Atlas Meeting V, Palo Alto, July 16-20, 2007 Monty McGovern: Nilpotent orbits ⁽¹⁾ Monday 14:30

Start by an advertisement for Collingwood-McGovern, Nilpotent orbits in Semisimple Lie algebras, Chapman & Hall (unfortunately very expensive: \$ 160), and a volume in the series Springer Encyclopedia of Math. Sciences, Transformation Groups & Invariant Theory, with articles by Carrell, Bialynicki-Birula, and McGovern (slightly less expensive: \$125).

Let \mathfrak{g} be a complex semisimple Lie algebra. We say $x \in \mathfrak{g}$ is nilpotent (resp. semisimple) if ad x acts nilpotently (resp. semisimply) on \mathfrak{g} .

One justification is that if $\mathfrak{g} = \mathfrak{sl}_n$, x is nilpotent (resp. semisimple) iff x is so as a matrix.

If $G = Ad(\mathfrak{g})$, then x is nilpotent iff every element of Gx is nilpotent, and similarly for semisimple, so we may apply these notions to G-orbits.

Semisimple orbits Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Every semisimple orbit meets \mathfrak{h} exactly in one orbit of W, the Weyl group, and

$$(\mathfrak{g}/\mathrm{G})_{\mathrm{ss}} \cong \mathfrak{h}/\mathrm{W}$$

Nilpotent orbits First of all, if $e \in \mathfrak{g}$ is nilpotent, then it is part of a standard \mathfrak{sl}_2 -triple (e, f, h). This is not uniquely determined by e, but Gh is uniquely determined by Ge, so we get a well-defined map from nilpotent orbits to semisimple orbits.

We find that all eigenvalues of $\operatorname{ad} h$ on \mathfrak{g} are integral. We can find a Cartan subalgebra \mathfrak{h} containing h and such that we can choose simple roots for \mathfrak{h} in \mathfrak{g} such that all eigenvalues of $\operatorname{ad} h$ on simple root spaces \mathfrak{g}_{α} are 0, 1, or 2. Thus we obtain a well-defined *weighted Dynkin diagram*: each node in the ordinary Dynkin diagram is labelled by the eigenvalue of $\operatorname{ad} h$ on the corresponding simple root space \mathfrak{g}_{α} .

By no means do all possible weighted diagram occur!

- the diagram with all 0s corresponds to $\{0\}$ orbit

- the diagram with all 2s corresponds to the principal nilpotent orbit (the unique open dense orbit in the nilpotent cone)

Dynkin also considered the question: given e, which reductive subalgebras of \mathfrak{g} contain e? In fact, he restricted to what he called "regular reductive subalgebras" (= containing a fixed Cartan subalgebra \mathfrak{h}) and meeting Ge. He labelled the orbit by "the smallest" reductive subalgebra with this property (not a unique one, choices to be made here).

⁽¹⁾notes by Patrick Polo

Bala-Carter classification. They restricted attention to Levi factors of parabolic subalgebras; they found that for any nilpotent orbit Ge, there is a *unique* (up to conjugacy) minimal Levi factor \mathfrak{l} meeting Ge, and it meets Ge in a single orbit Le'.

Given \mathfrak{l} , they asked which orbits meet \mathfrak{l} but no smaller Levi factor, calling them *distinguished in* \mathfrak{l} . They found the distinguished orbits are all even (that is, only 0s and 2s) and are all Richardson (that is, meet the nilradical of the parabolic in a dense set).

Finally, they observed that for a parabolic subalgebra \mathfrak{p} with nilradical \mathfrak{n} , Richardson orbits meeting densely, we can decide whether or not this orbit is distinguished by a root system calculation.

Upshot, for the exceptional cases: 5, resp. 16, 21, 45, 70 for G_2 , resp. F_4 , E_6 , E_7 , E_8 , of which 2, resp. 4, 3, 6, 11 are distinguished (that is, distinguished in \mathfrak{g}).

Classification: except for technicalities involving conjugacy classes of Levi factors, we can label any nilpotent orbit by a pair of Cartan types, one corresponding to a Levi factor, the second to a subalgebra of it.

In the classical cases, we can bypass all these considerations and appeal to the Jordan canonical form.

– $\mathfrak{g} = \mathfrak{sl}_n$: nilpotent orbits \leftrightarrow partitions of n

 $-\mathfrak{g} = \mathfrak{so}_n$ (*n* even or odd): nilpotent orbits \leftrightarrow partitions of *n* in which even parts occur with even multiplicities, except that if all parts are even, we get *two* orbits attached to the partition, labelled I and II

 $-\mathfrak{g} = \mathfrak{sp}_{2n}$: \leftrightarrow partitions of 2n in which odd parts occur with even multiplicities.

Alternatively, more Atlasly, one can produce nilpotent orbits from Weyl group elements as follows.

Fix a Borel subalgebra $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$, let $W = W(\mathfrak{g}, \mathfrak{h})$. Given $w \in W$, look at

$$\mathfrak{n} \bigcap w(\mathfrak{n});$$

a unique nilpotent orbit will meet this in an open dense set. Call this orbit \mathscr{O}_w . Using Bala-Carter, Steinberg proved in a very clever way that all nilpotent orbits occur in that way. One has $\mathscr{O}_w = \mathscr{O}_{w^{-1}}$, but there is much more collapsing. E.g. in E₈, according to David there is about 70 thousands of involutions, but only 70 nilpotent orbits.

Moreover, one can also study irreducible components of $\overline{\mathscr{O}} \cap \mathfrak{n}$, called *orbital* varieties. They all take the form:

 $\overline{\mathrm{B}\cdot(\mathfrak{n}\cap w\mathfrak{n})}$

for some w such that \mathscr{O} meets $\mathfrak{n} \cap w\mathfrak{n}$ densely.

Real case Nilpotent $K_{\mathbb{C}}$ -orbits in \mathfrak{p} can be studied in much the same way, using standard triples (h, e, f) where $h \in \mathfrak{k}$ and $e, f \in \mathfrak{p}$. The weighted Dynkin diagrams occuring in this fashion were classified by Djoković in two papers in J. Algebra 112 and 116 (1988).