinates for Cn. If λ ∈ h∗, write λ = (λ1, λ2, ..., λn), with
λ1 + λ2 + ... + λn = 0. Let xλ denote the formal monomial xλ1

1 xλ2
2 ...xλn

n , and
define ∂

∂xi
xλ = λix

λ−(δi1,δi2,...,δin) where δij = 1 if i = j and 0 if i 6= j. Let

F be the C vector space with basis {xλ|λ ∈ h∗}. Then F is a module over the
Lie algebra g̃ spanned by the vector fields xi

∂
∂xj

. Identify g = sl(n) with the

subalgebra [g̃, g̃] of g̃.
Then h = span{xi ∂

∂xi
−xj ∂

∂xj
}, and the λ-weight space of F is precisely F (λ) =

Cxλ, for each λ ∈ h∗. Fix a weight ν ∈ h∗ and let Mν = (Ug) · xν ⊆ F .
Assume νi /∈ Z for i = 1, 2, ..., n. Then Mν is a simple (g, h)-module with
supphMν = ν + Λ.

For g an arbitrary finite-dimensional Lie algebra, M an arbitrary g-module,
define

g[M ] = {Y ∈ g| CY acts locally finitely in M}. (1.4)
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Theorem 1.16 1(S. Fernando [F], V. Kac [K]) The subset g[M ] is a subalgebra
of g, called the Fernando-Kac subalgebra associated to M .

Note that even for a simple g-module M , we may have g[M ] = 0: such an
example for g = sl(2) was found by D. Arnal and G. Pinczon [AP].

Any g-module M is a (g, g[M ])-module. Moreover, M is a generalized
Harish-Chandra module if and only if M is of finite type over g[M ]. (See
Definition 1.8.)

At this point, we have a theory moving in two directions. To a subalgebra l
of g, we associate the category of (g, l)-modules. We can also associate to l the
subcategory of (g, l)-modules of finite type. On the other hand, the Fernando-
Kac construction allows us to identify a subalgebra g[M ] of g for every module
M . That is, if C(g) is the category of all g-modules,

g[−] : C(g)→ Sub(g)

is a map from the class of objects of C(g) to the set Sub(g) of subalgebras of g.

Theorem 1.17 ([PS]) Let g be reductive. Every subalgebra between h and g,
i.e. every root subalgebra of g, arises as the Fernando-Kac subalgebra of some
simple weight module of g.

As we will see below for g = sl(3), for certain root subalgebras l ⊃ h, the
equality g[M ] = l for a simple g-module M implies that M has infinite type
over h.

Consider now the case when g is simple and k is a proper symmetric subal-
gebra of g. There are two cases.

1. The center of k is trivial.

In this case k is a maximal subalgebra of g. If M is a simple infinite-
dimensional (g, k)-module, g[M ] = k.

2. The center of k is nontrivial. (Example: g = sl(n), k = sl(n− 1)⊕ C.)

In this case Zk ∼= C and k is the reductive part of two opposite maximal
parabolic subalgebras p+ and p− in g. Moreover, the only subalgebras
lying between k and g are k, p+, p− and g. If M is a simple infinite-
dimensional (g, k)-module, g[M ] can be any of the three subalgebras k, p+

or p−. These facts are a consequence of the theory of the Fernando-Kac
subalgebra plus early work of Harish-Chandra ([D], Ch. 9).

The case of l simple, g = l ⊕ l, k = l embedded diagonally into g is also
interesting, since l is maximal in g.

For g = sl(3), h diagonal matrices, the simple (g, h)-modules considered so
far have the following Fernando-Kac subalgebras.

1. If M is finite dimensional, then g[M ] = g (i.e. every Y ∈ g acts locally
finitely on M).

1We thank A. Joseph for pointing out that Theorem 1.16 follows also from an earlier result
of B. Kostant reproduced in [GQS].
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2. If M is a simple infinite-dimensional (g, b)-module for a Borel subalgebra
b ⊃ h, then b ⊆ g[M ], so g[M ] is a parabolic subalgebra of g.

3. For M a Britten-Lemire module, g[M ] = h.

4. Let k = sl(2) ⊕ C, i.e. k =

 ∗ ∗ 0
∗ ∗ 0
0 0 ∗

. For M a simple (g, k)-module

which is not a (g, b)-module for any Borel subalgebra b, we have g[M ] = k.

These four classes are distinguished by g[M ]. There are many additional
modules, and it is interesting to ask which subalgebras of g can occur as g[M ].

5. Let l =

 ∗ ∗ ∗0 ∗ 0
0 0 ∗

 . By [F], any simple M with g[M ] = l has finite

type over l.

6. Let l =

 ∗ ∗ 0
0 ∗ 0
0 0 ∗

 . By [F], any simple M with g[M ] = l has infinite

type over l.

The cases 1.-6. exhaust all root subalgebras of sl(3) up to conjugacy. Case
3, i.e. when l = h, is the only case when simple (g, l)-modules M with g[M ] = h
can have both finite or infinite type. In particular, there exist simple g-modules
M with g[M ] = h which have infinite type over h. See [Fu1], [Fu2], [Fu3], and
[PS].

The following theorem gives a general characterization of the subalgebra
g[M ] corresponding to a generalized Harish-Chandra module M . By ⊃+ we
denote the semi-direct sum of Lie algebras: the round part of the sign points
towards the ideal.

Theorem 1.18 ([PSZ]) Assume g is semisimple. Suppose M is a simple gen-
eralized Harish-Chandra module.

(a) g[M ] is self-normalizing, hence g[M ] is algebraic. That is, g[M ] is the
Lie algebra of a subgroup of G = Aut(g)◦ (( )◦ indicates the connected
component of the identity).

(b) Let k ⊆ g[M ] be maximal among subalgebras of g[M ] that are reductive as
subalgebras of g. Let g[M ]nil be the maximum ad-nilpotent ideal in g[M ].
Then, g[M ] = k ⊃+ g[M ]nil. Although k is only unique up to conjugation,
write k = g[M ]red.

(c) M ∈ A(g, g[M ]red). Moreover, g[M ]red acts semi-simply on M .

(d) The center Z(g[M ]red) of g[M ]red is equal to the centralizer
Cg(g[M ]red) of g[M ]red in g.
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If we are just interested in simple generalized Harish-Chandra modules, we
can give a more transparent characterization of them. A simple g-module M is a
generalized Harish-Chandra module if M is a direct sum with finite multiplicities
of finite-dimensional simple g[M ]red-modules.

For M as in Theorem 1.18 , there is a canonical isomorphism

M←̃
⊕

F∈Rep(g[M ]red)

Homg[M ]red(F,M)⊗C F. (1.5)

Choose t a Cartan subalgebra in k = g[M ]red, and fix a root order for t in k.
Then, Repk bijects to the dominant integral weights Λd ⊂ t∗. Therefore, we can
rewrite M as

M←̃
⊕
λ∈Λd

Homk(Fλ,M)⊗C Fλ (1.6)

with Fλ the simple finite-dimensional module of highest weight λ. Let M [λ] be
the image of Homk(Fλ,M)⊗CFλ under the isomorphism in (1.6). We call M [λ]
the Fλ-isotypic k-submodule of M .

Fix k a reductive in g subalgebra. Assume (as in Theorem 1.18 (d)) that
Cg(k) = Z(k). How might one construct simple generalized Harish-Chandra
modules M such that k = g[M ]red?

Theorem 1.19 ([PSZ]) At least one simple M exists satisfying the above.

The proof involves quite a bit of algebraic geometry. Basically, we can employ
the natural action of K on certain partial flag varieties for G (here G and K
are the connected algebraic groups corresponding to g and k), then view M as
global sections of a sheaf on this variety.

2 An introduction to the Zuckerman functor

In the following construction of (g, k)-modules via derived functors, we will
have three primary goals:

1. Systematically construct generalized Harish-Chandra modules for this pair.

2. Give a classification of a natural class of simple generalized Harish-Chandra
modules.

3. Calculate g[M ] for a class of modules M constructed via derived functors.

Let g be a finite-dimensional Lie algebra over C, with m ( k a pair of
reductive in g subalgebras. We have the category C(g, k) of g-modules which are
locally finite and completely reducible over k, and likewise the category C(g,m).
Both categories are closed under taking submodules, quotients, arbitrary direct
sums, tensor products over C, and Γ′HomC(−,−). (See the discussion below for
the definition of Γ′.)

Note that A ∈ C(g, k) implies A ∈ C(g,m). Therefore, we can define a for-
getful functor For : C(g, k)→ C(g,m). For general homological algebra reasons,
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this functor has a right adjoint Γ : C(g,m)→ C(g, k) unique up to isomorphism.
Recall that Γ is a right adjoint to For means there is a natural isomorphism

HomC(g,m)(For(A), V ) ' HomC(g,k)(A,ΓV ). (2.1)

An explicit construction for Γ is as follows. For V ∈ C(g,m), let ΓV be the
sum in V of all cyclic g-submodules B such that B ∈ C(g, k).

Proposition 2.1 As a set, ΓV is the set of v ∈ V such that (Uk)v is finite
dimensional and semisimple as a k-module.

Proof Suppose that, for some v ∈ V , E = (Uk)v is finite dimensional and
semisimple over k. Then the cyclic submodule B = (Ug)v is a quotient of
Ug⊗Uk E, which is an object in C(g, k). Hence, B ∈ C(g, k).

Conversely, if B = (Ug)v is in C(g, k), then (Uk)v is finite dimensional and
semisimple over k. If v1, v2, . . . , vn are elements of V such that for each i,
Bi = (Ug)vi is in C(g, k), then for any element w in B1 +B2 + . . .+Bn, (Uk)w
is finite dimensional and semisimple over k. �

A more conceptual way to think of ΓV is as the largest (g, k)-module in V .
The functor Γ is left exact, but happens to be not right exact. To see a

simple example of failure of right exactness, consider the exact sequence

0→ (Ug)g→ Ug→ C→ 0. (2.2)

Set k = g,m = 0. Then, Γ takes Ug and the augmentation ideal (Ug)g to 0, but
ΓC = C.

Once we know Γ is not exact, we should have a Pavlovian response and try to
define corresponding derived functors. Existence of these functors is contingent
on the existence of enough injectives in the category C(g,m).

Lemma 2.2 C(g,m) has enough injectives.

Proof Take any V ∈ C(g,m). Embed V in an injective g-module X. Write
Γ′ : C(g) → C(g,m) for the adjoint of the inclusion C(g,m) ⊂ C(g). Here,
Γ′V = V and so V → Γ′X is an embedding of V to an injective object in
C(g,m). That Γ′X is injective is another standard homological algebra fact
which follows from Γ′ being right adjoint to For. By repeating these steps, we
can prolong the embedding V → Γ′X to an injective resolution

0→ V → I0 → I1 → I2 → . . . . (2.3)

in C(g,m). �
Let I• denote the resolution 0→ I0 → I1 → . . .. Now, we can define

RpΓ(V ) := Hp(ΓI•).

The maps in 0 → ΓI0 → ΓI1 → . . . are maps of (g, k)-modules, therefore
H∗(ΓI•) is a Z-graded (g, k)-module.
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We may introduce more systematic notation to identify the categories in
which we are working:

Γg,m
g,k : C(g,m)→ C(g, k). (2.4)

Likewise we can write the derived functors RΓg,m
g,k . In the literature, R∗Γg,m

g,k

have been referred to as the Zuckerman functors, see [V]. These derived func-
tors depend on a choice of injective resolution, but they are well-defined up to
isomorphism.

In C(g,m) we can construct a functorial resolution, by using the relative
Koszul complex. Recall that K•(g,m) is given by Ki(g,m) = Ug⊗Um Λi(g/m)
with Koszul differential ∂i : Ki(g,m) → Ki−1(g,m), see [BW]. The complex
K•(g,m) is acyclic and yields a resolution of C. If V is a (g,m)-module, let
Ii(V ) = Γ′HomC(Ki(g,m), V ). Then for every i, Ii(V ) is an injective object in
C(g,m). Moreover, I•(V ) is a resolution of V . Finally, V  I•(V ) is an exact
functor.

As an application, we can write

R∗Γg,m
g,k V

∼= H∗(Γg,m
g,k HomC(K•(g,m), V )).

This formula makes clear the dependence of R∗Γg,m
g,k on the triple (g, k,m). Note

that we have nowhere used the assumption that g is finite dimensional. However,
we have used in an essential way that m and k are finite dimensional and act
semisimply on g via the adjoint representation. See [PZ4] for an application to
infinite-dimensional g.

Example 2.3

Let g be semisimple, m = h be a Cartan subalgebra of g, and k be any reduc-
tive in g subalgebra containing h. Let V ∈ C(g, h). The module V is a weight

module. If V has finite h-multiplicities, then R∗Γg,h
g,kV has finite k-multiplicities.

(See Theorem 2.4 below).

For a general triple m ⊂ k ⊂ g, let A(g,m) denote the category of (g,m)-
modules which are semisimple over m and have finite multiplicities.

Theorem 2.4 Set Γ = Γg,m
g,k and let M ∈ A(g,m).

a) For all i, RiΓM ∈ A(g, k).

b) If i > dim k/m, then RiΓM = 0.

c)
⊕

i∈NR
iΓM ∈ A(g, k).

Before we give the proof of Theorem 2.4 we introduce a generalization of
our setup. The following more general assumptions are in effect up to Corollary
2.8 included. Assume g is finite dimensional, but no longer assume that k is
reductive in g. Let kr ⊂ k be maximal among subalgebras of k that are reductive
in g, and let m be reductive in kr. Denote by C(g, k, kr) the full subcategory of
g-modules M such that M is a (g, k)-module which is semisimple over kr.
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Example 2.5

Let k = b, a Borel subalgebra of g. Choose kr = h, a Cartan subalgebra
of g that lies in b. The subcategory O(g, b, h) of finitely generated modules in
C(g, b, h) was introduced by Bernstein-Gelfand-Gelfand [BGG].

As before, C(g, k, kr) is a full subcategory of C(g,m) and we can construct a
right adjoint Γ to this inclusion of categories. Likewise, we can study the right
derived functors of Γ. It is interesting to understand when R∗ΓM has finite
type over k. A simpler question is the following.

Problem: Suppose V is a simple finite-dimensional kr-module. Under what
conditions on V and the data above will dim Homkr(V,R

∗ΓM) be finite?
The question of when R∗ΓM has finite type over k is related to the question

of when dim Homk(Z,R
∗ΓM) is finite for finite-dimensional (not necessarily

simple) k modules Z.
We now establish some general properties of the functors R∗Γ.

Proposition 2.6 Suppose M ∈ C(g,m) and W is a finite-dimensional g-module.
Then for every i ∈ N we have a natural isomorphism W ⊗CR

iΓM ∼= RiΓ(W ⊗C
M).

Proof First we prove that if N ∈ C(g,m), we have a natural isomorphism W ⊗C
ΓN ∼= Γ(W ⊗C N): Since W is finite dimensional and ΓN is locally finite over
k, we have a natural injective map from W ⊗C ΓN into Γ(W ⊗CN). Suppose Z
is any finite-dimensional k-module. Homk(Z,−) is a left exact functor. Hence,
we obtain a natural injective map

αZ : Homk(Z,W ⊗C ΓN)→ Homk(Z,Γ(W ⊗C N)).

Now,

Homk(Z,W ⊗C ΓN) ∼= Homk(Z ⊗C W
∗,ΓN)

∼= Homk(Z ⊗C W
∗, N)

∼= Homk(Z,W ⊗C N).

Meanwhile, Homk(Z,Γ(W ⊗C N)) ∼= Homk(Z,W ⊗C N). Hence, we have a
commutative diagram, with vertical isomorphisms,

Homk(Z,W ⊗C ΓN)
αZ
↪→ Homk(Z,Γ(W ⊗C N))

↓s ↓s
Homk(Z,W ⊗C N)

βZ→ Homk(Z,W ⊗C N),

where βZ is the map induced by αZ .
We claim βZ is the identity map. This follows from the canonical con-

struction of the diagram. Hence, αZ is an isomorphism. Since W ⊗C ΓN and
Γ(W⊗CN) are both locally finite over k, it follows that the injection of W⊗CΓN
into Γ(W ⊗C N) is an isomorphism.
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Next, we choose i ∈ N and I• a resolution of M by injective objects in
C(g,m). We have W ⊗C R

iΓM ∼= W ⊗C H
i(ΓI•) ∼= Hi(W ⊗C ΓI•), since

W ⊗C (−) is an exact functor.
Thus, by the first part of the proof, W⊗CR

iΓM ∼= Hi(Γ(W⊗CI
•)). Observe

that W ⊗C I
j is an injective object in C(g,m): if Q is a module in C(g,m),

Homg(Q,W ⊗C I
j) ∼= Homg(Q ⊗C W

∗, Ij); hence, Q ↪→ Homg(Q,W ⊗C I
j)

is an exact functor on C(g,m). Thus, W ⊗C I
• is a resolution of W ⊗C M by

injective objects in C(g,m), and Hi(Γ(W ⊗C I
•)) ∼= RiΓ(W ⊗C M). �

For any g-module N , and any element z ∈ ZUg, we write zN for the g-module
endomorphism of N defined by zNv = zv for v ∈ N .

Proposition 2.7 Let M ∈ C(g,m). Then for every i ∈ N, zRiΓM = RiΓzM .

Proof Let I• be a resolution of M in C(g,m) by injective objects. The chain
map zI• is a lifting of zM to the resolution I•. The morphism RiΓzM is the
action of z on RiΓM induced by the chain map zI• . Finally, the morphism
zN : N → N is natural in N . It follows that RiΓzM = zRiΓM . �

Now suppose a is an ideal in ZUg; for any g-module N , let Na = {v ∈
N |av = 0}.

Corollary 2.8 If M ∈ C(g,m), and Ma = M , then (R∗ΓM)a = R∗ΓM .

Let us now return to the setup when k is reductive in g.
Proof of Theorem 2.4 Let V be a finite-dimensional simple k-module. We

will study Homk(V,R
iΓM). Let I• be a resolution of M by injective objects in

C(g,m). By definition, Homk(V,R
iΓM) ∼= Homk(V,H

i(ΓI•)); but Homk(V,−)
is an exact functor in the category C(g, k), and hence
Homk(V,R

iΓM) ∼= Hi(Homk(V,ΓI
•)).

By Proposition 2.1, we have Homk(V,ΓJ) ∼= Homk(V, J) for any (g,m)-
module J . Hence, Homk(V,R

iΓM) ∼= Hi(Homk(V, I
•)).

Next, we observe that since Ij is an injective object in C(g,m), then Ij

is an injective object in C(k,m). To see this, let N be an object in C(k,m).
Homk(N, I

j) ∼= Homg(Ug ⊗Uk N, I
j). Note that Ug ⊗Uk N is an object in

C(g,m). The functor Ug⊗Uk (−) is exact. Also, the functor Homg(−, Ij) from
C(g,m) to C-mod is exact. Hence, by the above natural isomorphism, the functor
Homk(−, Ij) is exact. Therefore Ij is an injective object in C(k,m), and I · is an
injective resolution of M in C(k,m).

We now conclude that Homk(V,R
∗ΓM) ∼= Ext∗C(k,m)(V,M).

If m = 0, classical homological algebra tells us that Ext∗k (V,M) ∼= H∗(k, V ∗⊗C
M), where H∗(k,−) is Lie algebra cohomology [BW]. Since m is reductive in k,
we have

Ext∗C(k,m)(V,M) ∼= H∗(k,m, V ∗ ⊗C M) = H∗(Homm(Λ•(k/m), V ∗ ⊗C M)),

where the complex Homm(Λ•(k/m), V ∗ ⊗C M) is endowed with the relative
Koszul differential.
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Part b) of Theorem 2.4 is now immediate, since Λi(k/m) = 0 for i >
dim(k/m); thus, for any simple finite-dimensional k-module V ,

Homk(V,R
iΓM) = 0 for i > dim(k/m).

By assumption, M has finite type over m, V is finite dimensional and Λi(k/m)
is finite dimensional. Hence,

dim Homm(Λi(k/m), V ∗ ⊗M) = dim Homm(V ⊗C Λi(k/m),M) <∞.

From the isomorphisms proved above we conclude that part a) holds. Finally,
parts a) and b) imply part c). �

Definition 2.9 A g-module N is locally ZUg-finite if for any v ∈ N , ZUgv is
finite dimensional.

If θ : ZUg → C is a homomorphism and N is a g-module, we set PθN =
∪s∈NN (Kerθ)s . Observe that PθN is a g-submodule of N . By C we denote the
set of homomorphisms of ZUg to C (central characters).

Lemma 2.10 If a Ug-module N is locally ZUg-finite, then N =
⊕

θ∈C PθN .

Proof By definition,
⊕

θ∈C PθN ⊂ N . To show the lemma, note that for any
v ∈ N , ZUgv is a finite-dimensional ZUg-submodule of N . By decomposing v
as a sum of generalized ZUg-eigenvectors, we obtain v ∈

⊕
θ∈C PθN . �

Proposition 2.11 RiΓ commutes with inductive limits.

Proof Let V be a finite-dimensional simple k-module. By the proof of Theorem
2.4, we have a natural isomorphism
Homk(V,R

iΓM) ∼= Hi(Homm(Λ•(k/m), V ∗ ⊗C M)). Since Λ•(k/m) is finite di-
mensional, the functor Hi(Homm(Λ•(k/m), V ∗ ⊗C (−))) commutes with induc-
tive limits. Hence, the functor Homk(V,R

iΓ) commutes with inductive limits.
Finally, RiΓ ∼=

⊕
V Homk(V,R

iΓ), where V runs over finite-dimensional simple
k-modules. �

Proposition 2.12 If M ∈ C(g,m) is locally ZUg-finite, then so is RiΓM for
any i. Moreover, for any θ ∈ C, Pθ(R

iΓM) = RiΓ(PθM).

Proof If M ∈ C(g,m) is locally ZUg-finite, then M is an inductive limit of
submodules annihilated by an ideal of finite codimension in ZUg. By Corol-
lary 2.8 and Proposition 2.11, RiΓM is likewise an inductive limit of modules
annihilated by an ideal of finite codimension in ZUg. Hence, RiΓM is locally
ZUg-finite. Moreover, Corollary 2.8 and Lemma 2.10 allow us to conlude that
Pθ(R

iΓM) = RiΓ(PθM) for any θ ∈ C. �

Proposition 2.13 For M ∈ A(g,m) and V ∈ Repk we have∑
i

(−1)i dim Homk(V,R
iΓM) =

∑
i

(−1)i dim Homm(V ⊗C Λi(k/m),M).

In particular, the alternating sum on the left depends only on the restriction of
M to m.
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Proof By the proof of Theorem 2.4 we have

dim Homk(V,R
iΓM) = dimHi(Homm(V ⊗C Λ•(k/m),M)) <∞.

The proof of Proposition 2.13 now follows from the Euler-Poincare principle. �
Remark. The dimension of Homk(V,R

iΓM) ∼= Hi(k,m, V ∗ ⊗C M) will in
general depend on the g-module M and not just its restriction to m.

Remark. Theorem 2.4 b) holds for M ∈ C(g,m). In particular, we obtain
the following.

Corollary 2.14 If M ∈ C(g,m) and i > dim k/m, then

Hi(ΓHom(K•(g,m),M)) = 0.

Note that Ki(g,m) = 0 if and only if i > dim(g/m).
Even if M is simple over Ug, we can have RpΓM reducible over Ug. We

don’t have to look hard for examples.

Example 2.15

Recall that m is reductive in k. Let n = dim(k/m). Then Hn(k,m,C) ∼= C.
Hence, RnΓC ∼= C. Thus, the inequality for the vanishing of RiΓM in Theorem
2.4 b) is sharp.

Example 2.16

Assume m = t, a Cartan subalgebra of k. Let K be a connected complex
algebraic group with Lie algebra k, and let T be the subgroup of K with Lie
algebra t. Let K0 be a maximal compact subgroup of K; choose K0 so that
K0 ∩ T = T0 is a maximal torus in T . We have H∗(K0/T0) ∼= H∗(k, t,C). If
l = rkkss, then dimH2(K0/T0) = l. Now, as a k-module, R∗ΓC ∼= H∗(k,m,C)
with the trivial action of k. Hence dimR2ΓC = l, and thus R2ΓC is in general
a reducible trivial k-module. In fact, R2ΓC is in general a reducible trivial g-
module.

Fix a Cartan subalgebra t of k and extend it to be a Cartan subalgebra h on
g. Let M be a simple module in A(g, t). Then M is automatically in A(g, h).
Simple modules in A(g, h) have been classified by S. Fernando and O. Mathieu,
see [F] and [M]. It is an open problem to determine which simple (g, h)-modules
of finite type over h are also of finite type over t. We want to study R∗Γg,t

g,kM
when M is a module in A(g, t).

Consider first the case when h = t, i.e. where k is a root subalgebra of g.
As an interesting exercise, for the example g = sl(n) and M a Britten-Lemire

module, one can show that R∗Γg,h
g,kM = 0. If we take some Borel subalgebra

b ⊂ g containing h, and choose a weight λ ∈ h∗, we can study R∗Γg,h
g,k indg

bCλ.
This is a family of graded (g, k)-modules in A(g, k). Let us examine the behavior
of these (g, k)-modules in some examples.

Example 2.17
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Suppose k = g, then R∗Γindg
bCλ ∈ A(g, g)∗. Either all the derived functor

modules vanish, or for exactly one degree, say i(λ), Ri(λ)Γindg
bCλ 6= 0 and

is a simple g-module. This is the situation considered in the Borel-Weil-Bott
theorem, see [EW].

Example 2.18

Let g = sl(n), n = p+ q with p, q > 0, k = s(gl(p)⊕gl(q)) := {m⊕n | trm =
−trn}, and h the diagonal Cartan subalgebra. Choose some Borel subalgebra b
containing h, and also choose λ ∈ h∗. Let s = 1

2 dim k/h. Then,

Ab(λ) := RsΓ indg
b Cλ

can either be 0 or an infinite-dimensional (g, k)-module [VZ]. It may be simple
or reducible, and if reducible, it may not be semisimple over Ug. What are the
possibilities for g[Ab(λ)]? There are three possibilities:

1. g[Ab(λ)] = k

2. g[Ab(λ)] = k ⊃+ ñ+

3. g[Ab(λ)] = k ⊃+ ñ−

where ñ+ is the nilradical for a maximal parabolic containing k, and ñ− is its
opposite. Conversely, for each of these choices, we can give a pair (b, λ) so that
g[Ab(λ)] is that subalgebra. For this fact, see [PZ4].

Consider now the general case when h 6= t. Let g be any semisimple Lie
algebra and, in addition to t and k, consider an arbitrary parabolic subalgebra
p ⊂ g with p ⊃ h. Let N ∈ A(p, t) and consider R∗Γg,t

g,k indg
pN . Note that

indg
pN may or may not be in A(g, t). The parabolic subalgebra p has a Levi

decomposition p = pred⊃+ np, and as a vector space we can write g = n−p ⊕pred⊕
np. Then, indg

pN ' U(n−p ) ⊗C N . In this presentation, t can be seen to act by

the adjoint action on n−p . There are choices where indg
pN is not in A(g, t), but

R∗Γ indg
pN ∈ A(g, k).

For example, let l be simple, g = l⊕ l, k the diagonal embedding of l into g.
Let t be the Cartan of k and p the sum of a Borel of l in the first factor with
the opposite Borel in the second factor.

Definition 2.19 Given a triple (g, k, t), a t-compatible parabolic subalgebra is
any parabolic subalgebra of the form

ph =
⊕

Re α(h)≥0

gα, (2.5)

for a fixed h ∈ t.

In this definition, gα is the α-weight space for t acting on g. Also, t ⊆ g0 ⊆
ph, ph,red =

⊕
Re α(h)=0 gα, and nph

=
⊕

Re α(h)>0 gα
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Lemma 2.20 Let p be a t-compatible parabolic subalgebra. Assume p = ph and
h acts by a scalar in N ∈ A(p, t); then indg

pN ∈ A(g, t).

Proof By the same argument as in the proof of Lemma 1.5, if N is a (p, t)-
module, then indg

pN is a (g, t)-module. Moreover, by the same argument as
in the proof of Lemma 1.7, indg

pN
∼= S(g/p) ⊗C N as a (t, t)-module. By the

assumption that p = ph, the eigenspaces of h in S(g/p) are finite dimensional.
By the assumption on N , h acts by a scalar in N . It follows that the weight
spaces of t in S(g/p)⊗C N are finite dimensional. �

Consider R∗Γindg
pN for p as above. This is a generalized Harish-Chandra

module, but we also have a vanishing theorem which tells us RiΓindg
pN = 0

if i < s := 1
2 dim k/t. This, along with an earlier result, indicates that the

only possibly nonvanishing derived functors occur for s ≤ i ≤ 2s. The proof of
vanishing is given in [V, Ch.6]; see also [PZ3]. This construction is known as
cohomological induction, see also [KV].

Consider now the special case when k is isomorphic to sl(2). There are
finitely many conjugacy classes of such subalgebras, classified by Dynkin [Dy].
Examples include:

• g = sl(3), k = so(3) ' sl(2); this pair is symmetric.

• g = sl(2)⊕sl(2), k = sl(2) = {(Y, Y ) ∈ g|Y ∈ sl(2)}; this pair is symmetric.

• g = sp(4), k = sl(2), the principal sl(2);this pair is not symmetric.

• g = sl(2) ⊕ sl(2) ⊕ sl(2), with k = sl(2) = {(Y, Y, Y ) ∈ g| Y ∈ sl(2)}; this
pair is not symmetric.

Since t is one-dimensional when k = sl(2), we have s = 1, so we need only
study i = 1, 2. The duality theorem for relative Lie algebra cohomology [BW]
implies that if Γ (indg

pN)∗ = 0, then R2Γindg
pN = 0. So, we need only study

R1Γ indg
pN . This module may still be 0. We will try to understand R1Γindg

pN
by using an Euler characteristic trick. Given a module V for k ' sl(2), we have

dim Homk(V,R
1Γ indg

pN) = −
∑
j

(−1)j dim Hj(k, t;V ∗ ⊗C indg
pN). (2.6)

This formula is an immediate consequence of Proposition 2.13. We should think
of (2.6) as analogous to the study of cohomology of surfaces with coefficients
in locally constant sheaves. Using formula (2.6) one can in specific cases show
R1Γ indg

pN is nonzero.
Since dim t = 1, p = ph is one of two parabolic subalgebras. In either

case, (ph)red ' Cg(t) and the nilpotent part depends on the decomposition of
g into weights under the action of t. In general, p is not a Borel subalgebra.
Let N be a finite dimensional module over Cg(t), with trivial action of np.
Consider R1Γ indg

pN . We can use formula (12) to compute the k-multiplicities
as a sequence of natural numbers, see [PZ1].
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3 Construction and reconstruction of general-
ized Harish-Chandra modules

In this final section we give an introduction to the results of [PZ3]. These
results provide a classification of a class of simple generalized Harish-Chandra
modules.

We start by introducing a notation. A multiset is a function f from a set
D into N. A submultiset of f is a multiset f ′ defined on the same domain D
such that f ′(d) ≤ f(d) for any d ∈ D. For any finite multiset f , defined on an
additive monoid D, we can put ρf := 1

2

∑
d∈D

f(d)d.

We assume that the quadruple (g, k, h, t) as in the previous section is fixed.
We assume further that k is algebraic in g. If M =

⊕
ω∈t∗M(ω) is a t-weight

module for which all M(ω) are finite dimensional, M determines the multiset
chtM which is the function ω 7→ dimM(ω) defined on the set of t-weights of M .

Note that the R-span of the roots of h in g fixes a real structure on h∗, whose
projection onto t∗ is a well-defined real structure on t∗. In what follows, we will
denote by Reλ the real part of an element λ ∈ t∗. We fix also a Borel subalgebra
bk ⊂ k with bk ⊃ t. Then bk = t⊃+ nk, where nk is the nilradical of bk. We set
ρ := ρchtnk

, and ρ⊥n = ρcht(n∩k⊥).
Let 〈 , 〉 be the unique g-invariant symmetric bilinear form on g∗ such that

〈α, α〉 = 2 for any long root of a simple component of g. The form 〈 , 〉 enables
us to identify g with g∗. Then h is identified with h∗, and k is identified with k∗.
The superscript ⊥ indicates orthogonal space. Note that there is a canonical
k-module decomposition g = k⊕ k⊥. We also set ‖κ‖2 := 〈κ, κ〉 for any κ ∈ h∗.

We say that an element λ ∈ t∗ is (g, k)-regular if 〈Reλ, α〉 6= 0 for non-zero
t-weights α of g. Since we identify t with t∗, we can consider t-compatible
parabolic subalgebras pλ for λ ∈ t∗.

By mλ and nλ we denote respectively the reductive part of pλ (containing
h) and the nilradical of pλ. A t-compatible parabolic subalgebra p = m ⊃+ n
(i.e. p = pλ for some λ ∈ t∗) is minimal if it does not properly contain an-
other t-compatible parabolic subalgebra. It is easy to see that a t-compatible
parabolic subalgebra pλ is minimal if and only if mλ equals the centralizer Cg(t),
or equivalently if and only if λ is (g, k)-regular.

A k-type is by definition a simple finite-dimensional k-module. By Vµ we will
denote a k-type with bk-highest weight µ (µ is then k-integral and bk-dominant).
If M is a (g, k)-module and Vµ is a k-type, let M [µ] denote the Vµ-isotypic k-
submodule of M . (See the discussion after equation (1.6) in Section 1.) Let
Vµ be a k-type such that µ + 2ρ is (g, k)-regular, and let p = m ⊃+ n be the
t-compatible parabolic subalgebra pµ+2ρ. Note that p is a minimal t-compatible
parabolic subalgebra. Put ρn := ρchtn.

The following is a key definition. We say that Vµ is generic if the following
two conditions hold:

(1) 〈Reµ+ 2ρ− ρn, α〉 ≥ 0 for every t-weight α of nk.
(2) 〈Reµ+ 2ρ− ρS , ρS〉 > 0 for every submultiset S of chtn.
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One can show that the following is a sufficient condition for genericity:
|〈Reµ+2ρ, α〉| ≥ c for any t-weight α of g and a suitably large positive constant
c, depending only on the pair (g, k).

Let Θk be the discrete subgroup of Z(k)∗ generated by suppZ(k)g. By M
we denote the class of (g, k)-modules M for which there exists a finite subset
S ⊂ Z(k)∗ such that suppZ(k)M ⊂ (S + Θk). Note that any finite length (g, k)-
module lies in the class M.

If M is a module in M, a k-type Vµ of M is minimal if the function µ′ 7→
‖Reµ′+ 2ρ‖2 defined on the set {µ′ ∈ t∗ |M [µ′] 6= 0} has a minimum at µ. Any
non-zero (g, k)-module M in M has a minimal k-type. This follows from the
fact that the squared length of a vector has a minimum on every shifted lattice
in Euclidean space.

We need also the following “production” or ”coinduction” functor (see [Bla])
from the category of (p, t)-modules to the category of (g, t)-modules:

prog,tp,t(N) := Γt,0(HomUp(Ug, N)).

The functor prog,tp,t is exact.

Definition 3.1 Let p = m ⊃+ n be a minimal t-compatible parabolic subalgebra,
E be a simple finite-dimensional p-module on which t acts via a weight ω. We
call the series of (g, k)-modules of finite type

F ∗(p, E) := R∗Γk,t(prog,tp,t(E ⊗C Λdim n(n))),

the fundamental series of generalized Harish-Chandra modules.

Set µ := ω + 2ρ⊥n . It is proved in [PZ2] that the following assertions hold
under the assumptions that p ⊆ pµ+2ρ and that µ is bk-dominant and k-integral.

a) F ∗(p, E) is a (g, k)-module of finite type in the class M.
b) There is a k-module isomorphism

F s(p, E)[µ] ∼= CdimE ⊗C Vµ,

and Vµ is the unique minimal k-type of F s(p, E).
c) Let F̄ s(p, E) be the g-submodule of F s(p, E) generated by F s(p, E)[µ].

Then any simple quotient of F̄ s(p, E) has minimal k-type Vµ.
The following theorems provide the basis of the classification of (g, k)−

modules with generic minimal k-type. The classification is then stated as a
corollary.

Theorem 3.2 (First reconstruction theorem, [PZ3]) Let M be a simple (g, k)-
module of finite type with a minimal k-type Vµ which is generic. Then p :=
pµ+2ρ = m ⊃+ n is a minimal t-compatible parabolic subalgebra. Let E be the
p-module Hr(n,M)(µ − 2ρ⊥n ) with trivial n-action, where r = dim(n ∩ k⊥).
Then E is a simple p-module and M is canonically isomorphic to F̄ s(p, E)
for s = dim(n ∩ k).
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Theorem 3.3 (Second reconstruction theorem, [PZ3]) Assume that the pair
(g, k) is regular, i.e. t contains a regular element of g. Let M be a simple
(g, k)-module (a priori of infinite type) with a minimal k-type Vµ which is generic.
Then M has finite type, and hence by Theorem 3.2, M is canonically isomorphic
to F̄ s(p, E) (where p, E and s are as in Theorem 3.2).

Corollary 3.4 (Classification of generalized Harish-Chandra modules with generic
minimal k-type.) Fix a generic k-type Vµ. The simple (g, k)-modules of finite
type whose minimal k-type is isomorphic to Vµ are in a natural bijective corre-
spondence with the simple finite-dimensional pµ+2ρ-modules on which t acts via
µ− 2ρ⊥n .

Note that if rkk = rkg, there exists a unique simple finite-dimensional pµ+2ρ-
module E on which t acts via µ − 2ρ⊥n . If rkg − rkk = d > 0, there exists a
d-parameter family of such pµ+2ρ-modules.
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