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Let X be an irreducible HC module. How can you compute AV(X), which
is a union of components of O ∩ (g/k)∗?

Recall O = AV(Ann X). Recall that the dimension of a Richardson orbit
for the parabolic q is

#R(g) − #R(l)

where l is the Levi of q.
Last night it was explained that O is contained in the closure of the Richard-

son orbit for any parabolic q corresponding to the descent set (= τ -invariant)
of some Y in the cell of X. That is, O is contained in the intersection of all
closures of Richardson orbits obtained that way. This gives an upper bound
for O.

Question: is it true that any special orbit is an intersection of Richardson
orbits? Monty replies: yes for classical types, no for exceptional ones.

Recall that there is the Spaltenstein duality (order-reversing) d between
special nilpotent orbits in ∨g and those in g∗. Then d(O) is contained in the
closure of Richardson orbit for ∨q, which is the parabolic corresponding to the
complement of τ(Y).

Thus, O contains d of the Richardson orbit for ∨q. This gives a lower bound
for O.

Now, try to get at AV(X).
1) Look in your cell to see if you can find a representation Aq (Zuckerman

derived functor). The blocku command gives precisely these, which are exactly
the unitary ones in the case of infinitesimal character ρ.

The Levi of q corresponds to the non-∗ simple roots in the blocku output.
If you find one, then AV(X) = AV(Aq) and by Borho-Brylinski the latter is

K · (g/k + q)∗ = K · (q⊥ ∩ k⊥) ∼= K · (u ∩ p) ⊆ g

(using the not-so-good identification g∗ ∼= g). This is only sort of explicit, that
is, not enough for some practical purposes.

Consider now generalized Aq’s.
Start with an Aq. This corresponds to an output #m in the blocku com-

mand.
q = l⊕u, where l corresponds to non-∗ simple roots. Move from #m (inside

the block) by performing cross actions and inverse Cayley transforms, using
only roots in L.

(1)notes by Patrick Polo
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This leads to a family F (#m) of representations of g; it corresponds bi-
jectively to the block of the trivial module for L. Take some #k in F (#m);
it corresponds to a representation Z in the trivial block of L, and the G-
representation #k equals

R(Z)

where R is the Zuckerman functor. Then one has (identifying g∗ = g and
similarly for l):

AV(#k) = K · (AV(Z) + u ∩ p)

where AV(Z) is contained in (l ∩ p)nilp. Thus calculating AV(#k) is reduced
to the lower rank group L. The G representations in F (#m) are the so called
generalized Aq. This provides a larger library of modules that one can sort of
understand.

For E8(R), any nilpotent complex orbit has at most 3 real forms. Recall that
the number of real forms of the orbit is the number of K-orbits in O ∩ (g/k)∗;
this is also the number of irreducible components of

O ∩ (g/k)∗.

Since the associated variety AV(X) is the union of some of these components,
this gives the upper bound 3 for the number of irreducible components of
AV(X).

Let Kei
∼= K/Hi be the components of AV(X). Then X gives rise to a

“genuine virtual algebraic representation” τi of Hi.
X is part of a coherent family X(λ) and one has

dim ηi(λ) = Pi(λ),

where Pi is a polynomial, namely a multiple of Joseph’s Goldie rank polyno-
mial associated with the primitive ideal which is the annihilator of X.

Here is an incomplete sketch of one more technique to compute an asso-
ciated variety, which can give a reducible answer. This did not appear in
the lecture. Suppose O is an even complex nilpotent orbit, with Jacobson-
Morozov parabolic subalgebra q (with Levi factor corresponding to the zeros
in the Dynkin diagram of O). In this case O is necessarily the Richardson
orbit defined by q. Suppose that Q(R) ⊂ G(R) is a real parabolic subgroup
conjugate to q. (Such a parabolic exists if and only if O has real forms for
G(R).) Now let ξ(R) be any unitary finite-dimensional character of Q(R), and
consider the unitary degenerate principal series representation

I(ξ(R)) = Ind
G(R)
Q(R)(ξ(R)).
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Theorem 1. — In the setting above, AV(I(ξ(R)) is equal to O ∩ (g/k)∗. Each

irreducible component of this intersection occurs in the associated variety of

exactly one irreducible summand of I(ξ(R)). Conversely, the associated variety

of each summand is a union of irreducible components of the intersection.

In case I(ξ(R)) has integral infinitesimal character, its decomposition into
irreducibles can be computed by atlas. All the summands belong to translation
families in a single block. If there is a single summand, then its associated
variety corresponds to all the real forms of O. (This occurs for O the principal
orbit in SL(2) and ξ(R) trivial. The corresponding representation is the unique
element of the SL(2, R) block dual to SU(2). Its associated variety therefore
has two components.)

If there are several summands, one can hope by some other technique to
compute the associated varieties of some of them. The remaining summands
must then partition the remaining components of O ∩ (g/k)∗. I do not have
an example of this offhand.


