Signatures of Invariant Hermitian Forms on Highest Weight Modules

Wai Ling Yee
University of Alberta
wlyee@math.ualberta.ca
www.math.ualberta.ca/~wlyee
October 21st, 2005
Motivation

Unitary Dual Problem: Classify the unitary irreps of a group

- abelian group: Pontrjagin
- compact, connected Lie group: Weyl, 1920s
- locally compact group—eg. reductive Lie group: open except for some special cases
- study a broader family of representations: those which admit an invariant Hermitian form
- real reductive Lie group: equivalent to classifying the irreducible Harish-Chandra modules (admissible, finitely-generated (\mathfrak{g}, K)-modules) which admit a positive-definite invariant Hermitian form
- Zuckerman 1978: construct all admissible (\mathfrak{g}, K)-modules by cohomological induction
• G - real reductive Lie group
• K - a maximal compact subgroup of G
• g_0, k_0 corresponding Lie algebras and g, k their complexifications
• $q = l \oplus u$ parabolic subalgebra
• θ - Cartan involution corresponding to K

begin with an $(l, L \cap K)$-module V where L is a Levi subgroup of G and l its complexified Lie algebra

Step 1: extend to a rep of $q = l \oplus u$ by allowing u to act trivially, then apply induction functor

$$\text{ind}_{(q, L \cap K)}^{(g, L \cap K)}(V) = U(g) \otimes_{U(q)} V$$

Step 2: apply a Zuckerman functor $\Gamma^j = j$th derived functor of the left exact covariant functor Γ which takes the K-finite part of a representation
• $\text{ind}_{(\mathfrak{g},L\cap K)}^{\mathfrak{g},L\cap K}(V)$ is a **generalized Verma module**, hence our interest in highest weight modules

• Strategy: relate the signature of invariant Hermitian form on V to signature of cohomologically induced module $\Gamma^j \text{ind}_{(\mathfrak{g},L\cap K)}^{\mathfrak{g},L\cap K}(V)$

• **1984, Vogan:** Suppose \mathfrak{q} is θ-stable. For an irreducible, unitarizable $(\mathfrak{l}, L \cap K)$-module V with infinitesimal character $\lambda \in \mathfrak{h}^*$, if

$$\text{Re}(\alpha, \lambda - \rho(u)) \geq 0 \quad \forall \alpha \in \Delta(u, \mathfrak{h})$$

then $\Gamma_m(\text{Hom}_q(U(\mathfrak{g}), V \otimes \Lambda^{top}u))$ is also unitarizable, where $m = \dim u \cap \mathfrak{k}$.

(Fact: $\text{pro}^\mathfrak{g}_\mathfrak{h}(V^h) := \text{Hom}_q(U(\mathfrak{g}), V^h) \simeq (\text{ind}^\mathfrak{g}_\mathfrak{h}V^h)$.)

• **1984, Wallach:** more elementary proof of same result by computing the signature of the Shapovalov form on generalized Verma modules (invariant Hermitian form on the module obtained in Step 1 of cohomological induction)
• Potentially useful for unitary dual problem: signature of Shapovalov form on a generalized Verma module, when it exists, with no restrictions on value of infinitesimal character

• Today: irreducible Verma modules, irreducible highest weight modules of regular infinitesimal character

Invariant Hermitian Forms

Definition: Invariant Hermitian form \(\langle \cdot, \cdot \rangle \) on \(V \):

For all \(v, w \in V \)

- rep of \(G \): \(\langle gv, w \rangle = \langle v, g^{-1}w \rangle \) for all \(g \in G \)
- \(\mathfrak{g} \)-module: \(\langle Xv, w \rangle + \langle v, \bar{X}w \rangle = 0 \) for every \(X \in \mathfrak{g} \), where \(\bar{X} \) denotes the complex conjugate of \(X \) with respect to the real form \(\mathfrak{g}_0 \)

- sesquilinear

When does a Verma module admit an invariant Hermitian form?
Theorem: An irreducible representation (π, V) admits a non-degenerate invariant Hermitian form if and only if it is isomorphic to a subrepresentation of its Hermitian dual (π^h, V^h).

Let $b = h + n$ be a Borel subalgebra of g and $\Delta^+(g, h)$ the corresponding system of positive roots.

$$M(\lambda) = \text{ind}_b^g(\mathbb{C}_\lambda) \text{ so } M(\lambda)^h = \text{pro}_{\bar{h}}^g(\mathbb{C}_{\bar{\lambda}}) = \text{Hom}_b(U(g), \mathbb{C}_{-\bar{\lambda}})$$

We see that $M(\lambda)$ embeds into $M(\lambda)^h$ if $\bar{\lambda} = -\lambda$ and $\Delta^+(g, h) = -\Delta^+(g, h)$. When does this happen?

For $\mu \in h^*$, define: $(\theta \mu)(H) = \mu(\theta^{-1} H) \quad (\bar{\mu})(H) = \overline{\mu(H)}$

Then: $\theta_{\bar{g}_\alpha} = g_{\theta \alpha} \quad \bar{g}_\alpha = g_\alpha$

Theorem: If h is θ-stable and maximally compact, λ is imaginary, and $\theta \Delta^+(g, h) = \Delta^+(g, h)$, then $M(\lambda)$ admits a non-degenerate invariant Hermitian form.
by \mathfrak{h}-invariance, the $\lambda - \mu$ weight space is orthogonal to the $\lambda - \nu$ weight space if $\nu \neq -\bar{\mu}$

- each weight space is finite dimensional, so it makes sense to talk about signatures and the determinants

Constructing the form:

For $X \in \mathfrak{g}$, let $X^* = -\bar{X}$ and extend $X \mapsto X^*$ to an involutive anti-automorphism of $U(\mathfrak{g})$ by $1^* = 1$ and $(xy)^* = y^*x^*$.

We have the decomposition $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (U(\mathfrak{g})n + \mathfrak{n}^{op}U(\mathfrak{g}))$.

Let p be the projection of $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ under this direct sum.

- For $x, y \in U(\mathfrak{g})$, by invariance, $\langle xv_{\lambda}, yv_{\lambda} \rangle \lambda = \langle y^*xv_{\lambda}, v_{\lambda} \rangle \lambda$.
- $\langle (U(\mathfrak{g})n + \mathfrak{n}^{op}U(\mathfrak{g}))v_{\lambda}, v_{\lambda} \rangle = \{0\}$.
- $\langle xv_{\lambda}, yv_{\lambda} \rangle \lambda = \langle p(y^*x)v_{\lambda}, v_{\lambda} \rangle \lambda = \lambda(p(y^*x)) \langle v_{\lambda}, v_{\lambda} \rangle \lambda$
- See that an invariant Hermitian form on a Verma module is unique up to a real scalar. When $\langle v_{\lambda}, v_{\lambda} \rangle \lambda = 1$: Shapovalov form
Theorem: (Shapovalov determinant formula) The determinant of the Shapovalov form on the $\lambda - \mu$ weight space is

$$\prod_{\alpha \in \Delta^+(g, \mathfrak{h})} \prod_{n=1}^{\infty} ((\lambda + \rho, \alpha^\vee) - n)^{P(\mu - n\alpha)}$$

up to multiplication by a scalar, where P denotes Kostant’s partition function. (Assumption: \mathfrak{h} is compact.)

- radical of Shapovalov form = unique maximal submodule of $M(\lambda)$
- form non-degenerate precisely for the irreducible Verma modules
- according to Shapovalov determinant formula, $M(\lambda)$ is reducible on the affine hyperplanes $H_{\alpha, n} := \{\lambda + \rho \mid (\lambda + \rho, \alpha^\vee) = n\}$ where α is a positive root and n is a positive integer
- in any connected set of purely imaginary λ avoiding these reducibility hyperplanes, as the Shapovalov form never becomes degenerate, the signature corresponding to fixed μ remains constant
Definition: The largest of such regions, which we name the Wallach region, is the intersection of the negative open half spaces
\[\left(\bigcap_{\alpha \in \Pi} H_{\alpha,1}^- \right) \bigcap H_{\tilde{\alpha},1}^- \]
with \(ih_0^*\), where \(\tilde{\alpha}^\vee\) is the highest coroot, \(\Pi\) = simple roots corresponding to \(\Delta^+\), and \(H_{\tilde{\beta},n} = \{ \lambda + \rho | (\lambda + \rho, \beta^\vee) < n \}\).

Definition: If the signature of the Shapovalov form on \(M(\lambda)_{\lambda-\mu}\) is \((p(\mu), q(\mu))\), the signature character of \(\langle \cdot, \cdot \rangle_\lambda\) is
\[ch_{\lambda}M(\lambda) = \sum_{\mu \in \Lambda^+} (p(\mu) - q(\mu)) e^{\lambda - \mu} \]
Pick \(\lambda, \xi\) so that \(\lambda + t\xi\) stays in the Wallach region for \(t \geq 0\). An asymptotic argument (degree of \(t\) on the diagonal > degree off the diagonal) leads to:
Theorem: (Wallach) The signature character of $M(\lambda)$ for $\lambda + \rho$ in the Wallach region is

$$ch_s M(\lambda) = \frac{e^\lambda}{\prod_{\alpha \in \Delta^+(p,t)} (1 - e^{-\alpha}) \prod_{\alpha \in \Delta^+(t,t)} (1 + e^{-\alpha})}.$$

Goal: be able to find the signature everywhere.

Idea: determine how the signature changes as you cross a reducibility hyperplane. Combine this with induction.

• take λ s.t. $\lambda + \rho$ lies in exactly one reducibility hyperplane $H_{\alpha,n}$
• for reg ξ and non-zero t in a nbd of 0, $\langle \cdot, \cdot \rangle_{\lambda+t\xi}$ is non-degenerate
• $\langle \cdot, \cdot \rangle_{\lambda}$ has radical isom to the irreducible Verma module $M(\lambda - n\alpha)$
• therefore signature must change by plus or minus the signature of $\langle \cdot, \cdot \rangle_{\lambda-n\alpha}$ across $H_{\alpha,n}$

This can be made rigorous by using the Jantzen filtration.
• the $H_{\alpha,n}$’s where α is a root, n an integer, partition \mathfrak{h}^* into alcoves

Definition: For an alcove A, \exists constants c^A_{μ} for $\mu \in \Lambda_r^+$ such that

$$R^A(\lambda) := \sum_{\mu \in \Lambda_r^+} c^A_{\mu} e^{\lambda - \mu}$$

is the signature character of $\langle \cdot, \cdot \rangle_\lambda$ when $\lambda + \rho$ lies in the alcove A.

Our description of how signatures change as you cross a reducibility hyperplane may be expressed:

Lemma 1: If A, A' are adjacent alcoves separated by $H_{\alpha,n}$,

$$R^A(\lambda) = R^{A'}(\lambda) + 2\varepsilon(A, A') R^{A-n}(\lambda - n\alpha)$$

where $\varepsilon(A, A')$ is zero if $H_{\alpha,n}$ is not a reducibility hyperplane and plus or minus one otherwise.

• use $R(\lambda)$ to denote common signature character for alcoves in Wallach region
We use the affine Weyl group, whose action on \mathfrak{h}^\ast partitions \mathfrak{h}^\ast into precisely the alcoves with walls $H_{\alpha,n}$ as described above.

Definition The **fundamental alcove** is

$$A_0 = \{ \lambda + \rho \mid (\lambda + \rho, \alpha^\vee) < 0 \quad \forall \alpha \in \Pi, \quad (\lambda + \rho, \check{\alpha}^\vee) > -1 \}.$$

- reflections through walls of A_0 generate the affine Weyl group, W_a: reflections $s_{\alpha,0}$ for each simple root α and $s_{\check{\alpha},-1}$ generate W_a
- omit $s_{\check{\alpha},-1} \rightarrow$, generate the Weyl group W as a subgroup of W_a
- these generators compatible with reflection through walls of the fundamental Weyl chamber C_0, which we choose to contain A_0:

$$C_0 = \bigcap_{\alpha \in \Pi} H_{\alpha,0}.$$
Definition We will define two maps τ and $\tilde{\tau}$ from the affine Weyl group to the Weyl group as follows:

- τ comes from structure of W_a as semidirect product of translation by the root lattice and the Weyl group: $w = s$ if $w = ts$ with $t =$ translation by an element of Λ_r, $s \in W$
- We let \tilde{w} be such that wA_0 lies in the Weyl chamber $\tilde{w}C_0$.

- τ is a group homomorphism
- $\tilde{\tau}$ is not a group homomorphism
- $s_{a,n} = s_a$, and $s_{a,0}s_{a,n}\mu = \mu - n\alpha$
Observe that we can rewrite Lemma 1 as
\[R^{wA_0}_w(\lambda) = R^{w' A_0}_w(\lambda) + 2 \varepsilon(wA_0, w'A_0) R^{s_{\alpha,n}s_{\alpha,n} A_0}_{s_{\alpha,n}s_{\alpha,n} A_0}(s_{\alpha,n} A_0) (s_{\alpha,n} A_0) \]

For \(w \) in the affine Weyl group, let \(wA_0 = C_0 \stackrel{r_1}{\rightarrow} C_1 \stackrel{r_2}{\rightarrow} \cdots \stackrel{r_\ell}{\rightarrow} C_\ell = \tilde{w}A_0 \) be a (not necessarily reduced) path from \(wA_0 \) to \(\tilde{w}A_0 \). Applying (1), \(\ell \) times, we obtain
\[R^{wA_0}_w(\lambda) = R^{\tilde{w}A_0}_w(\lambda) + \sum_{j=1}^{\ell} \varepsilon(C_{j-1}, C_j) 2 R^{r_j C_j}_{r_j C_j} (r_j C_j) \]

Observe that a path from \(r_j C_j \) to \(r_j C_\ell \) is
\[r_j C_j r_j C_j r_j C_j + \cdots r_j C_\ell. \]

14
Applying induction on path length, we arrive at the following:

Theorem 2: For \(w \) in the affine Weyl group, let

\[wA_0 = C_0 \overset{r_1}{\rightarrow} C_1 \overset{r_2}{\rightarrow} \cdots \overset{r_\ell}{\rightarrow} C_\ell = \tilde{w}A_0 \]

be a (not necessarily reduced) path from \(wA_0 \) to \(\tilde{w}A_0 \).

\[R^{wA_0}(\lambda) \text{ equals } \sum_{S=\{i_1<\cdots<i_k\}\subset\{1,\ldots,\ell\}} \varepsilon(S)2^{|S|} R^{r_{i_1} \cdots r_{i_k} \tilde{w}A_0} \left(r_{i_1}r_{i_2} \cdots r_{i_k}r_{i_{k-1}} \cdots r_{i_1} \lambda \right) \]

where \(\varepsilon(\emptyset) = 1 \) and

\[\varepsilon(S) = \varepsilon(C_{i_1-1}, C_{i_1}) \varepsilon(r_{i_1}C_{i_2-1}, r_{i_1}C_{i_2}) \cdots \varepsilon(r_{i_1} \cdots r_{i_{k-1}}C_{i_{k-1}-1}, r_{i_1} \cdots r_{i_{k-1}}C_{i_k}) \].

Calculating \(\varepsilon \): difficult.
Calculating ε

The strategy for computing ε is as follows:

- We show that for a fixed hyperplane $H_{\alpha,n}$, the value of ε for crossing from $H_{\alpha,n}^+$ to $H_{\alpha,n}^-$ depends only on the Weyl chamber to which the point of crossing belongs.

- We consider rank 2 root systems of types A_2 and B_2, generated by simple roots α_1 and α_2, and calculate the values for ε by calculating changes that occur at the Weyl chamber walls. Our proofs do not depend on simplicity of the α_i.

- For an arbitrary positive root γ in a generic irreducible root system which is not type G_2, we develop a formula for ε inductively by replacing the α_i from the previous step with appropriate roots. Key in the induction is the independence of our rank 2 arguments from the simplicity of the α_i.
Let's begin with something simple: calculate \(\varepsilon \) for \(\alpha \) simple.

Lemma 2: Let \(\delta_\alpha \) be \(-1\) if \(\alpha \) is noncompact, and \(1 \) if it is compact.

If \(\alpha \) is simple and \(n \) is positive and if \(H_{\alpha,n} \) separates \(wA_0 \) and \(w'A_0 \) with \(wA_0 \subset H^+_{\alpha,n} \) and \(w'A_0 \subset H^-_{\alpha,n} \), then \(\varepsilon(wA_0, w'A_0) = \delta_\alpha^n. \)

Proof: Choose \(X_\alpha \in \mathfrak{g}_\alpha, Y_\alpha \in \mathfrak{g}_{-\alpha} \), and \(H_\alpha = [X_\alpha, Y_\alpha] \), a standard triple so that \(\mu(H_\alpha) = (\mu, \mu)(\lambda) \forall \mu \in \mathfrak{h}^* \). We may arrange so that

\[
-\overline{Y_\alpha} = \delta_\alpha X_\alpha.
\]

The \(\lambda - n\alpha \) weight space of \(M(\lambda) \) is one-dimensional and spanned by the vector \(Y^n_\alpha v_\lambda \). We know that

\[
\langle Y^n_\alpha v_\lambda, Y^n_\alpha v_\lambda \rangle_{\lambda} = \delta_\alpha^n \langle v_\lambda, X^n_\alpha Y^n_\alpha v_\lambda \rangle_{\lambda}
\]

\[
= \delta_\alpha^n n! \langle v_\lambda, H_\alpha (H_\alpha - 1) \cdots (H_\alpha - (n-1))v_\lambda \rangle_{\lambda}
\]

from \(\mathfrak{sl}_2 \) theory. We conclude that

\[
\varepsilon(wA_0, w'A_0) = \delta_\alpha^n.
\]
Dependence on Weyl Chambers

Proposition 1: Suppose α is a positive root and $n \in \mathbb{Z}^+$ and suppose $H_{\alpha,n}$ separates adjacent alcoves wA_0 and $w'A_0$, with $wA_0 \subset H_{\alpha,n}^+$ and $w'A_0 \subset H_{\alpha,n}^-$. The value of $\varepsilon(w, w')$ depends only on $H_{\alpha,n}$ and $\tilde{w}(= \tilde{w}')$.

We begin by refining Theorem 2: if we take an arbitrary C_ℓ, the formula becomes

$$R^{wA_0}(\lambda) = \sum_{I = \{i_1 < \cdots < i_k\} \subset \{1, \ldots, \ell\}} \varepsilon(I) 2^{|I|} R^{r_{i_1} \cdots r_{i_k} C_\ell} (r_{i_1} \cdots r_{i_k} r_{i_k} \cdots r_{i_1} \lambda).$$

If we choose in particular $C_\ell = C_0$, we have

$$R^{C_0}(\lambda) = \sum_{I = \{i_1 < \cdots < i_k\} \subset \{1, \ldots, \ell\}} \varepsilon(I) 2^{|I|} R^{r_{i_1} \cdots r_{i_k} C_0} (r_{i_1} \cdots r_{i_k} r_{i_k} \cdots r_{i_1} \lambda). \quad (2)$$
We begin by proving the proposition in the special case where
\(wA_0 = C_i \) and \(w'A_0 = C_{i+1} \) as described in the following figure:

\[\mathcal{C} = \{ C_0, \ldots, C_5 \} \]

![Figure 1: Type A_2](image-url)
Lemma 3: Let \(C = \{C_i\}_{i=0,\ldots,k-1} \) be a set of alcoves that lie in the interior of some Weyl chamber and suppose the reflections \(\{r_j\}_{j=1,\ldots,k} \) preserve \(C \). If \(w, v \in W_\alpha \) are generated by the \(r_j \) then

\[
(w^{-1}w = v^{-1}v) \iff w = v.
\]

Proof: \(\Rightarrow \): By simple transitivity of the action of \(W_\alpha \) on the alcoves, \(w^{-1}w = v^{-1}v \iff w^{-1}wC = v^{-1}vC \) for any alcove \(C \). Choose in particular \(C = C_i \). The alcoves \(w^{-1}wC_i \) and \(v^{-1}vC_i \) belong to the same Weyl chamber as they are the same alcove. As the \(r_j \)'s preserve \(C \) which lies in the interior of some Weyl chamber, \(wC_i \) and \(vC_i \) belong to the same Weyl chamber. Thus \(w^{-1} = v^{-1} \), whence \(w = v \). The other direction is trivial.

Note: \(C \) in the figure satisfies the conditions of Lemma 3.
To prove the proposition for the figure, we need to show that
\(\varepsilon(C_i, C_{i+1}) + \varepsilon(C_{i+3}, C_{i+4}) = 0, \) \((C_6 = C_0)\).

For \(I = \{i_1 < \cdots < i_k\} \), we define \(w_I = r_{i_k} r_{i_{k-1}} \cdots r_1 \). We rewrite (2) as
\[
\sum_{\emptyset \neq I \subset \{1, \ldots, \ell\}} 2^{|I|} \varepsilon(I) R^{\overline{w_I}^{-1} C_0} \overline{w_I}^{-1} w_I \lambda = 0 \tag{3}
\]

Using Lemma 3 and the partial ordering on \(\Lambda \), we obtain
\[
\sum_{\emptyset \neq I \subset \{1, \ldots, \ell\}} 2^{|I|} \varepsilon(I) = 0 \tag{4}
\]
for every \(\mu \in \Lambda \).

Suppose \(\mu = m\alpha_1 \). The subsets \(I \) of length less than 3 for which \(\overline{w_I}^{-1} w_I = \mu \) are \(I = \{1\}, \{4\} \). By considering equation (4) modulo 8, we obtain \(\varepsilon(C_0, C_1) + \varepsilon(C_3, C_4) = 0 \) which gives the desired result for \(H_{\alpha_1, m} \). The same proof can be used for the other hyperplanes and also for type \(B_2 \).
Generalization: $\mathcal{C} = \{\text{alcoves containing } \mu_0 \text{ in their closures}\}$.
Conditions of Lemma 3 satisfied, argue as before.
$C = \{ C_0, \ldots, C_5 \}$

$\alpha_1, 0$

$H_{\alpha_1,0}$

$H_{\alpha_2,0}$

α_1

α_2

s_{α_1}

s_{α_2}

$s_{\alpha_1+s_{\alpha_2}}$

$s_{\alpha_1+s_{\alpha_2}}$

$s_{\alpha_1+s_{\alpha_2}+\alpha_2}$

$s_{\alpha_1+s_{\alpha_2}+\alpha_2}$

$s_{\alpha_1+s_{\alpha_2}+\alpha_2}+\alpha_2$

$s_{\alpha_1+s_{\alpha_2}+\alpha_2}+\alpha_2$

$s_{\alpha_1+s_{\alpha_2}+\alpha_2}+\alpha_2$

$s_{\alpha_1+s_{\alpha_2}+\alpha_2}+\alpha_2$
Calculating ε for Type A_2

- know how to calculate ε for hyperplanes corresponding to simple roots, so we know how to calculate ε in the Weyl chambers adjacent to the fundamental Weyl chamber
- again, changes along a closed path should sum to zero
- so previous diagram, where C overlaps with two Weyl chambers, allows you to relate values of ε in one chamber to values in an adjacent chamber

<table>
<thead>
<tr>
<th>Weyl chamber walls in C</th>
<th>Equations</th>
</tr>
</thead>
</table>
| $H_{\alpha_1,0}$ | $\varepsilon(C_2, C_3) + \varepsilon(C_5, C_6) = 0$
 | $\varepsilon(C_1, C_2) + \varepsilon(C_4, C_5) + 2\varepsilon(C_2, C_3)\varepsilon(\pi_7 C_4, \pi_7 C_5) = 0$ |
| $H_{\alpha_2,0}$ | $\varepsilon(C_6, C_1) + \varepsilon(C_3, C_4) = 0$
 | $\varepsilon(C_1, C_2) + \varepsilon(C_4, C_5) + 2\varepsilon(C_0, C_1)\varepsilon(\pi_7 C_1, \pi_7 C_2) = 0$ |
| $H_{\alpha_1 + \alpha_2,0}$ | $\varepsilon(C_6, C_1) + \varepsilon(C_3, C_4) = 0$
 | $\varepsilon(C_2, C_3) + \varepsilon(C_5, C_6) = 0$ |
Final Formula for ε

Notation: $\varepsilon(H, N, s) = \varepsilon(A, A')$ where $A \subset H^+_N$, $A' \subset H^-_N$, A and A' are adjacent, and $A \subset sC_0$.

Using induction on height:

Theorem 3: Let γ be a positive root, and let $\gamma = s_{i_1} \cdots s_{i_{k-1}} \alpha_{i_k}$ be such that $\text{ht}(s_{i_j} \cdots s_{i_{k-1}} \alpha_{i_k})$ decreases as j increases. Let $w_\gamma = s_{i_1} \cdots s_{i_k}$. If γ hyperplanes are positive on sC_0, then

$$
\varepsilon(H, N, s) = (-1)^N \# \{ \text{noncompact } \alpha_{i_j} : |\alpha_{i_j}| \geq |\gamma| \}
\times (-1)^{\# \{ \beta \in \Delta(w^{-1}_\gamma) : |\beta| = |\gamma|, \beta \neq \gamma, \text{ and } \beta, s_\beta \gamma \in \Delta(s^{-1}) \}}
\times (-1)^{\# \{ \beta \in \Delta(w^{-1}_\gamma) : |\beta| \neq |\gamma| \text{ and } \beta, -s_\beta \gamma, \beta \in \Delta(s^{-1}) \}}.
$$

Extending results so that we know how to compute signature characters for non-compact Cartan subalgebras: use formulas for singular vectors.
Irreducible Highest Weight Modules

- the Shapovalov form on $M(\lambda)$ descends to an invariant
 Hermitian form on the irreducible highest weight module $L(\lambda)$

Let λ be antidominant, regular, and $x \in W_\lambda$. The Jantzen filtration of $M(x \cdot \lambda)$ ($x \cdot \lambda = x(\lambda + \rho) - \rho$) is

$$M(x \cdot \lambda) = M(x \cdot \lambda)^0 \supset M(x \cdot \lambda)^1 \supset \cdots \supset M(x \cdot \lambda)^N = \{0\}$$

where, for fixed δ regular,

$$M(x \cdot \lambda)^j = \left\{ \text{vectors } av_{x,\lambda} \in M(x \cdot \lambda) \mid \langle av_{x,\lambda+\delta t}, bv_{x,\lambda+\delta t} \rangle_{x \cdot \lambda+\delta t} \text{ vanishes at least to order } j \text{ at } t = 0 \forall b \in U(n^{op}) \right\}.$$
\(M(x \cdot \lambda)_j = M(x \cdot \lambda)_j^j / M(x \cdot \lambda)^{j+1} \) is semisimple.

- Kazhdan-Lusztig polynomials tell you:
 \[[M(x \cdot \lambda)_j : L(y \cdot \lambda)] = \text{coefficient of } q^{(\ell(x) - \ell(y) - j)/2} \]
 in \(P_{w \lambda x, w \lambda y}(q) \)

- Jantzen filtration does not depend on choice of \(\delta \).

- Get a non-degenerate invariant Hermitian form \(\langle \cdot, \cdot \rangle_j \) on \(M(x \cdot \lambda)_j \).

- Define analogous polynomials keeping track of signatures:
 form on each copy of \(L(y \cdot \lambda) \) in \(j \)th level of filtration has signature \(\pm \) signature of the Shapovalov form on \(L(y \cdot \lambda) \).

- Form on \(j \)th level, however, does:
 \(\text{ch}_s M(x \cdot \lambda + \delta t) \) equals:
 \[\sum_j \text{ch}_s \langle \cdot, \cdot \rangle_j \] for small \(t > 0 \)
 \[\sum_{j \text{ even}} \text{ch}_s \langle \cdot, \cdot \rangle_j - \sum_{j \text{ odd}} \text{ch}_s \langle \cdot, \cdot \rangle_j \] for small \(t < 0 \)
More precisely, the signature of the form depends on the (integral) Weyl chamber containing δ: if $\delta \in wC_0$, there are integers $a_{y,j}^{x,\lambda,w}$ such that
\[
ch_s \langle \cdot, \cdot \rangle_j = \sum_{y \leq w} a_{y,j}^{x,\lambda,w} ch_s L(y \cdot j)
\]
\[
R^{wA_0 + x\lambda}(x\lambda) = \sum_j a_{y,j}^{x,\lambda,w} ch_s L(y \cdot j)
\]

Proposition: Letting $a_y^{x,\lambda,w} = \sum_j a_{y,j}^{x,\lambda,w}$, then
\[
ch_s L(x\lambda) = \sum_{y_1 < \cdots < y_j = x} (-1)^{j-1} \left(\prod_{i=2}^{j} a_{y_{i-1}}^{w,\lambda,w} \right) R^{y_1\lambda + wA_0}(y_1\lambda).
\]
The usual Kazhdan-Lusztig polynomials may be computed via the inductive formulas:

a) \(P_{w_\lambda, x, w_\lambda} = P_{w_\lambda x s, w_\lambda y} \) if \(y s > y \) and \(x, x s \geq y \), \(s \) simple

a') \(P_{w_\lambda x, w_\lambda y} = P_{w_\lambda s x, w_\lambda y} \) if \(s y > y \) and \(x, s x \geq y \), \(s \) simple

b) If \(y > y s \) then

\[
q^c P_{w_\lambda x s, w_\lambda y} + q^{1-c} P_{w_\lambda x, w_\lambda y} = \sum_{z \in W_\lambda | z s > z} \mu(w_\lambda z, w_\lambda y)q^{(\ell(z) - \ell(y) + 1)}
\]

Signed versions: inductive formulas similar. Have to include some signs which depend on \(x, \lambda, w, s = s_\alpha \).
We would like to extend this work to generalized Verma modules for the purpose of studying invariant Hermitian forms on Harish-Chandra modules. Open problems which need to be solved for this purpose:

- reducibility of generalized Verma modules
 - computing the determinant of the Shapovalov form in some special cases: Khomenko-Mazorchuk
 - sufficient conditions for certain principal series representations: Speh-Vogan

- determining the composition series of a generalized Verma module (i.e. what are the irreducible factors, and what are their multiplicities)
 - composition series for generalized principal series representations ⇒ determine reducibility of representation induced from a parabolic subgroup