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Introduction
The irreducible admissible representations of a real reductive group such

as GL(n, R) have been classified, by work of Langlands, Knapp, Zuckerman
and Vogan. This classification is somewhat involved, and requires a substan-
tial number of prerequisites. See [12] for a reasonably accessible treatment. It
is fair to say that it is difficult for a non-expert to understand any non-trivial
case, not to mention a group such as E8.

The purpose of these notes is to describe an algorithm to compute the
irreducible admissible representations of a real reductive group. This algo-
rithm has been implemented on a computer by the second author. An early
version of the software (Version 0.3 as of April 2008), and other documen-
tation and information, may be found on the web page of the Atlas of Lie
Groups and Representations at www.liegroups.org.

Here is some more detail on what the algorithm and the software do:

(1) Allow the user to define

(a) A complex reductive group G,

(b) An inner class of real forms of G,

(c) A particular real form G(R) of G.
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(2) Enumerate the Cartan subgroups of G(R), and describe them as real
tori,

(3) For any Cartan subgroup H(R) compute W (G(R), H(R)) (the “real”
Weyl group),

(4) Compute a set X parametrizing the set K\G/B where B is a Borel
subgroup and K is the complexification of a maximal compact subgroup
of G(R),

(5) Compute a set Z parametrizing the irreducible representations of G(R)
with regular integral infinitesimal character,

(6) Compute the cross action and Cayley transforms on X and Z,

(7) Compute Kazhdan-Lusztig polynomials.

In fact the proper setting for all of the preceding computations is not a
single real group G(R), but an entire “inner class” of real forms, as described
in Sections 2–4.

The approach used in these notes most closely follows [2]. This reference
has the advantage over [3], which later supplanted it, in that it focuses on the
case of regular integral infinitesimal character, and avoids some complications
arising from the general case. There are a few changes in terminology from
these references which are discussed in the remarks. We also make extensive
use of [4]. This work has some overlap with, and was influenced by, that of
Richardson and Springer [20].

The authors thank David Vogan for his numerous contributions to this
project, and the Marc van Leeuwen, Patrick Polo and the referee and for
very helpful suggestions.

Fokko du Cloux died of ALS in November 2007. Fokko played a major
role in development of the algorithm described in this paper, in addition to
writing the atlas software. This work began in 2004 and was mostly complete
by late 2006. Fokko was an active participant in the writing of this paper,
which was originally submitted shortly after his death.

1 Overview

The primary aim of this paper is to distill a well-known but difficult the-
ory into an algorithm which can be implemented on a computer. While
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the resulting algorithm is self-contained and comparatively elementary, even
understanding the algorithm itself requires a fairly deep knowledge of the
mathematics. In this section we give a high level overview of the algorithm,
before going into more detail in the remainder of the paper. An outline of
the contents of the paper appears at the end of this Overview (Section 1.7).

We assume the reader is familiar with the theory of admissible repre-
sentations of real reductive groups. A good introduction is Knapp’s book
[12].

In this section we write G(C) for a complex reductive group, with real
points G(R). We will make various simplifying assumptions in the course of
this overview; this is for ease of exposition, and the general statements will
be found in the body of the paper. See the end of this section for a discussion
of the issues involved.

Let g be the Lie algebra of G(C). Fix a Cartan involution θ of G(C)
corresponding to G(R). Thus K = G(R)θ is a maximal compact subgroup of
G(R). The basic goal is to parametrize the irreducible admissible represen-
tations of G(R), or equivalently the irreducible admissible (g, K)-modules.
This is an infinite (typically uncountable) set.

Suppose H(C) is a Cartan subgroup of G(C), and let h = Lie(H(C)). By
the Harish-Chandra homomorphism, associated to λ ∈ h∗ is an infinitesimal
character which we also denote λ. We say λ is regular and integral if 〈λ, α∨〉 ∈
Z− {0} for all roots α of h in g.

Since we will be working with different Cartan subgroups simultaneously,
it is convenient to fix one, denoted Ha(C), the abstract Cartan subgroup.
Then we fix once and for all λ ∈ h∗

a. The first basic reduction is to consider
representations with infinitesimal character λ.

Definition 1.1 Fix λ ∈ h∗
a, and let Π(G(R), λ) be the set of irreducible

admissible representations of G(R) with infinitesimal character λ.

By a result of Harish-Chandra this is a finite set. The main result of this
paper is an algorithm to compute Π(G(R), λ) when λ is regular and integral.
We assume λ is regular and integral throughout this section.

There are a number of approaches to classifying Π(G(R), λ). We focus
on three of them, which are intertwined with each other, and each of which
plays a role in this paper.
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1.1 The Langlands classification

Many representations of a reductive group can be constructed using charac-
ters of Cartan subgroups. For example if G is a reductive group over a finite
field then these are the representations RT (θ) of Deligne and Lusztig [8]. For
generic θ RT (θ) is irreducible.

For another example, suppose F is a finite or local field, G = G(F) is
split, and B = HN is a Borel subgroup of G. If χ is a character of H then
IndG

B(χ⊗1) is a minimal principal series representation of G; again for generic
χ this is irreducible.

For a final example assume G(C) is semisimple and simply connected, and
G = G(R) is a real form of G(C), containing a compact Cartan subgroup
T . Suppose χ is a character of T such that 〈dχ, α∨〉 6= 0 for all roots α.
Associated to χ is the discrete series representation of G with Harish-Chandra
parameter dχ, and every discrete series representation of G is of this form.

The Langlands classification for G(R) is built out of the second two cases.
For this we assume that G(C) is acceptable, i.e. ρ (one half the sum of a set
of positive roots) exponentiates to Ha(C). This holds for example if G(C) is
semisimple and simply connected.

Consider the set of pairs (H(R), χ) where H(R) is a Cartan subgroup of
G(R), χ is a character of H(R), and dχ is G(C)-conjugate to λ. The group
G(R) acts on these pairs by conjugation. We define character data as follows:

(1.2) C(G(R), λ) = {(H(R), χ) | dχ is G(C)-conjugate to λ}/G(R).

Proposition 1.3 (Langlands Classification) There is a natural bijection

(1.4) Π(G(R), λ)
1−1
←→ C(G(R), λ).

There are many versions of the Langlands classification, for example see [12]
or [24]. This restatement of (a special case of) the classification is taken from
[4, Theorem 8.29]. Since G(C) is acceptable we do not need the ρ-cover of
H , and since λ is regular and integral we can take Ψ to be the set of positive
real roots defined by λ (notation as in [4]).

Thus one version of our algorithm would be to replace the right hand side
of (1.4) by a computable combinatorial object. Here is an idea of what this
involves.

First we fix a set H1(R), . . . , Hn(R) of representatives of the conjugacy
classes of Cartan subgroups. An algorithm for computing this set is given by
Kostant ([13] and [14]).
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Now fix i and let H(R) = Hi(R). Let W (G(R), H(R)) be the “real”
Weyl group NormG(R)(H(R))/H(R). It is a subgroup of the Weyl group
W (G(C), H(C)) = W (g, h). Unlike W (g, h), W (G(R), H(R)) depends on i,
is not necessarily the Weyl group of a root system, and can be somewhat
difficult to compute. An algorithm is given in [11]; also see [25, Proposition
4.16].

Lemma 1.5 ([24], Theorem 2.2.4) Assume λ − ρ is the differential of a
character of Ha(C). There is a bijection

(1.6) Π(G(R), λ)
1−1
←→

n∐

i

(W/W (G(R), Hi(R))× [Hi(R)/Hi(R)0]̂

In particular

(1.7) |Π(G(R), λ)| =
n∑

i=1

|W/W (G(R), Hi(R))||Hi(R)/Hi(R)0|.

The bijection (1.6) depends on a number of choices. In addition to the
choice of the Hi(R), for each i we have to choose a Borel subgroup containing
Hi(C), and an embedding of Hi(R)/Hi(R)0 in Hi(R). Nevertheless this result
gives a good idea of what we need to compute:

(1) the Cartan subgroups H1(R), . . . , Hn(R); and for each i,

(2) W (G(R), Hi(R)),

(3) Hi(R)/Hi(R)0.

In any event it is clear that any parametrization of Π(G(R), λ) must (if only
implicitly) include a description of items (1-3).

1.2 D-modules

We now describe the classification of Π(G(R), λ) in terms of D-modules. The
basic reference is [5], or see [17] for a good introduction to the subject.

Recall θ is a Cartan involution of G(C) corresponding to G(R). Let
K(C) = G(C)θ. Then K(C) is a reductive group (possibly disconnected),
with real points K = G(R)θ. By the relationship between finite dimensional
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representations of K and K(C), we may view admissible (g, K)-modules as
(g, K(C))-modules.

Let B be the variety of Borel subgroups of G(C), so B = G(C)/B(C)
where B(C) is a fixed Borel subgroup. Then K(C) acts on B with finitely
many orbits. Let Dλ be the sheaf of twisted differential operators on B
corresponding to λ. We consider D-module data:

(1.8) D(G(R), λ) = {(O, τ)}/K(C).

where O is a K(C)-orbit on B, and τ is an irreducible K(C)-equivariant
Dλ-module.

Here is how to make τ more concrete. Fix x ∈ O and let Kx(C) =
StabK(C)(x). Let B(C) be the Borel subgroup of G(C) corresponding to
x, and let H(C) be a θ-stable Cartan subgroup contained in B(C). Then
H(C) is defined over R, and τ can be viewed as a character of H(R) whose
differential dχ is G(C)-conjugate to λ.

Proposition 1.9 ([5]; [17], Theorem 3.9) There is a natural bijection

(1.10) Π(G(R), λ)
1−1
←→ D(G(R), λ).

It is reasonable to look for an algorithm to compute the right hand side.
Fix an orbit O of K(C) on B. By the Proposition, for every Dλ-module

τ on O we obtain an irreducible representation. Varying τ we obtain a finite
set of representations associated to O. For (not very good) reasons which
will become clear in the next section (also see [25, Section 8]) we refer to
this set as an R-packet, and denote it ΠR(G(R),O, λ). Thus Π(G(R), λ) is a
disjoint union of R-packets:

(1.11) Π(G(R), λ) =
∐

K(C)\B

ΠR(G(R),O, λ).

1.3 The Langlands classification using L-groups

We now consider a version of the Langlands classification in terms of L-
groups. Given our group G(C), with real points G(R), let G∨Γ be the L-
group of G(R) [6]. Thus G∨Γ = G∨(C)⋊Γ, where G∨(C) is the dual group of
G(C), Γ = Gal(C/R), and G∨Γ is a certain semidirect product. For example
if G(R) is split this is a direct product.
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Let WR be the Weil group of R, i.e. WR = 〈C×, j〉 where jzj−1 = z and
j2 = −1. We consider the space Homadm(WR, G∨Γ) of admissible homomor-
phisms of WR into G∨Γ. These are the continuous homomorphisms such that
φ(C×) consists of semisimple elements of G∨(C), and φ(j) 6∈ G∨(C).

The version of the Langlands classification in terms of L-groups says that
associated to an admissible homomorphism φ is a finite set of irreducible
admissible representations G(R), called an L-packet. The L-packet of φ only
depends on the G∨(C)-orbit of φ, and we write ΠL(G(R),O∨) for the L-
packet associated to such an orbit O∨. An L-packet may be empty (if G(R)
is not quasi-split); non-empty L-packets associated to two orbits are equal
if only if the orbits are equal. Finally the admissible dual of G(R) is the
disjoint union of L-packets.

The representations in ΠL(G(R),O∨) all have the same infinitesimal char-
acter, which is determined by O∨ (see Section 7). Let Homadm(WR, G∨Γ, λ)
be the admissible homomorphisms for which ΠL(G(R), φ) has infinitesimal
character λ. Thus (compare (1.11)) Π(G(R), λ) is a disjoint union of L-
packets:

(1.12) Π(G(R), λ) =
∐

O∨

ΠL(G(R),O∨)

where the union runs over G∨(C) orbits on Homadm(WR, G∨Γ, λ).
Suppose an L-packet ΠL(G(R),O∨) is non-empty. Some additional data is

required to specify a particular representation in ΠL(G(R),O∨). Choose φ ∈
O∨, let Sφ be the centralizer in G∨(C) of the image of φ, and let Sφ = Sφ/S

0
φ.

Roughly speaking ΠL(G(R),O∨) should be parametrized by characters of Sφ.
This leads us to define the set of Langlands data

(1.13) L(G∨Γ, λ) = {(φ, χ) |φ ∈ Homadm(WR, G∨Γ, λ), χ ∈ Ŝφ}/G
∨(C).

Suppose G1(R), G2(R) are two real forms of G(C). It may be that the
associated L-groups are isomorphic (we say the real forms are inner to each
other if this holds). For example this is the case for all real forms of G(C) if
G(C) is semisimple and its Dynkin diagram admits no non-trivial automor-
phisms. Unlike C(G(R), λ) and D(G(R), λ), L(G∨Γ, λ) should be related to
representations of all these real forms.

To make this precise it is convenient to assume that G(C) is adjoint. Let
G1(R), . . . , Gn(R) be the inequivalent real forms of G(C) with L-group G∨Γ.
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Proposition 1.14 ([2], Theorem 3-2) There is a natural bijection

(1.15)

n∐

i=1

Π(Gi(R), λ)
1−1
←→ L(G∨Γ, λ).

Again it is reasonable to look for an algorithm to compute the right hand
side.

1.4 L-packets and R-packets

Fix a real form G(R) of G(C). Consider for the moment the problem of
explicitly parametrizing Π(G(R), λ) using L-homomorphisms.

Recall (1.12) Π(G(R), λ) is the disjoint union of L-packets ΠL(G(R),O∨)
(some of these may be empty). Specifying a single representation in an L-
packet ΠL(G(R),O∨) amounts to specifying a character of the two-group Sφ

(φ ∈ O∨), a problem we prefer to avoid.
On the other hand Π(G(R), λ) is also the disjoint union of R-packets

ΠR(G(R),O, λ) (see (1.11)). Again specifying a single representation in an
R-packet requires specifying a character of a two-group, in this case the
component group of a torus.

The key to our parametrization is that the intersection of an L-packet
and an R-packet is at most one element. We thereby obtain a classification
in terms of pairs of packets, i.e. pairs of orbits. Here is a weak version of
this result, which does not require any further assumptions on G(C):

Lemma 1.16 ([25], Proposition 8.3) Suppose ΠR(G(R),O, λ) is an R-
packet, and ΠL(G(R),O∨) is an L-packet. Then ΠL(G(R),O∨)∩ΠR(G(R),O, λ)
has at most one element.

This reduces the problem of parametrizing Π(G(R), λ) to the following
problems. Let K(C) be the complexification of a maximal compact subgroup
of G(R).

(1) Parametrize K(C)-orbits on B,

(2) Parametrize G∨(C)-orbits on Homadm(WR, G∨Γ, λ).

It turns out that (2) is equivalent to

(2′) Parametrize K∨(C)-orbits on B∨.
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Here B∨ is the variety of Borel subgroups of G∨(C) and K∨(C) is the fixed
points of an involution of G∨(C), i.e. the analogue of (1) on the dual side. We
also need to determine when the intersection of an L-packet and an R-packet
is non-empty.

We therefore turn now to the problem of computing the space of K(C)
orbits on B, before returning the parametrization of Π(G(R), λ) in Section
1.6.

1.5 The Parameter Space X

Fix G(C). As in Section 1.2 we are interested in computing the space of
K(C)-orbits on B, where K(C) is the fixed points of a Cartan involution of
G(C). It turns out it is easier to treat all Cartan involutions simultaneously.
For the purposes of this Overview we make two simplifying assumptions:

(1) the center of G(C) is trivial,

(2) every automorphism of G(C) is inner.

Assuming (1), condition (2) is equivalent to:

(2′) the Dynkin diagram of G(C) has no nontrivial automorphisms.

For example this holds if G(C) is a simple adjoint group of type Bn,Cn,E7,
E8,F4 or G2.

Under assumption (2) every involutive automorphism of G(C) is of the
form int(x) for some involution x ∈ G(C) (where int(x) is conjugation by x).
It follows that the (equivalence classes of) real forms of G(C) are in bijection
with conjugacy classes of involutions in G(C). If x is such an involution then
θx = int(x) is an involution of G(C), and is the Cartan involution of a real
form. Conversely the Cartan involution of every real form is of the form θx.
See Section 3.

Let {x1, . . . , xn} be a set of representatives of the conjugacy classes of
involutions of G(C). For 1 ≤ i ≤ n let θi = int(xi), Ki(C) = G(C)θi and
write Gi(R) for the corresponding real form of G(C). Fix a Cartan subgroup
H(C).

Definition 1.17 (see Definition 9.2) Let

(1.18) X (G(C)) = {x ∈ NormG(C)(H(C)) | x2 = 1}/H(C).
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This is a finite set.

Proposition 1.19 There is a natural bijection

(1.20) X (G(C))
1−1
←→

n∐

i=1

Ki(C)\B.

Sketch of proof. Let

(1.21) P = {(x, B(C)) | x ∈ G(C), x2 = 1, B(C) a Borel subgroup}/G(C).

Every element of P is conjugate to one of the form (xi, B(C)); the set of
conjugacy classes of pairs (xi, B(C)) is isomorphic to Ki(C)\B. This gives a

bijection P
1−1
←→

∐n
i=1 Ki(C)\B.

On the other hand fix a Borel subgroup B0(C) containing H(C). Ev-
ery element of P conjugate to one of the form (x, B0(C)). Furthermore by
conjugating by B0(C) we may assume x ∈ NormG(C)(H(C)), which gives a

bijection P
1−1
←→ X (G(C))). See Section 8. �

We turn next to the computation of Homadm(WR, G∨Γ, λ)/G∨(C). A re-
markable fact, mentioned at the end of the previous section, is that the
space X (applied on the dual side) provides this parametrization. To make
this precise it is convenient to assume now that the center of G∨(C) is trivial.

Fix a Cartan subgroup H∨(C) of G∨(C). Applying Definition 1.17 to G∨Γ

we have

(1.22) X (G∨(C)) = {x ∈ NormG∨(C)(H
∨(C)) | x2 = 1}/H∨(C).

Proposition 1.23 There is a natural bijection

(1.24) X (G∨(C))
1−1
←→ Homadm(WR, G∨Γ, λ)/G∨(C).

Sketch of proof. We may view λ as an element of the Lie algebra of
H∨(C). If x ∈ NormG∨(C)(H

∨(C)), x2 = 1 define

(1.25)
φ(z) = zλzAd(x)λ

φ(j) = e−πiλx.

Then φ ∈ Homadm(WR, G∨Γ, λ), and every element of Homadm(WR, G∨Γ, λ) is
conjugate to one of this form. See Section 7. �
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Of course Proposition 1.19 holds here as well, so there are bijections

(1.26) Homadm(WR, G∨Γ, λ)
1−1
←→ X (G∨(C))

1−1
←→

m∐

i=1

K∨
i (C)\B∨.

Here B∨ is the space of Borel subgroups of G∨(C), y1, . . . , ym are repre-
sentatives of the conjugacy classes of involutions in G∨(C), and for each i
K∨

i (C) = CentG∨(C)(yi).

1.6 The parameter space Z

We now combine the results of the previous section with Lemma 1.16 to
define the parameter space Z for Π(G(R), λ).

To avoid some technical issues in the previous section we assumed the
center of G(C) is trivial and G(C) has no outer automorphisms. For consid-
eration of L(G∨Γ, λ) we assumed the corresponding facts for G∨(C). There-
fore we assume G(C) is both simply connected and adjoint. We may as well
also assume G(C) is simple, i.e. of type G2, F4 or E8.

As in the previous section let x1, . . . , xn be representaitves of the conju-
gacy classes of involutions of G(C), and let Ki(C) = CentG(C)(xi). Dually
let y1, . . . , ym be representatives of the conjugacy classes of involutions of
G∨(C), and let K∨

j (C) = CentG∨(C)(yj).

Definition 1.27 Assume G(C) is simple, simply connected and adjoint. Fix
Cartan subgroups H(C) of G(C) and H∨(C) of G∨(C). Let h, h∨ be the Lie
algebras of H(C) and H∨(C), respectively. Let

(1.28)(a)
X = X (G(C)) = {x ∈ NormG(C)(H(C)) | x2 = 1}/H(C)

X ∨ = X (G∨(C)) = {y ∈ NormG∨(C)(H
∨(C)) | y2 = 1}/H∨(C).

There is a natural adjoint map End(h) ∋ X 7→ X t ∈ End(h∨). Let

(1.29) Z = {(x, y) ∈ X × X ∨ | (Ad(x)|h)
t = −Ad(y)|h∨}.

By (1.20) and (1.26) Z may be viewed as a subset of

(1.30)

n∐

i=1

Ki(C)\B ×
m∐

i=1

K∨
i (C)\B∨.

See (10.7). Here is a special case of the main result:
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Theorem 1.31 (see Theorem 7.15) Assume G(C) is simple, simply con-
nected and adjoint. Write G1(R), . . . , Gn(R) for the equivalence classes of
real forms of G(C).

There is a natural bijection

(1.32) Z
1−1
←→

n∐

i=1

Π(Gi(R), λ).

This is a refinement of Lemma 1.16, and is a restatement of [2, Theorem
2-12].
Sketch of proof.

Here are three ways to think of the proof of this result.
Fix 1 ≤ i ≤ n and 1 ≤ j ≤ m. Also fix an orbit O of Ki(C) on B, and an

orbit O∨ of K∨
j (C) on B∨. By Lemma 1.16 ΠL(Gi(R),O∨)∩ΠR(Gi(R),O, λ)

consists of at most element. Condition (1.29) makes this intersection non-
empty, and we obtain every representation exactly once this way.

Fix 1 ≤ i ≤ m and an orbit O∨ of K∨
i (C) on B∨. Fix 1 ≤ j ≤ n, and

let ΠL(Gj(R),O∨) be the corresponding L-packet. The choice of an orbit of
Kj(C) on B defines a character χ of Sφ, and by Proposition 1.14 this defines
a representation of Gj(R). This is the proof in Section 7 (see [2]).

Alternatively fix 1 ≤ i ≤ n, an orbitO of Ki(C) on B, and let ΠR(Gi(R),O, λ)
be the corresponding R-packet. The data needed to specify a Dλ module sup-
ported on O is precisely an orbit of K∨

j (C) on B∨ for some 1 ≤ j ≤ m. By
Proposition 1.9 this defines an irreducible representation of Gi(R). �

As is clear from the statement, to explicitly parametrize Π(G(R), λ) the
main issue is to understand the spaces X and X ∨. It is not immediately
obvious how to explicitly compute these, but this can be done using the Tits
group. This is discussed in Section 15. In any event all of the structural data
discussed in Section 1 can be read off from the space X :

Proposition 1.33 (see Proposition 12.19) Use the notation of Theorem
1.31.

(1) X
1−1
←→

∐n
i=1 Kxi

(C)\B.

(2) The real forms of G are parametrized by X ∩H(C)/W . Write x1, . . . , xn

for representatives of this set.

(3) Associated to each x ∈ X is a pair (Gx(R), Hx(R)) consisting of a real
form of G(C) and a Cartan subgroup of Gx(R). This induces a bijection
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between X /W and the union, over real forms G(R) of G(C), of the conjugacy
classes of Cartan subgroups of G(R).

(4) For x ∈ X we have

(1.34) W (Gx(R), Hx(R)) ≃ StabW (x).

See Section 12.1.
It is clear from the discussion that the setting is entirely symmetric in

G(C) and G∨(C). This is a manifestation of Vogan duality [25], which is an
essential guiding principal in the definitions. By symmetry we have, in the
setting of (1.32),

(1.35)
n∐

i=1

Π(Gi(R), λ)
1−1
←→ Z

1−1
←→

m∐

j=1

Π(G∨
j (R), λ∨)

(here λ∨ is a regular integral infinitesimal character for G∨(C)). See Corollary
10.8 for the general statement, without the restrictions on G(C). In fact this
is a refinement of Vogan duality of [25], which considers only a single real
form at a time. See [3, Theorems 1.24 and 15.12].

This explains the nature of R-packets: it is obvious from the discussion
that the Vogan dual of an R-packet for Gi(R) is an L-packet for some real
form G∨

j (R) of G∨(C).

For ease of exposition in this Overview we have made various assumptions.
Removing these constraints involves a number of closely related technical
issues:

(1) If G(C) is not adjoint we weaken the assumption x2 = 1 to x2 is in
the center Z(G(C)) of G(C). This introduces the notion of strong real
form (Section 5).

(2) If (the derived group of) G(C) is not simply connected there are a finite
number of different infinitesimal characters at which the representation
theory looks different. Dually, since G∨(C) is not adjoint, we allow
y2 ∈ Z(G∨(C)).

(3) If ρ does not exponentiate to G(C) we allow characters of the ρ-cover
of H(R) [4, Definition 8.11].
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(4) If G(C) admits non-trivial outer automorphisms, we specify an involu-
tion γ in Out(G(C)). Then all of the objects discussed above become
“twisted” by γ.

Here is an example which takes some of these issues into account. We
change notation to be more in agreement with the body of the paper.

Let G = Sp(2n, C) and let G∨ be the dual group, i.e. SO(2n+1, C). Fix
Cartan subgroups H of G and H∨ of G∨, with Lie algebras h and h∨.

Theorem 1.36 The irreducible representations of Sp(2n, R) with the same
infinitesimal character as the trivial representation are parametrized by:

{(x, y)}/H ×H∨

where

(1.37)
x ∈ NormG(H), x2 = −I

y ∈ NormG∨(H∨) y2 = I

and

(1.38) (Ad(x)|h)
t = −Ad(y)|h∨.

The quotient is by the conjugation action of H × H∨. This is a finite set.
The number of elements is given by the following table:

n 1 2 3 4 5 6 7 8 9
4 18 88 460 2,544 1,4776 89,632 565,392 3,695,680

This set also parametrizes the irreducible representations of real forms
of SO(p, q) (p + q = 2n + 1) with trivial infinitesimal character. This is an
example of Vogan duality (see (1.35)).

If we instead require x2 = I we will parametrize representations of the
groups Sp(p, q). Dually we will obtain representations of SO(p, q) with in-
finitesimal character 2ρ.

We conclude this section with comment about the requirements that the
infinitesimal character λ be regular and integral. It is straightforward to
remove both of these conditions, but introduces some extra complications.

First of all if λ is regular but not integral we replace G∨(C) with a sub-
group whose root system is dual to the integral root system defined by λ.
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This follows the program of [25], and with this change many of the preceding
constructions hold.

Secondly if λ is singular (and possibly non-integral) let λ′ be a regular
element such that λ − λ′ is a sum of roots. By Zuckerman’s translation
principle [26] Π(G(R), λ) is a an explicitly computable subset of Π(G(R), λ′),
thereby reducing this case to the one of regular infinitesimal character.

1.7 Outline

Here is an outline of the contents of the paper.
Section 2 defines the basic objects of study, i.e. reductive groups and root

data. In Section 3 we discuss real forms of a complex group.
We put the information from Sections 2 and 3 together to define basic

data in Section 4. This consists of either a pair (G, γ) consisting of a complex
reductive group and an involution in Out(G), or a pair (Db, γ) consisting of
a based root datum and an involution of it.

Given basic data we define the extended group GΓ = G ⋊ Γ in Section 5.
We also define the notions of strong involution and strong real form. Harish-
Chandra modules for strong real forms are discussed in Section 6.

The first main step in constructing the parameter space is L-data (Section
7). The relation with K-orbits on G/B is the subject of Section 8.

The primary combinatorial construction is the one-sided parameter space
X of Section 9. Once we have X it is straightforward to define the parameter
space Z ⊂ X × X ∨. The main result is Theorem 10.3.

After stating the main result, we go back down into some of the details
of the space X in Sections 11-14 and relate this space to structure theory
of G. A summary of the relationship between X and structure theory of G
is found in Section 12.1. In Section 15 we use the Tits group to explicitly
compute the space X .

Some examples are discussed in the body of the paper. In particular the
very informative cases of SL(2) and PSL(2) are discussed in examples 3.4,
5.6, 12.20, and 12.25. More examples may be found in [1].

2 Reductive Groups and Root Data

For many purposes one may identify a connected reductive algebraic group
with its group of complex points. For the discussion of real forms (Section
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3), and to keep the exposition as elementary as possible, we prefer to work
with complex groups. Experts, and those with an interest in other fields,
may wish to convert to the language of algebraic groups where appropriate.

We now describe the parameters for a connected reductive complex group.
These are provided by root data and based root data. Good references are the
books by Humphreys [10] and Springer [22].

We begin with a pair X, X∨ of free abelian groups of finite rank, together
with a perfect pairing 〈 , 〉 : X × X∨ → Z. Suppose ∆ ⊂ X, ∆∨ ⊂ X∨ are
finite sets, equipped with a bijection α→ α∨. For α ∈ ∆ define the reflection
sα ∈ Hom(X, X):

sα(x) = x− 〈x, α∨〉α (x ∈ X)

and define sα∨ ∈ Hom(X∨, X∨) similarly.
A root datum is a quadruple

(2.1) D = (X, ∆, X∨, ∆∨)

where X, X∨ are free abelian groups of finite rank, in duality via a perfect
pairing 〈 , 〉, and ∆, ∆∨ are finite subsets of X, X∨, respectively. We assume
there is a bijection ∆ ∋ α 7→ α∨ ∈ ∆∨ such that for all α ∈ ∆,

(2.2) 〈α, α∨〉 = 2, sα(∆) = ∆, sα∨(∆∨) = ∆∨.

Suppose we are given X, X∨ and finite subsets ∆ ⊂ X and ∆∨ ⊂ X∨. By
[7, Lemma VI.1.1] applied to Q〈∆〉 and Q〈∆∨〉 there is at most one bijection
α 7→ α∨ satisfying (2.2). Alternatively suppose we are given only a finite
subset ∆ of X, satisfying X ⊂ Q〈∆〉. By (loc. cit.) there is at most one
subset ∆∨, and bijection α 7→ α∨, satisfying (2.2). The condition X ⊂ Q〈∆〉
holds if and only if the corresponding group is semisimple.

Suppose Di = (Xi, ∆i, X
∨
i , ∆∨

i ) (i = 1, 2) are root data. We say they are
isomorphic if there is an isomorphism φ ∈ Hom(X1, X2) satisfying φ(∆1) =
∆2 and φt(∆∨

2 ) = ∆∨
1 . Here φt ∈ Hom(X∨

2 , X∨
1 ) is defined by

(2.3) 〈φ(x1), x
∨
2 〉2 = 〈x1, φ

t(x∨
2 )〉1 (x1 ∈ X1, x

∨
2 ∈ X∨

2 ).

Let G be a connected reductive complex group and choose a Cartan
subgroup H of G. Let X∗(H), X∗(H) be the character and co-character
lattices of H respectively. We have canonical isomorphisms

(2.4) h ≃ X∗(H)⊗Z C, h∗ ≃ X∗(H)⊗Z C
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where h is the Lie algebra of H and h∗ = Hom(h, C). (If G has rank n then
H ≃ (C×)n, X∗(H) ≃ Zn and h ≃ Cn.) Let ∆ = ∆(G, H) be the set of roots
of H in G, and ∆∨ = ∆∨(G, H) the corrresponding co-roots. Associated to
(G, H) is the root datum

D(G, H) = (X∗(H), ∆, X∗(H), ∆∨).

If H ′ is another Cartan subgroup then there is an element g ∈ G so that
gHg−1 = H ′. Let D′ = (X∗(H ′), ∆(G, H ′), X∗(H

′), ∆∨(G, H ′)) be the cor-
responding root datum. The inverse transpose action on characters induces
an isomorphism

(Ad(g)t)−1 : X∗(H)→ X∗(H ′)

which gives an isomorphism D(G, H) ≃ D(G, H ′).
Now suppose in addition to H we have chosen a Borel subgroup B con-

taining H . Let ∆+ be the correponding set of positive roots of ∆, with simple
roots Π. Then Π∨ = {α∨ |α ∈ Π} is a set of simple roots of ∆∨, and

Db(G, B, H) = (X, Π, X∨, Π∨)

is a based root datum. If H ′ ⊂ B′ are another Cartan and Borel subgroup
then there is a canonical isomorphism Db(G, B, H) ≃ Db(G, B′, H ′).

Each root datum is the root datum of a reductive algebraic group, which
is determined uniquely up to isomorphism, and the same holds for based root
data.

Note that a connected reductive complex group G of rank n is determined
by a small finite set of data: two sets (of order the semisimple rank of G) of
integral n-vectors, subject only to condition (2.2), which may be expressed
by requiring that the matrix of dot products is a Cartan matrix.

Example 2.5 Suppose G is of rank 2 and semisimple rank 1. Then a root
datum is given by an ordered pair (v, w) with v, w ∈ Z2, satisfying v · w = 2.
Equivalence is given by the action of GL(2, Z), where g ·(v, w) = (gv, tg−1w).
It is an interesting exercise to see that there are precisely three such pairs, up
to equivalence: ((2, 0), (1, 0)), ((1, 0), (2, 0)) and ((1, 1), (1, 1)), corresponding
to SL(2, C)×C×, PGL(2, C)× C× and GL(2, C), respectively.

If D = (X, ∆, X∨, ∆∨) is a root datum then the dual root datum is defined
to be D∨ = (X∨, ∆∨, X, ∆). Given G with root datum D = (X, ∆, X∨, ∆∨)
the dual group is the group G∨ defined by D∨. We define duality of based
root data similarly.
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2.1 Automorphisms

There is an exact sequence

(2.6) 1→ Int(G)→ Aut(G)→ Out(G)→ 1

where Int(G) is the group of inner automorphisms of G, Aut(G) is the group
of (holomorphic) automorphisms of G, and Out(G) ≃ Aut(G)/Int(G) is the
group of outer automorphisms.

A splitting datum or pinning for G is a set S = (B, H, {Xα}) where B is
a Borel subgroup, H is a Cartan subgroup contained in B and {Xα} is a set
of root vectors for the simple roots of H in B.

Definition 2.7 An involution of G is said to be distinguished if it preserves
a splitting datum.

For example an inner involution is distinguished if and only if it is the
identity; this is the Cartan involution of the compact real form. More gen-
erally, among all of the involutions mapping to a fixed involution in Out(G),
a distinguished involution makes as many roots as possible imaginary and
non-compact (cf. Section 12); it is the Cartan involution of a “maximally
compact” real form of G in the given inner class. (cf. Definition 3.6).

The only inner automorphism which is distinguished is the identity, and
the group Int(G) acts simply transitively on the set of splitting data. Given
a splitting datum S = (B, H, {Xα}) this gives an isomorphism

(2.8)(a) φS : Out(G) ≃ StabAut(G)(S) ⊂ Aut(G)

and this is a splitting of the exact sequence (2.6). We call these splittings
distinguished. We obtain isomorphisms

(2.8)(b) Out(G) ≃ Aut(Db) ≃ Aut(D)/W.

If G is semisimple then there is an injection of Out(G) into the automorphism
group of the Dynkin diagram of G; if G is semisimple and simply connected
or adjoint then this is an isomorphism.

If τ ∈ Aut(D) then −τ t ∈ Aut(D∨) (cf. 2.3). Now suppose τ ∈ Aut(Db).
While −τ t is probably not in Aut(D∨

b ), if we let w0 be the long element of
the Weyl group we have −w0τ

t ∈ Aut(D∨
b ).
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Definition 2.9 Suppose τ ∈ Aut(Db). Let τ∨ = −w0τ
t ∈ Aut(D∨

b ). This

defines a bijection Aut(Db)
1−1
←→ Aut(D∨

b ). By (2.8)(b) we obtain a bijection
Out(G)↔ Out(G∨) by composition:

(2.10) Out(G)↔ Aut(Db)↔ Aut(D∨
b )↔ Out(G∨).

For γ ∈ Out(G) we write γ∨ for the corresponding element of Out(G∨). The
map γ 7→ γ∨ is a bijection of sets.

Remark 2.11 This is not necessarily an isomorphism of groups. For exam-
ple the identity goes to the image of −w0 in Out(G), which is the identity if
and only G is semisimple and −1 ∈W .

Example 2.12 Let G = PGL(n) (n ≥ 3). Then G∨ = SL(n) and Out(G) ≃
Out(G∨) ≃ Z/2Z. If γ = 1 ∈ Out(G) then γ∨ is the non-trivial element of
Out(G∨). It is represented by the automorphism τ∨(g) = tg−1 of G∨.

3 Involutions of Reductive Groups

Fix a connected reductive complex group G. A real form of G is a subgroup
G(R) which is the fixed points of an antiholomorphic involution of G. Two
such real forms are said to be equivalent if they are conjugate by G. The
Cartan involution provides a description of real forms in terms of holomorphic
involutions which is better suited to our purposes. We illustrate this with an
example.

Example 3.1 Let G = GL(n, C). The group GL(n, R) is a real form of
GL(n, C); it is the fixed points of the antiholomorphic involution σ(g) = g.
The orthogonal group O(n) is a maximal compact subgroup of GL(n, R); it
is the fixed points of the involution θ(g) = tg−1 of GL(n, R). This involution
extends to a holomorphic involution of GL(n, C), with fixed points O(n, C).

Suppose σ is an antiholomorphic involution of G, with fixed points G(R).
Then there is a holomorphic involution θ of G such that G(R)θ is a maximal
compact subgroup of G(R). It turns out this gives a bijection on the level of
G-conjugacy classes. See [18, Theorem 5.1.4], [4] and [9, Chapter X, Section
1].
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Theorem 3.2 The map σ 7→ θ gives a bijection between G-conjugacy classes
of antiholomorphic involutions of G and G-conjugay classes of holomorphic
involutions of G.

Using this result we classify real forms in terms of holomorphic involu-
tions. We also prefer to incorporate the notion of equivalence in the definition
of real forms.

Definition 3.3 Let G be a connected reductive complex group. An involution
of G is an involution in Aut(G), i.e. a holomorphic automorphism θ of G
satisfying θ2 = 1. A real form of G is a G-conjugacy class of involutions.

Our definition of equivalence of real forms differs from the usual one in
one subtle way: it only allows conjugacy by G, rather than all of Aut(G).
The theorem also holds with G-conjugacy replaced by conjugacy by Aut(G),
and this is how it is usually stated (for example [18, Theorem 5.1.4]).

Example 3.4 We consider the case of SL(2, C). Up to conjugacy there are
two antiholomorphic involutions of SL(2, C): σs(g) = g or σc(g) = tg−1.
These are the two real forms G(R) = SL(2, R) (split) and G(R) = SU(2)
(compact) of SL(2, C), respectively.

Equivalently SL(2, C) has two equivalence classes of holomorphic involu-
tions. Let θs(g) = tgt−1 where t = diag(i,−i). Then K(C) = Gθs

= C×,
so K(R) = S1, the maximal compact subgroup of the corresponding real
form SL(2, R). On the other hand let θc(g) = g, so K(C) = SL(2, C),
K(R) = SU(2), and the corresponding real form is SU(2).

Remark 3.5 By Theorem 3.2 there is a bijection between equivalence classes
of real forms in the usual sense of G(R) and antiholomorphic involutions, and
real forms in the sense of Definition 3.3. We work almost entirely with the
latter notion; in the few places we refer to the former the distinction will be
clear since we will refer to a real form G(R).

Definition 3.6 An involution θ ∈ Aut(G) (Definition 3.3) is in the inner
class of γ ∈ Out(G) if θ maps to γ in the exact sequence (2.6). If θ, θ′ are
involutions of G we say θ is inner to θ′ if θ and θ′ have the same image in
Out(G).

This corresponds to the usual notion of inner form [22, 12.3.7].
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Remark 3.7 The results of [3] are stated in terms of antiholomorphic, rather
than holomorphic, involutions. See Remark 5.18.

Remark 3.8 As discussed at the beginning of Section 2, this is the one sit-
uation in which we need complex, as opposed to algebraic, groups. Once we
are in the setting of Cartan involutions, we could replace G with the un-
derlying algebraic group G, and holomorphic involutions of G with algebraic
involutions of G. This is the setting of [20].

4 Basic Data

.
The setting for our mathematical questions will be:

(1) A connected reductive complex group G,

(2) An involution γ ∈ Out(G).

We refer to (G, γ) as basic data. We say (G, γ) is equivalent to (G′, γ′) if
there is an isomorphism φ : G→ G′ such that γ′ ◦ φ = φ ◦ γ.

On the other hand the software works entirely in the setting of based root
data. Given (G, γ), let (B, H, {Xα}) be a splitting datum. From these we
obtain:

(a) A based root datum Db = Db(G, B, H),

(b) An involution γ of Db (cf. (2.8)(b)).

The based root datum Db and its involution are independent of the choice of
splitting datum, up to canonical isomorphism. Conversely, given a based root
datum Db with an involution γ we can construct (G, γ), uniquely determined
up to isomorphism.

Given basic data (G, γ), choose a splitting datum (B, H, {Xα}). A key to
our algorithm is that (B, H, {Xα}) is fixed once and for all. This enables us
to do all of our constructions on a fixed Cartan subgroup. Let W = W (G, H)
be the Weyl group.

The weight lattice for G is

(4.1) P = {λ ∈ X∗(H)⊗C | 〈λ, α∨〉 ∈ Z for all α ∈ ∆}
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and dually the co-weight lattice for G is

(4.2)(a) P ∨ = {λ∨ ∈ X∗(H)⊗C | 〈α, λ∨〉 ∈ Z for all α ∈ ∆}.

These are actually lattices only if G is semisimple. We may identify 2πiX∗(H)
with the kernel of exp : h→ H(C). Under this identification

(4.2)(b) P ∨ = {λ∨ ∈ h | exp(2πiλ∨) ∈ Z(G)}.

We write P (G, H) and P ∨(G, H) to indicate the dependence on G and H .
We also define

(4.2)(c) Preg = {λ ∈ P | 〈λ, α∨〉 6= 0 for all α ∈ ∆}

and

(4.2)(d) P ∨
reg = {λ∨ ∈ P ∨ | 〈α, λ∨〉 6= 0 for all α ∈ ∆}.

By duality we obtain the dual based root datum D∨
b , an involution γ∨ of

D∨
b (cf. Definition 2.9), and the dual group G∨. In particular G∨ comes

equipped with fixed Cartan and Borel subgroups H∨ ⊂ B∨. We have
X∗(H) = X = X∗(H

∨) and X∗(H) = X∨ = X∗(H∨). These are canonical
identifications. By (2.4) applied to H and H∨ these induce identifications
h = h∨∗ and h∗ = h∨. Note that P (G, H) = P ∨(G∨, H∨), and by (4.2)(b) we
have

(4.3) P (G, H) = {λ ∈ h∨ | exp(2πiλ) ∈ Z(G∨)}.

We are also given the bijection ∆ = ∆(G, H) ∋ α → α∨ ∈ ∆∨ =
∆(G∨, H∨). We identify W (G, H) with W (G∨, H∨) by the map W (G, H) ∋
w → wt ∈W (G∨, H∨) (cf. (2.3)); equivalently, sα → sα∨ .

5 Extended Groups and Strong Real Forms

Fix basic data (G, γ) as in Section 4, and a splitting datum (H, B, {Xα})
(cf. Section 2.1). This gives us a distinguished splitting of the exact sequence
(2.6), taking γ to a distinguished involution of G (Definition 2.7) which we
also denote γ. Let Γ = {1, σ} be the Galois group of C/R.
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Definition 5.1 The extended group for (G, γ) is the semi-direct product

(5.2) GΓ = G ⋊ Γ

where σ ∈ Γ acts on G by the distinguished involution γ.
We say the element 1× σ is distinguished, and denote it δ.

Recall γ is a Cartan involution of a maximally compact form in this inner
class.

Example 5.3 Suppose γ = 1, so GΓ = G × Γ. Note that γ is the Cartan
involution of the compact real form of G, and this is the “equal rank” case.
Every real form G(R) in this inner class contains a compact Cartan subgroup,
and every involution in this inner class is contained in Int(G).

In particular suppose G is semisimple and the Dynkin diagram of G has no
non-trivial automorphisms. Then γ is necessarily trivial, and every involution
of G is inner.

Example 5.4 Suppose 1 6= γ ∈ Out(G). The most convenient way to com-
pute the corresponding distinguished involution γ of G (cf. Definition 2.7) is
to list the real forms in this inner class, and choose the most compact one.

For example let G = SL(n, C) (n ≥ 3). There is a unique outer auto-
morphism of the Dynkin diagram, corresponding to the non-trivial element
γ ∈ Out(G). If n is odd the only real form in this inner class is the split
group SL(n, R), and we take γ(g) = tg−1, the Cartan involution of SL(n, R).

If n is even then G has two real forms, and we let γ act by a Cartan
involution of SL(n/2, H), where H is the quaternion algebra over R.

The extended group GΓ encapsulates all of the real forms of G in the
inner class defined by γ. That is if ξ ∈ GΓ\G satisfies ξ2 ∈ Z(G) then int(ξ)
is in the inner class of γ. Conversely, if θ is in the inner class of γ, then there
is an element ξ ∈ GΓ\G with ξ2 ∈ Z(G) and θ = int(ξ). For the algorithm
it is important to keep track of ξ, and not just θ = int(ξ).

Definition 5.5 A strong involution of G in the inner class of γ is an element
ξ ∈ GΓ\G such that ξ2 ∈ Z(G). The set of such strong involutions is denoted
I(G, γ). We define a strong real form of G in the inner class of γ to be a
G-conjugacy class of strong involutions.

For ξ ∈ I(G, γ) let θξ = int(ξ) and Kξ = StabG(ξ) = Gθξ .
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If γ is understood we refer to strong involutions and strong real forms of
G.

Example 5.6 Recall (Example 3.4) SL(2, C) has two real forms, θc = 1
(i.e. SU(2)) and θs = int(diag(i,−i)) (i.e. SL(2, R) = SU(1, 1)). However
SL(2, C) has three strong real forms, i.e. conjugacy classes of strong invo-
lutions: ξ = I,−I and diag(i,−i). (Here and elsewhere, when γ = 1, we
write ξ for the element (ξ, σ) ∈ GΓ\G.) Then θξ = θc if ξ = ±I, or θξ = θs if
ξ = diag(i,−i). We can think of these strong real forms as SU(2, 0), SU(0, 2)
and SU(1, 1) ≃ SL(2, R), respectively.

Now consider PSL(2, C) ≃ SO(3, C). This has two real forms: the com-
pact group SO(3, R) (with K(R) = SO(3, R), K(C) = SO(3, C)) and the
split one SO(2, 1) (with K(R) = O(2), K(C) = O(2, C)). Up to conjugacy
there are two strong involutions: I and diag(−1,−1, 1).

The next Lemma is immediate from the definitions.

Lemma 5.7 We have

I(G, γ)/G = {strong real forms in the inner class of γ}.

The map I(G, γ) ∋ ξ 7→ θξ is a surjection from I(G, γ) to the set of involu-
tions in the inner class of γ. It factors to a surjection

I(G, γ)/G ։ {real forms of G in the inner class of γ}.

If G is adjoint this is a bijection.

Example 5.8 In Example 5.6 the map from strong real forms to real forms
is bijective for PSL(2). If G = SL(2) the fiber of the map is a single element
for the split real form SU(1, 1), and two elements for the compact real form
SU(2).

Example 5.9 This is generalization of Example 5.6. Suppose γ is the iden-
tity. The strong real forms of G are parametrized by

(5.10)(a) {ξ ∈ G | ξ2 ∈ Z(G)}/G.

(As in Example 5.6 since γ = 1 we write ξ instead of (ξ, σ).) Every strong
involution ξ is conjugate to an element of H so this set is the same as

(5.10)(b) {ξ ∈ H | ξ2 ∈ Z(G)}/W = (
1

2
P ∨/X∗(H))/W
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where P ∨ is the coweight lattice (cf. (4.2)(a)). In particular if G is adjoint
the real forms of G are parametrized by

(5.10)(c) (
1

2
P ∨/P∨)/W.

Example 5.11 ontinuing with the preceding example, let G = PSp(2n).
In the usual coordinates P ∨ = Zn ∪ (Z + 1

2
)n, and for representatives of

(1
2
P ∨/P∨)/W we may take

(5.12)
1

4
(1, . . . , 1)

corresponding to PSp(2n, R) (the split group) and

(5.13)
1

2
(

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
0, . . . , 0) (p ≤ [n/2])

corresponding to PSp(p, q).
For G = Sp(2n) we have X∗(H) = R∨ = Zn, and the strong real forms

are parametrized by

(5.14) (
1

2
[Zn ∪ (Z +

1

2
)n]/Zn)/W.

For representatives we may take 1
4
(1, . . . , 1) and 1

2
(

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
0, . . . , 0) as before,

where now 0 ≤ p ≤ n. Thus there are two strong real forms mapping to each
real form Sp(p, q) for p 6= q.

See [2, Example 1-17].

We will make frequent use of the following construction. Choose a set of
representatives {ξi | i ∈ I} of the set of strong real forms. That is

(5.15)(a) {ξi | i ∈ I} ≃ I(G, γ)/G.

If G is semisimple (in fact if Z(G)Γ is finite, cf. (11.2)(3)) this is a finite set.
For i ∈ I let

(5.15)(b) θi = int(ξi), Ki = Gθi

and

(5.15)(c) Ii = {ξ ∈ I(G, γ) | ξ is G-conjugate to ξi}.
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The stabilizer of ξi in G is Ki, so Ii ≃ G/Ki, and we have

(5.15)(d) I(G, γ) ≃
∐

i∈I

G/Ki.

Recall the distinguished involution θδ = int(δ) is the Cartan involution
of a maximally compact real form in the inner class of γ. It is helpful to
also invoke the most split form in this inner class. We say an involution
of G is quasisplit if it is the Cartan involution of a quasisplit real form of
G. For a characterization of quasisplit involutions see [4, Proposition 6.24]
(where they are called “principal”). By [4, Theorem 6.14] there is a unique
conjugacy class of quasisplit involutions in each inner class.

We emphasize the symmetry of the situation by summarizing this:

Lemma 5.16 Let GΓ be the extended group for (G, γ).
(1) There exists a strong involution ξ ∈ GΓ so that θξ is distinguished. The
involution θξ is unique up to conjugation by G.
(2) There exists a strong involution η so that θη is quasisplit. The involution
θη is unique up to conjugation by G.

Remark 5.17 The extended group GΓ in [4, Definition 9.6] is defined in
terms of a quasisplit involution, rather than a distinguished one. The equiv-
alence of the two definitions is the content of [4, 9.7]. This discussion also
shows that, applied to (G∨, γ∨), the group G∨Γ is isomorphic to the L-group
of the real forms of G in the iner class of γ.

Remark 5.18 Since in [3] we work with antiholomorphic involutions instead
of holomorphic ones, (cf. Remark 3.7), the extended group GΓ in [3, Chapter
3] is defined in terms of an antiholomorphic involution. The results are
equivalent, but some translation is necessary between the two pictures.

6 Harish-Chandra modules for strong real forms

Fix basic data (G, γ) as in Section 2 and let I = I(G, γ) be the corresponding
set of strong involutions. For ξ ∈ I let Kξ = StabG(ξ) as usual, and define
(g, Kξ) modules as in [24].

Definition 6.1 A Harish-Chandra module for a strong involution is a pair
(ξ, π) where ξ ∈ I and π is a (g, Kξ)-module. A Harish-Chandra module for
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a strong real form of G is the G-orbit of a pair (ξ, π), where (for g ∈ G),
g · (ξ, π) = (gξg−1, πg).

An infinitesimal character for g may be identified, via the Harish-Chandra
homomorphism with an orbit of W on h∗. For λ ∈ h∗ we write χλ for the
corresponding infinitesimal character; so χλ = χwλ for all w ∈ W . If π is a
Harish-Chandra module with infinitesimal character χλ we may simply say
π has infinitesimal character λ.

Definition 6.2 We say λ and χλ are integral if λ ∈ P , and regular and
integral if λ ∈ Preg (cf. (4.2)(c)).

Definition 6.3 Given ξ ∈ I let Π(G, ξ) be the set of equivalence classes of
irreducible (g, Kξ)-modules with regular integral infinitesimal character. Let

(6.4) Π(G, γ) = {(ξ, π) | ξ ∈ I, π ∈ Π(G, ξ)}/G.

If Λ is a subset of Preg let Π(G, γ, Λ) ⊂ Π(G, γ) be the set of (equivalence
classes of) pairs (ξ, π) for which the infinitesimal character of π is an element
of Λ.

If we fix a set of representatives I of I/G as in (5.15) we have

(6.5) Π(G, γ) ≃
∐

i∈I

Π(G, ξi).

Thus Π(G, γ) parametrizes Harish-Chandra modules for strong real forms
of (G, γ), with regular integral infinitesimal character. With the obvious
notation we also have Π(G, γ, Λ) =

∐
i∈I Π(G, ξi, Λ).

Fix ξ ∈ I. As a consequence of [15], associated to each G∨-conjugacy class
of admissible homomorphisms φ : WR → G∨Γ is an L-packet Πφ(G, ξ) (see
Section 7). This is a finite set of (equivalence classes of) (g, Kξ) modules,
all having the same infinitesimal character. Each L-packet is finite, and
non-empty if ξ is quasisplit. The non-empty L-packets partition the set of
irreducible Harish-Chandra modules for the strong involution ξ.

We define the large L-packet of φ to be the union, over all strong involu-
tions, of L-packets, modulo our notion of equivalence:

(6.6)(a) Πφ(G, γ) = {(ξ, π) | ξ ∈ I, π ∈ Πφ(G, ξ)}/G.
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With I as in (5.15) we have

(6.6)(b) Πφ(G, γ) ≃
∐

i∈I

Πφ(G, ξi)

and each set Πφ(G, ξi) is finite.

7 L-data

Fix basic data (G, γ), with corresponding dual data (G∨, γ∨) (cf. Section
4). Let G∨Γ be the corresponding extended group (Definition 5.1). Recall
(Remark 5.17) that G∨Γ is isomorphic to the L-group of G. We begin by
parametrizing admissible maps of the Weil group into G∨Γ [6].

Let WR be the Weil group of R. That is WR = 〈C×, j〉 where jzj−1 = z
and j2 = −1. An admissible homomorphism φ : WR → G∨Γ is a continuous
homomorphism such that φ(C×) consists of semisimple elements and φ(j) ∈
G∨Γ\G∨.

Suppose φ : WR → G∨Γ is an admissible homomorphism. Then φ(C×)
is contained in a Cartan subgroup H∨

1 (C), and φ(ez) = exp(2πi(λz + νz))
for some λ, ν ∈ h∨

1 . Choose an inner isomorphism h∨
1 ≃ h∨. As explained in

Section 4 we have h∨ = h∗, so we may identify λ with an element (which we
still call λ) of h∗, whose W orbit is well-defined. We define the infinitesimal
character of φ to be the W -orbit of λ ∈ h∗.

Recall P (G, H) = {λ ∈ h∗ | exp(2πiλ) ∈ Z(G∨)} (cf. (4.3)).

Definition 7.1 A complete one-sided L-datum for (G∨, γ∨) is a triple (η, B∨
1 , λ)

where η is a strong involution of G∨ (Definition 5.5), B∨
1 is a Borel subgroup

of G∨ and λ ∈ P (G, H) satisfies exp(2πiλ) = η2. The group G∨ acts by
conjugation on this data, and let

(7.2) Pc(G
∨, γ∨) = {complete one-sided L-data}/G∨.

Fix a complete one-sided L-datum Sc = (η, B∨
1 , λ). By [16] (also see [3,

Lemma 6.18]) there is a θη-stable Cartan subgroup H∨
1 of B∨

1 , unique up
to conjugacy by K∨

η ∩ B∨
1 . Choose g ∈ G∨ such that gH∨g−1 = H∨

1 and
〈Ad(g)λ, α∨〉 ≥ 0 for all α ∈ ∆(B∨

1 , H∨
1 ). Let λ1 = Ad(g)λ ∈ h∨

1 . Define
φSc

: WR → G∨Γ by:

(7.3)
φSc

(z) = zλ1zηλ1 (z ∈ C×)

φSc
(j) = exp(−πiλ1)η.
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The first statement is shorthand for φSc
(ez) = exp(zλ1 + Ad(η)zλ1). It is

easy to see φSc
is an admissible homomorphism, and the G∨ conjugacy class

of φSc
is independent of the choices of H1 and g. The next result follows

readily.

Proposition 7.4 The map Pc ∋ Sc 7→ φSc
is a bijection between Pc(G

∨, γ∨)
and the set of G∨-conjugacy classes of admissible homomorphisms WR →
G∨Γ.

Recall (cf. 6.6) associated to an admissible homomorphism φ is a large
L-packet Πφ(G, γ): for Sc ∈ Pc(G

∨, γ∨) let

(7.5) Π(Sc) = ΠφSc
(G, γ).

Fix (η, B∨
1 ). If λ ∈ Preg, Sc = (η, B∨

1 , λ) is a complete one-sided L-datum
if and only if exp(2πiλ) = η2. For λ satisfying this condition we may define
the large L-packet Π(Sc). Any two such L-packets are related by a translation
functor [26], and in this sense the choice of λ is not important. Note that
if (S, λ) is a complete one-sided L-datum, then so is (S, λ′) if and only if
λ− λ′ ∈ X∗(H).

We therefore drop the parameter λ from complete L-data:

Definition 7.6 A one-sided L-datum for (G∨, γ∨) is a pair (η, B∨
1 ) where η

is a strong involution of G∨ (Definition 5.5) and B∨
1 is a Borel subgroup of

G∨. Let

(7.7) P(G∨, γ∨) = {one-sided L-data}/G∨.

If S = (η, B∨
1 ) is a one-sided L-datum we let z(S) = η2 ∈ Z(G∨). This

gives a well defined map

(7.8) P(G∨, γ∨) ∋ S 7→ z(S) ∈ Z(G∨).

For the purposes of Proposition 7.4 we have defined one-sided L-data
P(G∨, γ∨) for (G∨, γ∨). It is evident that the definition is symmetric, and
applies equally to (G, γ). As discussed in Section 1.6 symmetrizing will give
us the finer data which parametrizes individual representations, instead of
L-packets. So let

(7.9)
P = P(G, γ)

P∨ = P(G∨, γ∨).

Define Pc and P∨
c similarly.
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Definition 7.10 An L-datum for (G, γ) is a set

(7.11) (ξ, B1, η, B∨
1 )

where ξ is a strong involution of G, η is a strong involution of G∨, B1 is a
Borel subgroup of G and B∨

1 is a Borel subgroup of G∨. Let θξ,h (respectively
θη,h∨) be θξ restricted to h (resp. θη restricted to h∨). Recalling (2.3), we
require these satisfy

(7.12) (θξ,h)
t = −θη,h∨

.

A complete L-datum is a set

(7.13) (ξ, B1, η, B∨
1 , λ)

where the same conditions hold, λ ∈ Preg and exp(2πiλ) = η2.
Let

(7.14)
L = {L-data}/G×G∨ ⊂ P ×P∨

Lc = {complete L-data}/G×G∨ ⊂ Pc × P
∨
c .

Suppose Sc = (ξ, B1, η, B∨
1 , λ) is a complete L-datum for (G, γ). By [2,

Theorem 2.12] associated to Sc is a (g, Kξ)-module I(Sc). This is a standard
module, with regular integral infinitesimal character λ, and has a unique
irreducible quotient J(Sc). We obtain the following version of the Langlands
classification.

Theorem 7.15 ([2], Theorem 2-12) The map

(7.16) Lc ∋ Sc 7→ J(Sc) ∈ Π(G, γ)

is a bijection.

Recall the right hand side consists of the equivalence classes of pairs (ξ, π)
where ξ is a strong involution and π is a (g, Kξ)-module. This is a somewhat
subtle space. Furthermore, as discussed after Proposition 7.4, we would like
to replace Lc with L on the left side of 7.16. This amounts to consider-
ing λ only up to X∗(H), and using the translation principle. With these
considerations in mind we give several alternative formulations of Theorem
7.15.

Suppose G(R) is a real form of G (cf. Remark 3.5) and Λ ⊂ Preg. By
analogy with Definition 6.3 define Π(G(R), Λ) to be the set of equivalence
classes of irreducible admissible representations of G(R), with infinitesimal
character an element of Λ.
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Theorem 7.17

(1) Fix a set Λ ⊂ Preg of representatives of P/X∗(H). This is a finite set if
G is semisimple. The map (7.16) induces a bijection

(7.18) L
1−1
←→ Π(G, γ, Λ)

(cf. Definition 6.3). If G is semisimple and simply connected we may take
Λ = {ρ}, the infinitesimal character of the trivial representation.

(2) Let I ≃ I/G be a set of representatives of the strong real forms as in
(5.15). For each i ∈ I let Gi(R) be the real form of G corresponding to the
strong involution ξi (cf. Section 3). Choose Λ as in (1). The map (7.16)
induces a bijection

(7.19) L
1−1
←→

∐

i∈I

Π(Gi(R), Λ).

(3) Suppose G is adjoint. Write G1(R), . . . , Gm(R) for the real forms of G
in the given inner class, and choose representatives

λ1, . . . , λn ∈ Preg

for P/R. The map (7.16) induces a bijection:

(7.20) L
1−1
←→

∐

i,j

Π(Gi(R), λj).

Sections 9 and 10 will be concerned with finding a combinatorial descrip-
tion of the set L. Most of the work involves the one-sided parameter space
P(G, γ) (7.9). Before turning to this we give a geometric interpretation of
this space.

8 Relation with the flag variety

Recall (Definition 7.6) the one-sided parameter space P = P(G, γ) is the set
of conjugacy classes of pairs (ξ, B1) where ξ is a strong involution (Definition
5.5) and B1 is a Borel subgroup. The space P has a natural interpretation in
terms of the flag variety. We see this by conjugating any pair (ξ, B1) to one
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with ξ in a fixed set of representatives as in in (5.15). In the next section we
will instead conjugate B1 to B, and thereby obtain a combinatorial model of
P.

Let B be the set of Borel subgroups of G. Then the set of one-sided
L-data for (G, γ) is I × B, and

(8.1)(a) P = (I × B)/G.

Every Borel subgroup is conjugate to B, and B ≃ G/B. For ξ ∈ I let

(8.1)(b) P[ξ] = {(ξ′, B) ∈ P | ξ′ is conjugate to ξ}/G.

Then

(8.1)(c) P[ξ] ≃ (G/Kξ ×G/B)/G

with G acting by left multiplication. It is an elementary exercise to see the
map

(8.1)(d) (ξ′, B1) = (gξg−1, hBh−1) 7→ Kξ(g
−1h)B (g, h ∈ G)

gives a bijection

(8.1)(e) P[ξ]
1−1
←→ Kξ\G/B.

As in (5.15) choose a set {ξi | i ∈ I} of representatives of I/G. Then

(8.1)(f) P ≃
∐

i∈I

(G/Ki ×G/B)/G

and we see:

Proposition 8.2 There is a natural bijection:

(8.3) P(G, γ)
1−1
←→

∐

i∈I

Ki\G/B.
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9 The One Sided Parameter Space

We now turn to the question of formulating an effective algorithm for com-
puting the space L ⊂ P ×P∨ (7.14). This mainly comes down to computing
the one-sided parameter space P, which we do in this section. We put P and
P∨ together to define the parameter space Z of representations in Section
10.

We begin by looking for a normal form for one-sided L-data.
Fix basic data (G, γ) as usual and set I = I(G, γ). Recall (cf. Section 8)

P = (I×B)/G. Since every Borel subgroup is conjugate to B, every element
of I × B may be conjugated to one of the form (ξ, B). Therefore the map

(9.1)(a) I ∋ ξ 7→ (ξ, B) ∈ (I × B)/G = P

is surjective. Since B is its own normalizer, we see (ξ, B) is G-conjugate to
(ξ′, B) if and only if ξ is B-conjugate to ξ′. So we obtain a bijection

(9.1)(b) I/B
1−1
←→ P

from B-orbits on I to P, sending the B-orbit of ξ ∈ I to the G-orbit of the
pair (ξ, B).

Now suppose ξ ∈ I. By ([3, Lemma 6.18], [16]), ξ ∈ NormGΓ(H1) for
some Cartan subgroup H1 ⊂ B. There exists b ∈ B such that bH1b

−1 = H ,
so bξb−1 ∈ NΓ = NormGΓ(H). If b1 is another such element then b1 = hb
with h ∈ H , and b1ξb

−1
1 = h(bξb−1)h−1. Therefore

(9.1)(c) I/B ≃ (I ∩NΓ)/H.

This gives our primary combinatorial construction:

Definition 9.2 Let

(9.3)
X (G, γ) = (I ∩NΓ)/H

= {ξ ∈ NormGΓ\G(H) | ξ2 ∈ Z(G)}/H.

This is the set of strong involutions normalizing H , modulo conjugation by
H . If (G, γ) is understood we write X = X (G, γ).

From the preceding discussion we have

(9.4) X = (I ∩NΓ)/H ≃ (I × B)/G = P

and we conclude:
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Proposition 9.5 There is a canonical bijection

(9.6) X
1−1
←→ P

taking the H-orbit of an element ξ of I ∩NΓ to the G-orbit of (ξ, B) in P.

Given x ∈ X , let

(9.7) X [x] = {x′ | x′ is G-conjugate to x}.

This is a slight abuse of notation: we say x, x′ ∈ X are G-conjugate if ξ, ξ′

are G-conjugate, where ξ, ξ′ are pre-images of x, x′ in I ∩NΓ, respectively.
By Proposition 9.5 and (8.1)(e) we see

(9.8) X [x] ≃ Kξ\G/B

where ξ is a preimage of x in I ∩NΓ.
Choose a set {ξi | i ∈ I} of representatives of I/G as in (5.15). By Propo-

sition 8.2 and (9.8) we obtain:

Corollary 9.9

(9.10) X ≃
∐

i∈I

Ki\G/B.

See Examples 12.20 and 12.25.
We need to understand the structure of X in some detail. We now give

more information about it. At the same time we reiterate some earlier defi-
nitions and introduce the twisted involutions in the Weyl group.

We fix (G, γ) throughout and drop them from the notation.
Let

(9.11)(a) N = NormG(H) ⊂ NΓ = NormGΓ(H)

and

(9.11)(b) W = N/H ⊂W Γ = NΓ/H.

Recall (Definition 5.5)

(9.11)(c) I = {ξ ∈ GΓ\G | ξ2 ∈ Z(G)},
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and that G acts on I by conjugation. Let

(9.11)(d)
X̃ = I ∩NΓ

= {ξ ∈ NΓ\N | ξ2 ∈ Z(G)}.

This is the set of strong involutions in NΓ.
Let

(9.11)(e) X = X̃/H

as in (9.3) (the quotient is by the conjugation action).

The group N acts naturally on X̃ and X ; the action of N on X factors
to W . This action of W on X corresponds to the cross action of W on
characters [24, Definition 8.3.1]. We therefore denote this action ×. That is

for w ∈ W and x ∈ X , choose n ∈ N mapping to w, ξ ∈ X̃ mapping to x
and define

(9.11)(f) w × x = image of nξn−1 in X .

Every strong involution is conjugate to one in X̃ , and we see

(9.11)(g) X̃ /N ≃ X /W.

See Proposition 12.9 for an interpretation of this space.
Let

(9.11)(h) IW = {τ ∈W Γ\W | τ 2 = 1}.

Write p̃ : X̃ 7→ W Γ for the restriction of the map NΓ 7→ W Γ to X̃ . It is
immediate that Im(p̃) ⊂ IW , and p̃ : X̃ 7→ IW factors to a map

(9.11)(i) p : X 7→ IW .

Lemma 9.12 ([20]) The map p : X 7→ IW is surjective.

We prove this later; see Proposition 12.12 and the end of Section 14.
For ξ ∈ X̃ the restriction of θξ to H only depends on the image x of ξ in

X . Therefore we may define

(9.13)(a) θx,H = θξ restricted to H.
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By Lemma 9.12 IW may be thought of as the set of Cartan involutions
of H for this inner class:

(9.13)(b) IW
1−1
←→ {θx,H | x ∈ X}.

The map ξ 7→ ξ2 ∈ Z(G) is constant on fibers of the map X̃ 7→ X . For
x ∈ X we define x2 ∈ Z(G) accordingly. For z ∈ Z(G) let

(9.13)(c) X (z) = {x ∈ X | x2 = z}.

Note that X (z) is empty unless z ∈ ZΓ.
We can make these constructions more concrete using the distinguished

element δ of Definition 5.1. Let θ = int(δ). Then

(9.14)

X̃ = {x ∈ Nδ | x2 ∈ Z(G)}

= {gδ | g ∈ N, gθ(g) ∈ Z(G)}
1−1
←→ {g ∈ N | gθ(g) ∈ Z(G)}

X = X̃ /{gδ→ hgθ(h−1)δ | h ∈ H}
1−1
←→ {g ∈ N | gθ(g) ∈ Z(G)}/{g → hgθ(h−1) | h ∈ H}

IW = {τ ∈Wδ | τ 2 = 1}

= {wδ |w ∈W, wθ(w) = 1}
1−1
←→ {w ∈W |wθ(w) = 1}

The last equality identifies IW with the twisted involutions in the Weyl group.
Also note that conjugation in W Γ becomes twisted conjugation:

(9.15) y · w = ywθ(y−1) (w, y ∈ W ).

10 The Space Z and the Main Theorem

We now describe the parameter space for Harish-Chandra modules of strong
real forms of G. By Theorem 7.17 we need to describe the set L (Definition
7.10). We have done all of the work describing the one-sided parameter
space X (G, γ) (Definition 9.2), and now we merely need to put the two sides
together.

Fix basic data (G, γ), and let (G∨, γ∨) be the dual data (cf. Section 4).
Let X = X (G, γ) and X ∨ = X (G∨, γ∨).
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Definition 10.1 Let

(10.2) Z(G, γ) = {(x, y) ∈ X ×X ∨ | (θx,H)t = −θy,H∨}.

We may now state the main result on the parametrization of admissible
representations of real forms of G. This is an immediate consequence of
Theorem 7.17 and the Definition of Z.

Fix a set Λ ⊂ Preg of representatives of P/X∗(H).

Theorem 10.3
(1) There is a natural bijection

(10.4) Z(G, γ)
1−1
←→ Π(G, γ, Λ)

(cf. Definition 6.3).

(2) Let I ≃ I/G be a set of representatives of the strong real forms as in
(5.15). For each i ∈ I let Gi(R) be the real form of G corresponding to the
strong involution ξi (cf. Section 3). There is a natural bijection

(10.5) Z(G, γ)
1−1
←→

∐

i∈I

Π(Gi(R), Λ).

(3) Suppose G is adjoint. Write G1(R), . . . , Gm(R) for the (equivalence
classes of) real forms of G in the given inner class, and choose represen-
tatives λ1, . . . , λn ∈ Preg for P/R. There is a natural bijection:

(10.6) Z(G, γ)
1−1
←→

∐

i,j

Π(Gi(R), λj).

See Example 12.28.
We note that Z(G, γ) can be viewed as a space of orbits as follows. Let I

(resp. I∨) be a set of representatives of I/G (resp. I∨/G∨), as in (5.15)(a).
For i ∈ I (resp. j ∈ I∨) let Ki (resp. K∨

j ) be as in (5.15)(b). Then

(10.7) Z ⊂
∐

i∈I

Ki\G/B ×
∐

j∈I∨

K∨
j \G

∨/B∨.

We now give the statement of Vogan Duality [25] in this setting. It is
evident that the definition of Z(G, γ) is entirely symmetric in G and G∨: the
map (x, y) 7→ (y, x) is a bijection between Z(G, γ) and Z(G∨, γ∨).
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Corollary 10.8 (Vogan Duality) Fix a set of representatives Λ ⊂ Preg of
P (G, H)/X∗(H), and a set Λ∨ ⊂ P ∨

reg of representatives of P (G∨, H∨)/X∗(H∨).
There is a natural bijection

(10.9) Π(G, γ, Λ)↔ Π(G∨, γ∨, Λ∨).

This bijection is compatible, in a precise sense, with the duality of [25,
Theorem 13.13]. See [2] and [3] for details. See the Table in example 12.20
for the case of SL(2)/PSL(2), and [1] for some more elaborate examples.

11 Fibers of the map p : X → I

In Sections 11 through 14 we study the space X in more detail, and relate it
to structure and representation theory of the groups. We begin with a study
of the fibers of p̃ and p. We work in the setting of Section 9.

Fix τ ∈ IW . Let X̃τ = p̃−1(τ) and Xτ = p−1(τ). For z ∈ Z(G) let
Xτ (z) = Xτ ∩ X (z) = {x ∈ X | p(x) = τ, x2 = z}. Let

(11.1)

H ′
−τ ={h ∈ H | hτ(h) ∈ Z(G)}

H−τ ={h ∈ H | hτ(h) = 1}

Aτ ={hτ(h−1) | h ∈ H}.

Note that Aτ is a connected torus, and is the identity component of H−τ .

Proposition 11.2

(1) H ′
−τ acts simply transitively on X̃τ ,

(2) H ′
−τ/Aτ acts simply transitively on Xτ ,

(3) Fix z ∈ Z(G). If Xτ (z) is non-empty then H−τ/Aτ acts simply transi-
tively on Xτ (z). If z 6∈ Z(G)Γ (the Γ-invariants of Z(G)) then Xτ (z)
is empty.

In particular |Xτ (z)| is a power of 2 (or 0). If Z(G)Γ is finite then X is a
finite set.
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Proof. Choose ξ ∈ X̃τ . Then X̃τ = {hξ | h ∈ H, (hξ)2 ∈ Z(G)} =
{hξ | hτ(h)ξ2 ∈ Z(G)}. The first claim follows.

For h ∈ H we have hξh−1 = hτ(h−1)ξ. This shows that the stabilizer
in H ′

−τ , for the left multiplication action of H , of the image of ξ in X is
{hτ(h−1) | h ∈ H} = Aτ . This proves (2), and (3) follows immediately from
the fact that (hξ)2 = hτ(h)ξ2, and the fact that ξ2 ∈ Z(G)Γ. The assertion
about |Xτ (z)| is clear, since H−τ/Aτ is an elementary abelian two-group.

By (3) X is the union of the finite sets Xτ (z) for τ ∈ IW and z ∈ Z(G)Γ,
and the final conclusion follows. �

Remark 11.3 Let Tτ be the identity component of the fixed points of τ
acting on H . Then Tτ and Aτ are connected tori, H = TτAτ and Aτ ∩ Tτ is
an elementary abelian two group. The group in Proposition 11.2 (3) is

(11.4) H−τ/Aτ ≃ Tτ (2)/Aτ ∩ Tτ .

If we write the real torus corresponding to τ as (R×)a × (S1)b × (C×)c then
Tτ (2) ≃ (Z/2Z)b+c, Aτ ∩ Tτ ≃ (Z/2Z)c and Tτ (2)/Aτ ∩ Tτ ≃ (Z/2Z)b.

Remark 11.5 It is helpful to note that

(11.6) H−τ/Aτ ≃ [H∨(R)/H∨(R)0]∧

where H∨ is the dual torus to H , with real form H∨(R) defined by the Cartan
involution −τ∨.

12 Action of W on X

We now study the action of W on X , which plays an important role. We
begin with some definitions and terminology.

Fix τ ∈ IW . Let

(12.1)

∆i = {α ∈ ∆ | τ(α) = α} (the imaginary roots)

∆r = {α ∈ ∆ | τ(α) = −α} (the real roots)

∆cx = {α ∈ ∆ | τ(α) 6= ±α} (the complex roots)

∆+
i = ∆i ∩∆+, ∆+

r = ∆r ∩∆+

Wi = W (∆i)

Wr = W (∆r).
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We will write ∆i,τ , Wi,τ etc. to indicate the dependence on τ . We also refer
to the τ -imaginary, τ -real roots, etc.

Let ρi = 1
2

∑
α∈∆+

i
α, and ρ∨

r = 1
2

∑
α∈∆+

r
α∨. As in [25, Proposition 3.12]

let

(12.2)
∆C = {α ∈ ∆ | 〈ρi, α

∨〉 = 〈α, ρ∨
r 〉 = 0} ⊂ ∆cx

WC = W (∆C)

This is a complex root system.
Now τ acts on W , and we let W τ be the fixed points. By [25, Proposition

3.12]

(12.3) W τ = (WC)τ ⋉ (Wi ×Wr).

Note that Wi and Wr are Weyl groups of the root systems ∆i and ∆r respec-
tively; also (WC)τ is isomorphic to the Weyl group of the root system (∆C)τ

[25].

Fix ξ ∈ X̃τ and let θ = θξ, K = Kξ. For α ∈ ∆i let Xα be an α-
root vector. Then θξ(Xα) only depends on the image x of ξ in X . We say
grx(α) = 0 if θξ(Xα) = Xα and 1 if θx(Xα) = −Xα. This is a Z/2Z-grading
of ∆i in the sense that if α, β, α + β ∈ ∆i then grx(α + β) = grx(α) + grx(β)
(mod 2).

Let W (K, H) = NormK(H)/H∩K. This is isomorphic to W (G(R), H(R))
where G(R) is the real form of G corresponding to θ, and we call it the real
Weyl group. (This contains the Weyl group of the root system of real roots.)
Clearly W (K, H) ⊂W τ . Let M = CentG(Aτ ) (cf. 11.1). By [25, Proposition
4.16],

(12.4) W (K, H) = (WC)τ ⋉ (W (M ∩K, H)×Wr).

We have

(12.5) Wi,c ⊂W (M ∩K, H) ≃Wi,c ⋉A(H) ⊂Wi

where Wi,c is the Weyl group of the compact imaginary roots (i.e. grξ(α) = 0)
and A(H) is a certain two-group [25]. This describes W (K, H) in terms of
the Weyl groups (WC)τ , Wr and Wi,c, which are straightforward to compute,
and the two-group A(H). For more information on W (K, H) see Proposition
12.14.

40



Let

(12.6) H = {(ξ, H1) | ξ ∈ I, H1 a θξ-stable Cartan subgroup}/G.

With I, θi and Ki as in (5.15) we may conjugate ξ to some ξi, and this shows

(12.7) H ≃
∐

i∈I

{θi-stable Cartan subgroups of G}/Ki.

On the other hand every Cartan subgroup is conjugate to H , and the nor-
malizer of H is N , so

(12.8) H ≃ I ∩NΓ/N = X̃/N ≃ X /W

(cf. (9.11)(g)).

With notation as in Corollary 9.9 for i ∈ I we may assume ξi ∈ X̃ , and
define xi ∈ X and Xi accordingly. We conclude

Proposition 12.9 For each i ∈ I we have

(12.10) Xi/W ↔ {θi-stable Cartan subgroups of G}/Ki.

Taking the union over i ∈ I gives

(12.11) X /W ↔
∐

i

{θi-stable Cartan subgroups of G}/Ki

Recall that by Proposition 8.2 Xi ≃ Ki\G/B.

Proposition 12.12 ([20]) The map p : Xi/W 7→ IW /W is injective. If θi

is quasisplit it is a bijection.

Remark 12.13 This says that the conjugacy classes of Cartan subgroups of
any real form of G embed in those of the quasisplit form. See [19, page 340].

Proof. For injectivity we have to show that ξ, ξ′ ∈ X̃ , p̃(ξ) = p̃(ξ′) and
ξ′ = gξg−1 (g ∈ G) implies ξ′ = nξn−1 for some n ∈ N . The condition
p̃(ξ) = p̃(ξ′) implies ξ′ = hξ for some h ∈ H , so gξg−1 = hξ, i.e. gθξ(g

−1) = h.
By [20, Proposition 2.3] there exists n ∈ N satisfying h = nθξ(n

−1), and then
ξ′ = nξn−1.

We defer the proof of surjectivity in the quasisplit case to the end of
Section 14. �
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The real Weyl group (see the discussion preceding (12.4)) appears natu-

rally in our setting. Fix ξ ∈ X̃ , let K = Kξ, and let x be the image of ξ in
X .

Proposition 12.14 W (K, H) ≃ StabW (x).

Proof. We have

(12.15)

W (K, H) = NormK(H)/H ∩K

= StabN(ξ)/StabH(ξ)

= StabN(ξ)H/H.

It is easy to see that StabN(ξ)H = StabN(x), so this equals

StabN(x)/H ≃ StabN/H(x) = StabW (x).

�

Now fix τ ∈ IW . By Proposition 12.14 and (12.4) we see (WC)τ and Wr

act trivially on Xτ . It is worth noting that we can see this directly.

Proposition 12.16 Both (WC)τ and Wr act trivially on Xτ .

This proof was communicated to us by David Vogan.
Proof. Fix ξ ∈ X̃τ . The group (WC)τ is generated by elements sαsτα where
α ∈ ΦC . So suppose α ∈ ΦC and let σα ∈ N be a preimage of sα ∈ W . Let
στ(α) = ξσαξ−1. Note that α + τ(α) is not a root, since it would have to be
imaginary, and (by (12.2)) orthogonal to ρi. Therefore the root subgroups
Gα and Gτ(α) commute. Then ξσαστ(α)ξ

−1 = στ(α)σα = σαστ(α).
If α is a τ -real root this reduces easily to a computation in SL(2). We

omit the details. �

Fix τ ∈ IW and suppose x, x′ ∈ Xτ . As a consequence of Propositions
12.12 and 12.14 we have

(12.17) x′ is G-conjugate to x⇔ x′ = w × x for some w ∈Wi,τ .

Another useful result obtained from the action of W τ is the computation
of strong real forms. Let δ be the distinguished element of X (Definition 5.1)
and let τδ = p(δ) ∈ IW .
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Proposition 12.18 Every element x ∈ X is G-conjugate to an element of
Xτδ

, and there is a canonical bijection between Xτδ
/Wi,τδ

and the set of strong
real forms of (G, γ).

(See the remark after (9.7) for the notion of G-conjugacy.) This corresponds
to the fact that every real form in the given inner class contains a fundamental
(i.e. most compact) Cartan subgroup. Note that if G is adjoint this gives a
bijection between Xδ/Wi,τδ

and real forms in the given inner class.
We defer the proof until the end of Section 14.
See Examples 12.20 and 12.25.

12.1 Recapitulation

We summarize the main results on the translation between the structure of
X and some standard objects for G.

Fix basic data (G, γ) as in Section 4 and define GΓ as in Definition 5.1.
Let X = X (G, γ) (cf. (9.11)(e)) and define IW as in (9.11)(h). Fix a set
{ξi | i ∈ I} of representatives of I/G as in (5.15), and for i ∈ I let θi = θξi

and Ki = Kξi
. Let δ be the distinguished element of GΓ, with image τδ ∈

IW . Recall Wi,τδ
is the Weyl group of the τδ-imaginary roots. Let θqs be a

quasisplit involution in this inner class (cf. Lemma 5.16) and let Kqs = Gθqs .

Proposition 12.19 We have bijections:

(1) X
1−1
←→

∐
i Ki\G/B (Corollary 9.9),

(2) Xτδ
/Wi,τδ

1−1
←→ {strong involutions}/G (Prop. 12.18),

(3) IW/W
1−1
←→ {θqs-stable Cartan subgroups in G}/Kqs (Prop. 12.12),

(4) X /W
1−1
←→

∐
i{θi-stable Cartan subgroups in G}/Ki (Prop. 12.9)

(5) Xτ (z) ≃ [H∨(R)/H∨(R)0]∧ or is empty (τ ∈ IW , z ∈ Z,H∨(R) as in
Remark 11.5),

(6) StabW (x) ≃W (Kξ, H) (ξ ∈ X̃ , with image x ∈ X ) (Prop. 12.14).

Example 12.20 We illustrate each part of the Proposition in the case of
SL(2, C). In this case Out(G) = 1 so there is only one inner class of involu-
tions, and we drop δ from the notation. See examples 3.4 and 5.6.
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Write H = {diag(z, 1
z
) | z ∈ C×}, W = {1, s}, and let t = diag(i,−i).

Let n be any element of NormG(H) mapping to s ∈W . Then NormG(H) =
H ∪Hn. Then

(12.21)

X̃ = {ξ ∈ H ∪Hn | ξ2 = ±Id}

= {±Id,±t} ∪Hn

X = {±Id,±t}/H ∪Hn/H

Note that H acts trivially on {±Id,±t}, and hnh−1 = h2n for all h ∈ H , so
Hn/H is a singleton. Therefore

(12.22) X = {±Id,±t, n}.

Strictly speaking these are elements of X̃ representing X .
Since τδ = 1 we have Xτδ

= {±Id,±t}, and Wi,τδ
= W . Part (2)

of the Proposition says we can take I to be a set of representatives of
X1/W = {±Id, t}. Recall (5.6) we think of these as “strong real forms”
SU(2, 0), SU(0, 2) and SU(1, 1) ≃ SL(2, R), respectively. Then

(12.23) X [Id] = {Id}, X [−Id] = {−Id}, X [t] = {t,−t, n}.

Now G/B is isomorphic to the complex projective plane C ∪ {∞}. We have
K±Id = G and K±Id\G/B is a point. We label these orbits O2,0 and O0,2,
respectively. On the other hand Kt ≃ C×, which acts on G/B by z : u 7→ z2u.
There are three orbits of this action: O0 = {0},O∞ = {∞} and O∗ = C×.

So the bijection of (1) is

(12.24)

x ∈ X Id -Id t -t n

Kx G G C× C× C×

Orbit O2,0 O0,2 O0 O∞ O∗

In this case IW = W = {1, s}. The quasisplit group is SL(2, R), which
has two conjugacy classes of Cartan subgroups. The compact Cartan sub-
group T ≃ S1 corresponds to 1 ∈W , and the split Cartan subgroup A ≃ R×

corresponds to s ∈W . This is (3) in this case.
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Now X /W has four elements I,−I, t and n, corresponding to the com-
pact Cartan subgroups of SU(2, 0), SU(0, 2), SU(1, 1), and the split Cartan
subgroup of SU(1, 1), respectively. This is the content of (4).

For (5) we have X1(Id) = {±Id} and X1(−Id) = {±t}. In this case
H(R) ≃ S1, and H∨(R) ≃ R×, so H∨(R)/H∨(R)0 ≃ Z/2Z. On the other
hand Xs(Id) = ∅ and Xs(−Id) = {n}. In this case H(R) = R× and H∨(R) =
S1 is connected.

Finally consider (6). We have StabW (±Id) = W , and StabW (±t) = 1.
This corresponds to the fact that W (SU(2), S1)) = W , and W (SL(2, R), S1) =
1. On the other hand StabW (n) = W , i.e. W (SL(2, R), R×) = W .

Most of the conclusions of the Proposition seen in Figure 1. Projection
p : X 7→ IW is written vertically.

SU(2, 0) Id


 −→ z = Id

SU(0, 2) −Id



SU(1, 1)

t



−→ z = −Id

−t w

IW 1 sα

Cartan T A

Figure 1: X for G = SL(2)
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Example 12.25 We reconsider the previous example with PSL(2, C) in
place of SL(2, C). Again γ = 1 and we drop it from the notation.

Recall PSL(2, C) ≃ SO(3, C), and it is easier to work with the latter real-

ization, with respect to the form




0 1 0
1 0 0
0 0 1


. We take H = {diag(z, 1

z
, 1) | z ∈

C×}, write W = {1, s} and let n be a representative in NormG(H) of s. Let
t = diag(−1,−1, 1).

As in the previous example we have:

(12.26)

X = {ξ ∈ H ∪Hn | ξ2 = Id}/H

= {Id, t}/H ∪ (Hn)/H

= {Id, t, n}.

In this case we can take I = {Id, t}, and

(12.27) X [Id] = {Id},X [t] = {t, n}.

Then KId = G and KId\G/B is a point. On the other hand Kt ≃ O(2, C),
which has two orbits on the projective plane: {0,∞} and C×. This is (1) of
the Proposition in this case.

In this case (2) says that X1/W = {Id, t}, corresponding to the two real
forms of G.

The analogue of (12.24) is

x ∈ X Id t n

Kx G C× C×

Orbit O2,0 O0 O∗

Statement (3) is the same as for SL(2, C): IW /W has two elements, corre-
sponding to the two conjugacy classes of Cartan subgroups of SO(2, 1).

For (4), X /W = X = {Id, t, n}; corresponding to the compact Cartan
subgroups of SO(3), SO(2, 1), and the split Cartan subgroup of SO(2, 1),
respectively.

Next, X1(Id) = {Id, t} and Xs(I) = {n}, corresponding to H∨(R) = R×

and S1 as in the previous example. This gives (5).
Finally note that StabW (1) = Stab(w) = W as in the previous example.

However StabW (t) = W ; i.e. W (SO(2, 1), S1) = W . Comparing this case

46



with the fact that StabW (t) = 1 in the case of SL(2, C) illustrates how
StabW (ξ) depends in a subtle way on isogenies. See (12.5).

Example 12.28 Having described X for SL(2, C) and PSL(2, C) we can
now describe the representation theory of real forms of these groups in terms
of the space Z. See Theorem 10.3, and Examples 12.20 and 12.25. Note that
the representations are parametrized by pairs of orbits as in (10.7).

Write C for the trivial representation.
For SU(1, 1) ≃ SL(2, R), at infinitesimal character ρ, write DS± for the

discrete series representations and PSodd for the irreducible (non-spherical)
principal series representation.

Consider SO(2, 1). Let sgn be the sign representation of SO(2, 1), and
DS be the unique discrete series representation with infinitesimal character
ρ. At infinitesimal character 2ρ SO(2, 1) has two irreducible principal series
representations denoted PS±.
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Table of representations of SL(2) and PGL(2)

Orbit x x2 θx Gx(R) λ rep Orbit y y2 θy G∨
y (R) λ rep

O2,0 Id Id 1 SU(2, 0) ρ C O′
∗ n Id -1 SO(2, 1) 2ρ PS+

O0,2 -Id Id 1 SU(0, 2) ρ C O′
∗ n Id -1 SO(2, 1) 2ρ PS−

O0 t -Id 1 SU(1, 1) ρ DS+ O′
∗ n Id -1 SO(2, 1) ρ C

O∞ -t -Id 1 SU(1, 1) ρ DS− O′
∗ n Id -1 SO(2, 1) ρ sgn

O∗ n -Id 1 SU(1, 1) ρ C O′
+ t Id -1 SO(2, 1) ρ DS

O∗ n Id 1 SU(1, 1) ρ PSodd O′
3,0 Id Id 1 SO(3) ρ C

See [1] for more detail on this example.

13 The reduced parameter space

If G is adjoint we saw in Section 10 that the parameter space X = X (G, γ) is
perfectly suited to parametrizing representations of real forms of G. If G is
not adjoint then strong involutions play an essential role, and the difference
between involutions and strong involutions is unavoidable. Nevertheless in
some respects the space X is larger than necessary, and a satisfactory theory
is obtained with a smaller set, the reduced one-sided parameter space. While
X may be infinite, this is always a finite set.

The most economical possibility would be to keep a single orbit of strong
involutions over each orbit of real forms. This is the approach adopted by
the atlas software. However there is no canonical way to make this choice.
The reduced parameter space provides a more canonical way to reduce to a
small finite number of choices related to the center.

Let Z = Z(G), and recall (cf. 11.2(3)) ZΓ is the Γ-invariants in Z. There
is a natural action of Z on X by left multiplication. This preserves the fibers
Xτ , and commutes with the conjugation action of G. For x ∈ X and z ∈ Z
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multiplication by z is a bijection:

(13.1) X [x]
1−1
←→ X [zx]

(cf. (9.7)). In other words the orbit pictures for x and zx are identical.

Suppose ξ ∈ X̃ lies over x. Harish-Chandra modules for ξ are (g, Kξ) mod-
ules; since Kξ = Kzξ, Harish-Chandra modules for ξ are exactly the same as
Harish-Chandra modules for zξ, with the same notion of equivalence.

For example suppose G = SL(2) and take ξ = I and z = −I. Then ξ = I
and zξ = −I both correspond to the compact group SU(2). See Example
5.6.

Write θ for the action of the non-trivial element of Γ on Z. If x ∈ X (z′)
and z ∈ Z then

(13.2) zx ∈ X (z′zθ(z)).

Recall X (z) is empty if z 6∈ ZΓ. It is easy to see that

(13.3) ZΓ/{zθ(z) | z ∈ Z} ≃ H2(Γ, Z)

is a finite set. This comes down to the fact that if Z is a torus then
ZΓ/{zθ(z)} ≃ (Z/2Z)n where n is the number of R× factors in the cor-
responding real torus (cf. Remark 11.3).

Definition 13.4 Choose a set of representatives Z0 ⊂ ZΓ for ZΓ/{zθ(z)} ≃
H2(Γ, Z). The reduced parameter space is

(13.5) X0(G, γ) =
∐

z∈Z0

X (z).

Example 13.6 Let G = SL(n, C), and let γ = 1. Suppose p + q = n and
αn = (−1)q. Let

ξα = diag(

p︷ ︸︸ ︷
α, . . . , α,

q︷ ︸︸ ︷
−α, . . . ,−α)

These are representatives of the equivalence classes of strong involutions in
this inner class. For fixed p 6= q there are n strong real forms, all mapping to
the real form SU(p, q). In other words we obtain n identical orbit pictures.
If p = q a similar statement holds, except that ξα is conjugate to ξ−α.
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If n is odd then ZΓ/{zθ(z)} = Z/Z2 is trivial, so we take Z0 = {I}, and
the equivalence classes of strong involutions in X0(G, γ) are represented by

(13.7) (

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
−1, . . . ,−1) (q even).

For each p, q there is a unique strong involution mapping to the real form
SU(p, q), instead of n as we had earlier.

If n is even then ZΓ/{zθ(z)} has order 2. We can take Z0 = {I, ζI} where
ζ is a primitive nth root of 1. Let τ be a primitive 2nth root of 1. Then the
strong real forms in X0(G, γ) are

(13.8)

±diag(

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
−1, . . . ,−1) (q even, p 6= q)

diag(

p︷ ︸︸ ︷
1, . . . , 1,

p︷ ︸︸ ︷
−1, . . . ,−1)

±diag(

p︷ ︸︸ ︷
τ, . . . , τ ,

q︷ ︸︸ ︷
−τ, . . . ,−τ ) (q odd).

In this case there are two strong real forms mapping to the real form
SU(p, q) if p 6= q, and 1 if p = q. As discussed in the second paragraph of
this section, the atlas software makes a further choice of one of these two
strong involutions.

The calculations needed to understand representation theory (see Section
10) take place entirely in a fixed set X (z). The sets X (z′) and X (z′zθ(z))
are canonically identified, so it is safe to think of X (z) as being defined for
z ∈ Z0. The atlas software takes this approach.

14 Cayley Transforms and the Cross Action

We continue to work with the one-sided parameter space X = X (G, γ). We
begin with some formal constructions.

Fix x ∈ X and let τ = p(x) ∈ IW . Recall (Section 12) τ defines the real,
imaginary and complex roots, and x defines a grading grx of the imaginary
roots. Suppose α is an imaginary non-compact root, i.e. τ(α) = α and
grx(α) = 1.

Let Gα be the derived group of CentG(ker(α)), and Hα ⊂ Gα the one-
parameter subgroup corresponding to α. Then Gα is isomorphic to SL(2) or
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PSL(2) and Hα is a Cartan subgroup of Gα. Choose σα ∈ NormGα
(Hα)\Hα;

then σα(α) = −α.

Definition 14.1 Suppose x ∈ X and α is a non-compact imaginary root.
Choose a pre-image ξ of x in X̃ , and define cα(x) to be the image of σαξ in
X .

Lemma 14.2

(1) cα(x) is well defined, independent of the choices of σα and ξ.

(2) cα(x) is G-conjugate to x, and cα(x)2 = x2.

(3) p(cα(x)) = sαp(x) ∈ IW .

(Here and in Lemma 14.9 keep in mind the remark after (9.7) regarding the
notion of G-conjugacy.)
Proof. Choose ξ, and let t = α∨(i) ∈ Hα. Suppose h ∈ Hα. We have a few
elementary identities, essentially in SL(2):

(14.3)

σαhσ−1
α = h−1, hσαh−1 = h2σα

ξhξ−1 = h

tgt−1 = ξgξ−1 (g ∈ Gα)

ξσαξ−1 = σ−1
α

The first two lines follow from σα(α∨) = −α∨ and θξ(α
∨) = α∨. For the

third, int(t) and θξ agree on Gα, since they agree on Hα and the ±α root
spaces. The final assertion follows from the third and a calculation in SL(2).

Now σαξ clearly normalizes H , and

(σαξ)2 = σα(ξσαξ−1)ξ2 = ξ2 ∈ Z(G),

so σαξ ∈ X̃ .
Given a choice of σα any other choice is of the form h2σα for some h ∈ Hα,

and

(14.4) (h2σα)ξ = (hσαh−1)ξ = hσα(h−1ξh)h−1 = h(σαξ)h−1.

Therefore the image of σαξ in X is independent of the choice of σα.

51



We need to show that σαξ and σαhξh−1 have the same image in X for all
h ∈ H . Write H = Hα(ker(α)). If h ∈ Hα then hξh−1 = ξ so the assertion is
obvious. If h ∈ ker(α) then σαh = hσα, and σα(hξh−1) = h(σαξ)h−1.

For the second assertion, we actually show cα(x) is conjugate to x by an
element of Gα. By a calculation in SL(2) it is easy to see g(σαt)g−1 = t for
some g ∈ Gα. Therefore

(14.5) g(σαξ)g−1 = g(σαtt−1ξ)g−1 = g(σαt)g−1g(t−1ξ)g−1 = tt−1ξ = ξ.

The fact that cα(x)2 = x2 follows immediately, and the final assertion is
obvious. �

We now define inverse Cayley transforms. Suppose ξ ∈ X̃ , and let τ =
p̃(ξ). Suppose α is a real root with respect to θξ, i.e. τ(α) = −α. Define Gα

and Hα as before. Let mα = α∨(−1).

Lemma 14.6 There exists σα ∈ NormGα
(Hα)\Hα so that σαξ = gξg−1 for

some g ∈ Gα. The only other element satisfying these conditions is mασα.

Proof. This is similar to the previous case. The involution θξ restricted to
Gα is inner for Gα, and acts by h 7→ h−1 for h ∈ Hα. Therefore we may
choose y ∈ NormGα

(Hα)\Hα so that ygy−1 = ξgξ−1 for all g ∈ Gα. By
a calculation in SL(2) we may choose σα so that g(σαy)g−1 = y for some
g ∈ Gα. Then

(14.7) g(σαξ)g−1 = g(σαyy−1ξ)g−1 = g(σαy)g−1g(y−1ξ)g−1 = yy−1ξ = ξ.

We have σαy ∈ Hα, and α(σαy) = −1. Therefore any two such choices differ
by mα. �

Definition 14.8 Suppose ξ ∈ X̃ and α is a real root with respect to θξ. Let
cα(ξ) = {σαξ, mασαξ}.

If x ∈ X choose ξ ∈ X̃ mapping to x, and define cα(x) to be the image of
cα(ξ) in X . This is a set with one or two elements.

The analogue of Lemma 14.2 is immediate:

Lemma 14.9 Suppose x ∈ X and α is a real root with respect to θx.

(1) cα(x) is well defined, independent of the choice of ξ.
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(2) If y ∈ cα(x) then y is G-conjugate to x, and y2 = x2.

(3) p(cα(x)) = sαp(x) ∈ IW .

We deduce some simple formal properties of Cayley transforms. Fix τ ∈
IW . If α is imaginary with respect to τ let

(14.10)

Xτ (α) = {x ∈ Xτ |α is non-compact with respect to θx}

= {x ∈ Xτ | grx(α) = 1}

= {x ∈ Xτ | c
α(x) is defined}.

Lemma 14.11

(1) If τ(α) = −α then for all x ∈ Xτ , cα(cα(x)) = x,

(2) If τ(α) = α and x ∈ Xτ (α) then cα(cα(x)) = {x, mαx}.

(3) The map cα : Xτ (α) 7→ Xsατ is surjective, and at most two-to-one

(4) Suppose α is imaginary. The following conditions are equivalent:

(a) cα : Xτ (α)→ Xsατ is a bijection;

(b) cα : Xsατ → Xτ (α) is a bijection;

(c) cα(x) is single valued for all x ∈ Xsατ ;

(d) mα ∈ Aτ (cf. (11.1));

(e) sα ∈W (Kξ, H) for all ξ ∈ X̃ with image in Xτ (α),

(f) x = mαx for all x ∈ Xτ (α).

If these conditions fail then cα : Xτ (α)→ Xsατ is two to one, and cα(x)
is double valued for all x ∈ Xsατ .

(5) Suppose α is imaginary with respect to τ . If there exists h ∈ H ′
−τ

(cf. (11.1)) such that α(h) = −1 then Xτ is the disjoint union of Xτ (α)
and hXτ (α). Otherwise Xτ (α) = Xτ .

We leave the straightforward proof to the reader.

Remark 14.12 Using this Lemma it is straightforward to compute the space
X , starting with Xτδ

, and computing the fibers Xτ inductively. This shows
that it is in fact easier to understand the entire space X rather than the
individual pieces Ki\G/B ⊂ X (cf. Corollary 9.9). We describe the latter in
more detail in the next section.
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It is important to understand the effect of Cayley transforms on the grad-
ing of the imaginary roots. This is due to Schmid [21]; also see [25, Definition
5.2 and Lemma 10.9].

Lemma 14.13 Suppose τ ∈ IW and x ∈ Xτ (α). Then the sατ -imaginary
roots are the τ -imaginary roots orthogonal to α, and for such a root β,

(14.14) grcαx(β) =

{
grx(β) if α + β is not a root

grx(β) + 1 if α + β is a root

Remark 14.15 Choose a pre-image ξ of x in X̃ . By (14.3) we have

(14.16) ξσαξ−1 =

{
σα α compact

mασα α non-compact.

If (the derived group of) G is simply connected then mα 6= 1, so grx(α) = 0
if ξσαξ−1 = σα, and 1 otherwise. A calculation in rank 2 shows that if α and
β are orthogonal then σασβσ−1

α = σ±1
β depending on whether α + β is a root

or not (see the next section). The Lemma follows readily from this.

Recall (9.11)(f) W acts on X , and we refer to this as the cross action.

Lemma 14.17 Suppose α is imaginary with respect to x. Then wα is imag-
inary with respect to w × x and

(14.18)(a) grw×x(wα) = grx(α).

Suppose grx(α) = 1. Then

(14.18)(b) cwα(w × x) = w × cα(x).

We leave the elementary proof, and the statement of the corresponding
facts for real roots, to the reader. See [25], Lemmas 4.15 and 7.11.

With Cayley transforms in hand we can complete the proof of Proposition
12.12.
Proof of Propositions 12.12 and 12.18. Fix τ ∈ IW . Assume there is a
τ -imaginary root α. By Lemma 14.11(5) there exists x ∈ Xτ (α), so cα(x) ∈
Xsατ is defined. Now suppose β is an imaginary root with respect to sατ . By
the same argument we may choose x′ ∈ Xsατ so that x′′ = cβ(x′) is defined.
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Replacing x ∈ Xτ with cα(x′) ∈ Xτ we now have Xτ ∋ x → cβcαx ∈ Xsβsατ .
By Lemma 14.2(2) cβcα(x) is G-conjugate to x.

Continue in this way until we obtain x ∈ Xτ , x
′ ∈ Xτ ′, where x′ is G-

conjugate to x, and there are no imaginary roots with respect to τ ′. (This
corresponds to the most split Cartan subgroup of the quasisplit form of G.)

By [4, Proposition 6.24] θξ′ is quasisplit, for any ξ′ ∈ X̃ lying over x′.
This completes the proof of Proposition 12.12. The proof of Proposi-

tion 12.18 is similar, using inverse Cayley transforms, Proposition 12.16 and
(12.17). We omit the details. �

Example 14.19 We conclude this section with some details in the case of
G = Sp(4) (of type C2). We give a picture of the space X and describe the
action of Cayley transforms on X .

There are four G-conjugacy classes of strong involutions, which we think
of as corresponding to Sp(2, 0), Sp(0, 2), Sp(1, 1) and the split group Sp(4, R).
See Example 5.9. Write (9.10) as

(14.20) X = X2,0 ∪ X0,2 ∪ X1,1 ∪ Xs.

There are 4 conjugacy classes in IW , corresponding to the 4 Cartan sub-
groups of Sp(4, R), isomorphic to S1 × S1, S1 ×R×, C× and R× × R×.

Let α1, α2 be the long positive roots, and β1, β2 the short ones. Then
IW = {1, sα1

, sα2
, sβ1

, sβ2
, w0} where w0 = −I is the long element.

Here is the output of the kgb command of the atlas software for the real
form Sp(4, R):

0: 0 0 [n,n] 1 2 6 4

1: 0 0 [n,n] 0 3 6 5

2: 0 0 [c,n] 2 0 * 4

3: 0 0 [c,n] 3 1 * 5

4: 1 2 [C,r] 8 4 * * 2

5: 1 2 [C,r] 9 5 * * 2

6: 1 1 [r,C] 6 7 * * 1

7: 2 1 [n,C] 7 6 10 * 2,1,2

8: 2 2 [C,n] 4 9 * 10 1,2,1

9: 2 2 [C,n] 5 8 * 10 1,2,1

10: 3 3 [r,r] 10 10 * * 1,2,1,2

55



Thus Xs has 11 elements, labelled by the first column. Each row corre-
sponds to an orbit O, which maps to a twisted involution τ . In this case
(since γ = 1) we may view τ as an involution in W ; the last column gives
τ as a product of simple reflections. The conjugacy class of τ corresponds
to a Cartan subgroup; the number of this Cartan subgroup, given by the
output of the cartan command, is given in column 3. The length of O, i.e.
dim(O)− dim(Omin) where Omin is a minimal orbit, is given in column 2.

The type of each simple root (r=real, c=compact imaginary, n=non-
compact imaginary, C=complex) is given in brackets. Following this the
next two columns give the cross actions of the simple roots, followed by give
Cayley transforms by the simple non-compact imaginary roots.

Of course X2,0 and X0,2 are singletons. Finally here is the output of kgb
for Sp(1, 1).

0: 0 0 [n,c] 1 0 2 *

1: 0 0 [n,c] 0 1 2 *

2: 1 1 [r,C] 2 3 * * 1

3: 2 1 [c,C] 3 2 * * 2,1,2
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Figure 2 gives a picture of X 3. As before the vertical columns are the
fibers Xτ . The numbering of the points of X is from the output of the kgb

commands above. The arrows → indicate Cayley transforms.
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−1

TCartan C× S1 × R× A

Figure 2: X and Cayley transforms for Sp(4)

See [1] for more detail about the representation theory of real forms of
Sp(4, C).

3Thanks to Leslie Saper for producing this diagram.
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15 The Tits group and the algorithmic enu-

meration of parameters

The combinatorial enumeration of K\G/B is in terms of the Tits group W̃ ,
introduced by Jacques Tits in [23] with the name extended Coxeter group.

We begin by fixing (G, γ) and a choice of of splitting datum (H, B, {Xα})
(cf. Section 2). For each simple root α let φα : SL(2) → G be defined by

φα(diag(z, 1
z
)) = α∨(z) and dφα

(
0 1
0 0

)
= Xα. Let σα = φα

(
0 1
−1 0

)
. This

is consistent with the definition of σα in Section 14.

Definition 15.1 The Tits group W̃ is the subgroup of N generated by {σα}
for α simple.

For each simple root α let mα = σ2
α = α∨(−1). Let H0 be the subgroup

of H generated by the elements mα.

Theorem 15.2 (Tits [23])

(1) The kernel of the natural map W̃ →W is H0,
(2) The elements σα satisfy the braid relations,

(3) There is a canonical lifting of W to a subset of W̃ : take a reduced ex-
pression w = sα1

. . . sαn
, and let w̃ = σα1

. . . σαn
.

It is a remarkable fact that the computations needed for the enumeration
of the K-orbits on G/B can be carried out in the Tits group. This is due to
the fact that Cayley transforms and cross actions can be described entirely
in terms of the σα.

Lemma 15.3 Given x ∈ X , there exists a pre-image ξ of x in X̃ such that
ξ normalizes W̃ .

Proof. Recall (following (12.17)) τδ ∈ IW is the image of the distinguished
element δ of X . Using the fact that p(x) = wτδ for some w ∈ W , it is easy
to reduce to the case x ∈ Xτδ

. Let θ = τδ ∈ Aut(H).

Since δ is an automorphism of the based root datum used to define W̃ , it
follows easily that δσαδ−1 = σθ(α) for all roots α, and therefore δ normalizes

W̃ . Choose ξ ∈ X̃ mapping to x, so ξ = hδ for some h ∈ H ; we have
hθ(h) = ξ2 ∈ Z(G).
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Recall (Remark 11.3) H = TθAθ. We may replace ξ with gξg−1 =
gθ(g−1)hδ for any g ∈ H . The map g 7→ gθ(g−1) has image Aθ, so we
may assume h ∈ Tθ.

We have ξσαξ−1 = (hδ)σα(hδ)−1 = hσβ(h−1)σβ where β = θ(α). Now
hθ(h) = h2 ∈ Z(G), so β(h) = ±1. It follows easily that hσβ(h−1) is equal

to 1 or mβ, and is therefore contained in W̃ . �

Fix x ∈ X , and choose a pre-image ξ ∈ X̃ . We now describe an algorithm
for computing X [x] ≃ Kξ\G/B (cf. (9.8)). By Proposition 12.19(2) we may

assume x ∈ Xτδ
, and by Lemma 15.3 that ξ normalizes W̃ . For w̃ ∈ W̃ let

θ(w̃) = ξw̃ξ−1.
We will maintain an intermediate first-in-first-out list of pairs (τ, w̃) where

τ ∈ IW , w̃ ∈ W̃ , and w̃ξ ∈ X̃τ . We also maintain a store of elements W̃ . If
w̃ is in the store then the image of w̃ξ in X is contained in X [x]; denote this
element w̃x. Initialize the list with (τδ, 1).

For each (τ, w̃) occuring we will keep a record of of grw̃x; we assume we
are given grx. It is sufficient to record grw̃x(α) for each simple root satisfying
τ(α) = α. Let Mτ be the subgroup of H0 generated by {mα | τ(α) = α}. For
each τ occuring we will compute Mτ ∩Aτ (cf. (11.4)). We assume we are are
given Mτ0 ∩ Aτ0 .

If the list is non-empty, remove from it the first element (τ, w̃).
First add w̃ to the store. At the first step (w̃ = 1), record grx. Otherwise

w̃ is either of the form σαũθ(σα)−1 or σαũ for some ũ already in the store
(see below). Compute grw̃x by Lemmas 14.13 and 14.17, and record this
information.

Next, compute the orbit of w̃x under the cross action of Wi,τ as follows.

Suppose τ(α) = α and grw̃x(α) = 1. Choose a representative σα ∈ W̃ of
sα (α is not necessarily simple). By (14.16) σαw̃ξσ−1

α = mαw̃ξ. Repeating
this we obtain a collection of elements of the form {tw̃ξ | t ∈ S} where S is a
subset of Mτ . The Wi,τ -orbit of x is in bijection with the image of S in the
group Mτ/Mτ ∩Aτ . Choose a set of representatives of this set.

For each such representative t let ũ = tw̃ and add ũ to the store. Record
greux by writing ũx = w × x for w ∈ Wi,τ and using Lemma 14.17. For each
root α satisfying τ(α) = α and grũx(α) = 1, see if any element of the form
(sατ, ∗) is on the list. If not, add (sατ, σαũ) to the list. Compute the set
Msατ ∩ Asατ = 〈Mτ ∩Aτ , mα〉 (cf. Lemma 14.11).

Next, for each simple root α, check if (sατsα, ∗) is on the list. If not add
(sατsα, σαw̃θ(σα)−1) to the list and compute Msατsα

∩Asατsα
= sα ·Mτ ∩Aτ .
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Continue until the list is empty, at which point X [x] is the set of elements
w̃x for w̃ in the store.

Remark 15.4 Fix x ∈ Xτδ
and choose ξ as in the Lemma. The argument

shows that compute X [x] are W̃ , the involution θ = int(ξ) of W̃ , the grading

grx of the τδ-imaginary roots, and the two-group Mτδ
∩ Aτδ

⊂ W̃ .
Note that if (the derived group of) G is simply connected then the grading

grx is determined by W̃ and θ (cf. Remark 14.15).

Remark 15.5 We may also compute the entire space X by similar (in fact
somewhat easier) methods, using Proposition 11.2 to describe the fiber Xτδ

,
and Lemma 14.11 to compute Cayley transforms. We omit the details.

The preceding algorithm depends on computations in the Tits group,
and we briefly sketch how to carry these out. According to Theorem 15.2,
each element of the Tits group can be written uniquely as w̃h, with w̃ the
canonical representative of w ∈W and h ∈ H0.

Fix w ∈W and a simple root α, with corresponding reflection s = sα. We
first compute w̃s̃. If l(ws) > l(w), then w̃s̃ is the canonical representative of
ws, and we have w̃s̃ = w̃s. Otherwise w = vs for v ∈W with l(v) = l(w)−1.
In this case w̃s̃ = ṽs̃2 = ṽmα. There is a similar formula for s̃w̃.

Now for h ∈ H0 we have

(15.6) (w̃h)s̃ = (w̃s̃)hs, s̃(w̃h) = (s̃w̃)h

with w̃s̃ or s̃w̃ computed as above.
In addition, for hi ∈ H0 we have

(15.7) h1(w̃h2)h3 = w̃(hw
1 h2h3).

Therefore multiplication in W̃ can be computed from multiplication in
W , multiplication in H0, and the action of W on H0.

We conclude with a brief discussion of Kazhdan-Lusztig-Vogan polyno-
mials. Fix an element (x, y) ∈ Z(G, γ). It is clear from Section 14 and the
algorithm described in the previous section that a natural set to consider is

(15.8) Bx,y = {(x′, y′) ∈ Z | x′ ∈ X [x], y′ ∈ X ∨[y]}.

The corresponding representations constitute a block, as in [25], and this
is the natural setting of the Kazhdan-Lusztig-Vogan polynomials. We plan
to return to this topic in a later paper. See www.liegroups.org for more
information.
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