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Start by an advertisement for Collingwood-McGovern, Nilpotent orbits in
Semisimple Lie algebras, Chapman & Hall (unfortunately very expensive:
$ 160), and a volume in the series Springer Encyclopedia of Math. Sci-
ences, Transformation Groups & Invariant Theory, with articles by Carrell,
Bialynicki-Birula, and McGovern (slightly less expensive: $125).

Let g be a complex semisimple Lie algebra. We say x ∈ g is nilpotent (resp.
semisimple) if ad x acts nilpotently (resp. semisimply) on g.

One justification is that if g = sln, x is nilpotent (resp. semisimple) iff x is
so as a matrix.

If G = Ad(g), then x is nilpotent iff every element of Gx is nilpotent, and
similarly for semisimple, so we may apply these notions to G-orbits.

Semisimple orbits Fix a Cartan subalgebra h of g. Every semisimple orbit
meets h exactly in one orbit of W, the Weyl group, and

(g/G)ss ∼= h/W.

Nilpotent orbits First of all, if e ∈ g is nilpotent, then it is part of a
standard sl2-triple (e, f, h). This is not uniquely determined by e, but Gh is
uniquely determined by Ge, so we get a well-defined map from nilpotent orbits
to semisimple orbits.

We find that all eigenvalues of ad h on g are integral. We can find a Cartan
subalgebra h containing h and such that we can choose simple roots for h in g

such that all eigenvalues of ad h on simple root spaces gα are 0, 1, or 2. Thus
we obtain a well-defined weighted Dynkin diagram: each node in the ordinary
Dynkin diagram is labelled by the eigenvalue of ad h on the corresponding
simple root space gα.

By no means do all possible weighted diagram occur!

– the diagram with all 0s corresponds to {0} orbit
– the diagram with all 2s corresponds to the principal nilpotent orbit (the

unique open dense orbit in the nilpotent cone)

Dynkin also considered the question: given e, which reductive subalgebras
of g contain e? In fact, he restricted to what he called “regular reductive
subalgebras” (= containing a fixed Cartan subalgebra h) and meeting Ge. He
labelled the orbit by “the smallest” reductive subalgebra with this property
(not a unique one, choices to be made here).
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Bala-Carter classification. They restricted attention to Levi factors of
parabolic subalgebras; they found that for any nilpotent orbit Ge, there is a
unique (up to conjugacy) minimal Levi factor l meeting Ge, and it meets Ge
in a single orbit Le′.

Given l, they asked which orbits meet l but no smaller Levi factor, calling
them distinguished in l. They found the distinguished orbits are all even (that
is, only 0s and 2s) and are all Richardson (that is, meet the nilradical of the
parabolic in a dense set).

Finally, they observed that for a parabolic subalgebra p with nilradical n,
Richardson orbits meeting densely, we can decide whether or not this orbit is
distinguished by a root system calculation.

Upshot, for the exceptional cases: 5, resp. 16, 21, 45, 70 for G2, resp. F4,
E6, E7, E8, of which 2, resp. 4, 3, 6, 11 are distinguished (that is, distinguished
in g).

Classification: except for technicalities involving conjugacy classes of Levi
factors, we can label any nilpotent orbit by a pair of Cartan types, one corre-
sponding to a Levi factor, the second to a subalgebra of it.

In the classical cases, we can bypass all these considerations and appeal
to the Jordan canonical form.

– g = sln: nilpotent orbits ↔ partitions of n
– g = son (n even or odd): nilpotent orbits ↔ partitions of n in which even

parts occur with even multiplicities, except that if all parts are even, we get
two orbits attached to the partition, labelled I and II

– g = sp2n
: ↔ partitions of 2n in which odd parts occur with even multi-

plicities.

Alternatively, more Atlasly, one can produce nilpotent orbits from Weyl
group elements as follows.

Fix a Borel subalgebra b = h ⊕ n, let W = W(g, h). Given w ∈ W, look at

n
⋂

w(n);

a unique nilpotent orbit will meet this in an open dense set. Call this orbit Ow.
Using Bala-Carter, Steinberg proved in a very clever way that all nilpotent
orbits occur in that way. One has Ow = O

w
−1, but there is much more

collapsing. E.g. in E8, according to David there is about 70 thousands of
involutions, but only 70 nilpotent orbits.

Moreover, one can also study irreducible components of O∩n, called orbital

varieties. They all take the form:

B · (n ∩ wn)

for some w such that O meets n ∩ wn densely.
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Real case Nilpotent KC-orbits in p can be studied in much the same way,
using standard triples (h, e, f) where h ∈ k and e, f ∈ p. The weighted Dynkin
diagrams occuring in this fashion were classified by Djoković in two papers in
J. Algebra 112 and 116 (1988).


