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1. The Blattner Multiplicity Formula

The main question we are addressing in these lecture notes is whether the computation

of discrete series multiplicities via the Blattner formula (or relatives thereof) is practical.

The short answer is: mostly yes, but it depends on exactly how far you want to go in

computing the multiplicities in a given series.

A. (Forgive my choice of) Notation.

Let G be a complex, connected, semisimple (or reductive) Lie group, T a maximal torus

in G, and K the identity component of the fixed points of an involution in G. Equivalently,

K is the complexification of a maximal compact subgroup of the identity component of a

real form of G. Of course we assume T ⊂ K.

We let ΛG denote the lattice of T -characters (the weight lattice), ΦG ⊂ ΛG the root

system, Φ∨

G the co-roots, Λ∨

G the co-weights, and W (G) the Weyl group. Fix a choice of

positive roots, say Φ+
G, and let ρG denote half the sum of Φ+

G.

The root system of K and its Weyl group W (K) are determined by a Z/2Z-grading

of ΦG; i.e., a map ε : ΦG → Z/2Z such that ε(α + β) = ε(α) + ε(β) whenever α, β, α + β

are G-roots. In these terms,

ΦK := {α ∈ ΦG : ε(α) = 0}



is the root system of K (also known as the set of “compact” roots), and

Ψ := {α ∈ Φ+
G : ε(α) = 1}

is the set of (positive) “non-compact” roots. The positive roots of G induce a compatible

positive system within ΦK ; namely, Φ+
K := ΦK ∩ Φ+

G.

We will primarily be focused on the weight lattice of G and the root system and Weyl

group of K, so from now on, we will use the abbreviations

Λ = ΛG, Φ = ΦK , W = W (K), ρ = ρK .

We associate to (G, K) the partition function

PΨ(γ) :=
∣∣∣
{
m : Ψ → N : γ =

∑
βm(β)β

}∣∣∣ (γ ∈ Λ).

Thus, PΨ(γ) counts the number of ways to write γ as an unordered sum of roots from Ψ.

Next, for each pair µ, ν ∈ Λ we set

BΨ(µ, ν) :=
∑

w∈W

sgn(w)PΨ(w(µ + ρ) − (ν + ρ)). (1)

Blattner Multiplicity Formula (Hecht-Schmid [HS]). If µ ∈ Λ is K-dominant

and λ ∈ Λ is dominant and regular for G, then BΨ(µ, λ + ρG − 2ρ) is the multiplicity of µ

in the discrete series for G indexed by λ.

In the above formula, note that ν = λ + ρG − 2ρ is the lowest K-type in the series; it

occurs with multiplicity one.

Since it seems to pose no significant additional obstacles, we will relax the assumptions

on λ (or equivalently, ν), and assume only that ν ∈ Λ is K-dominant. It is not hard to see

that this holds whenever λ is dominant and regular for G, but the converse fails.

Thus we seek to compute BΨ(µ, ν) for all K-dominant µ, ν ∈ Λ.

2. The Classification of Z/2Z-Gradings

The complexity of the Blattner Formula varies greatly depending on the geometry of the

positive non-compact roots Ψ; this geometry is slightly easier to understand if we analyze

the structure of Z/2Z-gradings of ΦG.

Any Z/2Z-grading is completely determined by its values on the simple roots, and

conversely, any choice of parities for the simple roots extends to a grading. Thus there are

2n gradings of ΦG, where n = rkT = rkΦG.
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Claim (presumably well-known). If G is simple and α̃G = c1α1 + · · · + cnαn is the

highest G-root (where the αi’s are the simple roots of G), then each Z/2Z-grading of G

may be classified as belonging to one of the following three types:

(i) The trivial case. Every root is compact, G = K, and Ψ = ∅.

(ii) The minuscule (or Hermitian symmetric) case. The rank of ΦK is n − 1, and the

set of simple roots for K is some W (G)-conjugate of {α1, . . . , αn} − {αi} for some index

i such that ci = 1. Furthermore, there is a co-weight ω (a W (G)-conjugate of the i-th

fundamental co-weight, and hence minuscule1) such that Φ = {α ∈ ΦG : 〈α, ω〉 = 0} and

Ψ = {α ∈ Φ+
G : 〈α, ω〉 = ±1}.

(iii) The classical case. The rank of ΦK is n, and the set of simple roots for K is

some W (G)-conjugate of {α1, . . . , αn,−α̃G} − {αi} for some index i such that ci = 2.

Furthermore, there is a co-weight ω (a W (G)-conjugate of the i-th fundamental co-weight)

such that Φ = {α ∈ ΦG : 〈α, ω〉 = 0 or ± 2} and Ψ = {α ∈ Φ+
G : 〈α, ω〉 = ±1}.

Note that in case (ii), the Dynkin diagram of ΦK is obtained by deleting the i-th node

of the Dynkin diagram of ΦG, whereas in case (iii), it is obtained by deleting the i-th node

of the extended Dynkin diagram of ΦG.

Sketch of Proof. The Z/2Z-gradings of ΦG may be indexed by Λ∨

G/2Λ∨

G, the grading

corresponding to ω ∈ Λ∨

G being given by

ε(β) := 〈β, ω〉 (mod 2).

The root system ΦK is determined by the choice of ω, and is constant up to isomorphism

on each W (G)-orbit in Λ∨

G/2Λ∨

G, or equivalently, on the Ŵ (G)-orbits in (1/2)Λ∨

G, where

Ŵ (G) = Λ∨

G o W denotes the extended affine Weyl group associated to ΦG. Furthermore,

the stabilizer of ω/2 in Ŵ (G) is a finite Weyl group (in fact, a conjugate of some parabolic

subgroup of the “ordinary” affine Weyl group associated to ΦG) whose root system is ΦK .

Certainly every Ŵ (G)-orbit hits the fundamental alcove

A0 = {λ : 0 6 〈α, λ〉 6 1 for all α ∈ ΦG},

so we may assume ω/2 ∈ A0; thus, ω is dominant and 〈α̃G, ω〉 6 2. Writing ω = a1ω1 +

· · · + anωn, where ai ∈ N and ωi denotes the i-th fundamental co-weight, we obtain

a1c1 + · · ·+ ancn 6 2. Renumbering if necessary, we must have either

1. ω = 0, or

2. c1 = 1 and ω = ω1, or

3. c1 = c2 = 1 and ω = ω1 + ω2, or

4. c1 = 1 and ω = 2ω1, or

5. c1 = 2 and ω = ω1.

Cases 1 and 4 both imply ω ∈ 2Λ∨

G, and yield a trivial grading (type (i)).

1Recall that a co-weight ω is minuscule if 〈α,ω〉 ∈ {0,±1} for all α ∈ ΦG.
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Case 3 reduces to Case 2: if c1 = c2 = 1, then ω1 and ω2 are both minuscule, and so

is ω1 − ω2 (exercise!). Hence, the Ŵ (G)-orbit of ω/2 is generated by some (dominant)

half-minuscule weight as in Case 2, and we have a grading of type (ii). In particular, note

that if ω is dominant minuscule, then ω/2 is the midpoint of the vertices 0 and ω of A0,

and thus has a Ŵ (G)-stabilizer that is a maximal parabolic subgroup of W (G), leading to

the description in (ii).

In Case 5, ω/2 is a vertex of A0, so it has a stabilizer that is obtained by deleting a

node from the extended diagram as described in (iii). �

3. Generalized Partition Functions and Multiplicities

In order to analyze the problem of computing BΨ(µ, ν), we find it helpful to throw away

as much structure as possible. This makes it easier to identify the essential features.

We will start by assuming that Φ is a (crystallographic) root system with positive roots

Φ+, co-roots Φ∨, and Weyl group W . As usual, ρ denotes half the sum of the positive

roots. Second, we assume that Λ is a lattice that contains Φ and is dual-compatible with

it in the sense that 〈λ, α∨〉 ∈ Z for all λ ∈ Λ and all co-roots α∨. Third, we assume merely

Ψ is a finite subset or multisubset (i.e., subset with repetitions) of Λ.

These given, we introduce a graded partition function PΨ(γ; t) via the formal expansion

∏

λ∈Ψ

1

1 − teλ
=

∑

γ∈Λ

PΨ(γ; t)eγ. (2)

Thus the coefficient of tl in PΨ(γ; t) is the number of ways partition γ into an unordered

sum of l weights λ ∈ Ψ. By analogy with (1), we define

BΨ(µ, ν; t) :=
∑

w∈W

sgn(w)PΨ(w(µ + ρ) − (ν + ρ); t) (µ, ν ∈ Λ). (3)

We now consider the problem of computing BΨ(µ, ν; t) for all dominant µ, ν ∈ Λ.

To translate back to the discrete series context of §1, note that Φ, Φ+, Φ∨, W , and ρ

may be viewed as being inherited from K, whereas Λ is inherited from the weight lattice

of G. We have thrown away most of the structure provided by G, including the notions

of Z/2Z-grading and compact vs. non-compact roots, but vestiges remain in the virtually

unconstrained choice of Ψ. Note also that we now have only one notion of dominance, the

one implicit in the choice of Φ+.

It is not surprising at this point that we have thrown away too much structure; we will

restore what is necessary or convenient in several subsequent steps.

Remarks. (a) At this level of generality, PΨ(γ; t) and BΨ(µ, ν; t) belong to Z[[t]]; they

need not be polynomials. In fact, PΨ(γ; t) (and hence also BΨ(µ, ν; t)) is a polynomial for

all γ ∈ Λ if and only if Ψ is pointed; i.e., the cone generated by Ψ contains no 1-dimensional

subspace, or equivalently, there is some δ ∈ Λ∨ such that 〈λ, δ〉 > 0 for all λ ∈ Ψ.
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(b) In the discrete series context, it is obvious that Ψ is always pointed, being a subset

of the positive roots of G.

(c) There is a general theory of lattice points in polytopes (e.g., see §4.6 of [EC1]). In

our context, it implies that PΨ(γ; t) and BΨ(µ, ν; t) are always rational functions of t with

poles at roots of unity.

(d) There are some reasonably sophisticated algorithms for counting lattice points in

polytopes. They run in polynomial time in fixed dimensions, and might be useful.

(e) In some sense, we can always (1) eliminate t, and (2) reduce to the pointed case.

Indeed, if we replace Λ → Zθ⊕Λ, Ψ → θ +Ψ and set t = eθ, where θ is some neutral (i.e.,

W -fixed) element, then it is easy to check that

BΨ(µ, ν; t) =
∑

m>0

Bθ+Ψ(µ + mθ, ν; 1)tm,

and θ + Ψ is necessarily pointed. However, this slices up the data in ways that may not

be convenient.

Allowing Ψ to run wild over the lattice Λ and introducing the parameter t may seem

gratuitous at this point, but we have a few reasons for doing this.

First, alternating sums of partition functions are ubiquitous in representation theory.

Aside from the Blattner Formula, we would be negligent not to mention that when Ψ = Φ+,

BΨ(µ, ν; 1) becomes Kostant’s formula for the multiplicity of the weight ν in an irreducible

representation of highest (dominant) weight µ. It seems worthwhile to assemble a large

class of such alternating sums in one family.

Second, as we shall discuss in more detail later (see the last remark in §4), the discrete

series cases of type (ii) (i.e., Hermitian symmetric) may be viewed as starting from a pos-

sibly non-pointed case (Remark (b) notwithstanding), having been converted to a pointed

case implicitly via the transformation discussed in Remark (e). Understanding these cases

as disguised versions of non-pointed cases turns out to be a useful point of view.

Third (and most important), the recurrence we present in §4 requires t.

Fourth, we find it intriguing (not to mention theoretically useful) that in the discrete

series cases, the polynomials BΨ(µ, ν; t) seem to always have nonnegative coefficients,

assuming µ and ν are both dominant.

Research Topic. Identify sufficient conditions on Ψ so that BΨ(µ, ν; t) has nonneg-

ative coefficients for all dominant µ, ν ∈ Λ.

Let k denote a complex semisimple Lie algebra with root system Φ and b a Borel

subalgebra of k whose root spaces are the ones indexed by our chosen positive roots.

False Conjecture. If
∑

λ∈Ψ eλ is the character of a b-submodule of a k-module of

finite dimension, then BΨ(µ, ν; t) should have > 0 coefficients for all dominant µ, ν ∈ Λ.

It is easy to see that the hypothesis of the conjecture holds for all of the discrete series

cases, and it is not hard to prove the conjecture for k = sl(2). It is also true when Ψ = Φ+.
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Indeed, it is known that BΦ+(µ, ν; t) (after suitable renormalization) is a Kazhdan-Lusztig

polynomial for the associated affine Weyl group.

However, DAV has pointed out that a counterexample is obtained by deleting the lowest

weight from the third symmetric power of the defining representation of sl(3).

Nevertheless, we believe that there should be a natural (large) class of b-modules such

that nonnegativity holds whenever
∑

λ∈Ψ eλ is the character of a member of the class.

In an email, DAV indicated that under the hypothesis of the False Conjecture, work of

Griffiths should imply the nonnegativity of the coefficients for all dominant µ and all ν

such that ν + 2ρ − 2η is dominant and regular, where η denotes half the sum of Ψ.

4. A Differential Recurrence

Continuing the setting of §3, notice that logarithmic differentiation of (2) yields

∂

∂t

∏

λ∈Ψ

1

1 − teλ
=

∑

λ∈Ψ

eλ

1 − teλ
·

∏

λ∈Ψ

1

1 − teλ
.

Using ′ as an abbreviation for ∂/∂t, it follows that

P ′

Ψ(γ; t) =
∑

λ∈Ψ

∑

i>1

ti−1PΨ(γ − iλ; t) (γ ∈ Λ). (4)

Also, the constant term is easy: PΨ(γ; 0) = δγ,0. Bearing in mind the linearity of this

relation, we may immediately deduce the following identity from (3).

Proposition. For all µ, ν ∈ Λ, we have

B′

Ψ(µ, ν; t) =
∑

λ∈Ψ

∑

i>1

ti−1BΨ(µ, ν + iλ; t).

Furthermore, BΨ(µ, ν; 0) =

{
sgn(w) if w(µ + ρ) = ν + ρ for some w ∈ W ,

0 otherwise.

Since the constant terms of BΨ(µ, ν; t) and PΨ(γ; t) are easy to compute, it is clearly

sufficient to determine their derivatives, and then integrate.

Remarks. (a) With no assumptions about Ψ, the above formula is not particularly

useful for computing BΨ(µ, ν; t). For example, if Ψ is not pointed, it may happen that

BΨ(µ, ν; t) is nonzero for all µ, ν ∈ Λ, and there is no entry point for starting a recurrence.

(b) We stole the basic idea for this (not yet a) recurrence from a 1995 paper of Broer [B],

who used it in the special case Ψ = Φ+. This is not even the first time we have stolen this

idea—we first used it in a 1998 paper on computational methods in representation theory.

(c) Even if ν ∈ Λ is dominant, terms of the form ν + iλ (i > 1, λ ∈ Ψ) may easily

take us outside of the dominant chamber. In these cases, even in the context of the False

Conjecture, there is no expectation that the coefficients of individual summands on the

right side of the proposition should be nonnegative.

6



Assumption 1. From now on, we assume that Ψ is pointed.

Note that this is valid in the discrete series cases.

It follows that we may partially order Λ by defining

µ > ν ⇔ µ − ν ∈ NΨ.

In fact, yet another equivalent characterization of Ψ being pointed is that the above defi-

nition of > is legitimate (no cycles).

It is clear that PΨ(γ; t) 6= 0 if and only if γ > 0, and hence (see (3))

BΨ(µ, ν; t) 6= 0 ⇒ w(µ + ρ) > (ν + ρ) for some w ∈ W . (5)

It follows that the Proposition may be rewritten as

B′

Ψ(µ, ν; t) =
∑

ν+iλ∈SΨ(µ,ν)

ti−1BΨ(µ, ν + iλ; t), (6)

where i > 1 and λ ∈ Ψ (as usual), and

SΨ(µ, ν) := {ν′ ∈ Λ : w(µ + ρ) > ν′ + ρ > ν + ρ for some w ∈ W}.

Since W is finite and > is locally finite, it follows that SΨ(µ, ν) is finite. Furthermore,

SΨ(µ, ν) shrinks as ν moves higher in the partial order, so (6) qualifies as a valid recurrence

for computing BΨ(µ, ν; t).

Problem. Given (dominant) µ, ν ∈ Λ,

(a) quickly test membership of ν ′ in SΨ(µ, ν).

(b) quickly generate SΨ(µ, ν).

Part (a) suffices for generating the summands of (6); for each λ ∈ Ψ, we terminate the

sum as soon as we reach an index i such that ν + iλ /∈ SΨ(µ, ν). Note that subsequent

iterations involving the computation of (say) BΨ(µ, ν′; t) may hypothetically require testing

membership of some ν′′ in SΨ(µ, ν′). However, this occurs only when ν ′′ > ν′, in which

case this is equivalent to membership of ν ′′ in SΨ(µ, ν).

Barring some miraculous strategy that provides for extensive pruning of the recurrence

tree, the Obvious Way to use (6) to compute BΨ(µ, ν; t) will involve saving the values

BΨ(µ, ν′; t) for all ν′ ∈ SΨ(µ, ν). In that case, a solution of (b) may be used as the basis

for a cheap solution of (a). In any case, the space requirements of the Obvious Way will

be proportional to |SΨ(µ, ν)|.

We have good ideas for solving the above Problem, but our current Maple code for

computing discrete series multiplicities2 instead takes an easier (and slower, less space

efficient) approach based on the following.

2See 〈www.math.lsa.umich.edu/~jrs/data/blattner〉.
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Assumption 2. We assume Ψ is positively pointed; i.e., Ψ ∪ Φ+ is pointed.

Note that in the discrete series cases, Ψ ∪ Φ+ is the set of positive G-roots (hence

pointed), so this is an assumption we don’t mind making.

Given this hypothesis, we can define a stronger partial ordering of Λ by setting

µ < ν ⇔ µ − ν ∈ N(Ψ ∪ Φ+).

Dominant weights are <-maximums within their W -orbits, so (5) implies

BΨ(µ, ν; t) 6= 0 ⇒ µ < ν,

assuming that µ is dominant. It follows that

SΨ(µ, ν) ⊆ {ν′ ∈ Λ : µ < ν′ > ν},

and thus a cruder version of (6) may be obtained by using this bound as a replacement

for SΨ(µ, ν). This is easier to implement, since we can generate the weights ν ′ > ν while

solving the recurrence, and truncate the sum whenever µ − ν ′ crosses a wall of the cone

generated by Ψ ∪ Φ+. (Of course, this only approximates the relation µ < ν ′.)

In general, it seems to be hard to accurately estimate the number of lattice points in

SΨ(µ, ν) or {ν′ : µ < ν′ > ν}. However, in the discrete series cases the cone N(Ψ ∪ Φ+) is

simplicial, being generated by the simple G-roots, so we have the easy bounds

|SΨ(µ, ν)| 6 |{ν′ : µ < ν′ > ν}| 6 |{ν′ : µ < ν′ < ν}| = (1 + a1) · · · (1 + an),

where a1, . . . , an are the coordinates of µ−ν in terms of the simple G-roots. Our intuition

is that these bounds are usually far from tight; however, if every simple G-root is non-

compact, then N(Ψ ∪Φ+) = NΨ, the partial orders < and > coincide, and these allegedly

non-tight bounds are equalities.

The following is useful for theoretical purposes.

Assumption 3. It would be nice to assume that Ψ is upward-saturated; i.e., for all

λ ∈ Ψ, α ∈ Φ+ and k ∈ Z such that 〈λ, α∨〉 6 −k 6 0, we have λ + kα ∈ Ψ.

The above definition is sloppy if Ψ is a multiset, but can be fixed by inserting multiplicity

obfuscations. Again, it is easily seen to be valid in the discrete series cases. If Φ and Ψ are

the even and (positive) odd roots of a Z/2Z-grading of some larger root system, then the

usual saturation property of root strings implies (in the context of the above assumption)

that λ + kα is necessarily a root, and hence it must be in Ψ, since λ is odd and α is even.

Similarly, this assumption also holds in the context of the False Conjecture.
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Claim. If Assumption 3 holds, then BΨ(µ, ν; t) 6= 0 ⇒ µ > ν for dominant µ, ν ∈ Λ.

Proof. If BΨ(µ, ν; t) 6= 0, then there is some w ∈ W such that w(µ + ρ) − (ν + ρ) =

λ1 + · · · + λl for suitable λi ∈ Ψ. If w = 1, we are done. Otherwise, given that µ is

dominant, w(µ + ρ) cannot be dominant, so there is some α ∈ Φ+ such that

〈λ1 + · · ·+ λl, α
∨〉 = 〈w(µ + ρ) − (ν + ρ), α∨〉 < 〈w(µ + ρ), α∨〉 < 0,

the first inequality being based on the fact that ν is dominant. Thus we may select integers

ki such that 〈λi, α
∨〉 6 −ki 6 0 and

〈w(µ + ρ), α∨〉 = −(k1 + · · ·+ kl),

in which case λi + kiα ∈ Ψ by upper saturation, and

sαw(µ + ρ) − (ν + ρ) = (λ1 + k1α) + · · ·+ (λl + klα).

The result now follows by induction with respect to the length of w. �

Remark. Even in the discrete series cases, it can sometimes happen that for a fixed

dominant µ ∈ Λ, there are infinitely many dominant ν ∈ Λ such that µ > ν. (However,

there can only be finitely many such ν that arise as the lowest K-type of some discrete se-

ries.) This is computationally annoying, since it would be nice to have a program that takes

some dominant µ as input, and computes B(µ, ν; t) for all dominant ν 6 µ. Unfortunately,

this is not always a finite problem.

For example, let λ 7→ λ̄ denote orthogonal projection onto Span Φ, and consider the

image Ψ̄ of Ψ. If Ψ̄ is not pointed, then there is a nontrivial relation
∑

aiλ̄i = 0 (ai ∈ N,

λi ∈ Ψ), in which case θ :=
∑

aiλi is a nonzero neutral element (hence anti-dominant),

and µ > µ − θ > µ − 2θ > · · · is an infinite dominant chain for any dominant µ ∈ Λ.

More specifically, in the Hermitian symmetric cases (see part (ii) of the Claim in §2),

recall that there is some G-minuscule ω ∈ Λ∨ such that

Φ = {α ∈ ΦG : 〈α, ω〉 = 0}, ±Ψ = {β ∈ ΦG : 〈β, ω〉 = ±1}.

If it happens that Ψ includes a full W -orbit (for example, ω is G-dominant and hence

Ψ = {β ∈ ΦG : 〈β, ω〉 = 1}), then Ψ̄ includes a W -orbit in Span Φ, and hence cannot be

pointed. In particular, the ugliness of the previous paragraph applies.

Conversely, if Ψ is upper saturated (Assumption 3), one can show that if (Ψ ∪ Φ+)−

is not pointed, then Ψ̄ is not pointed, so the only other possibility is that (Ψ ∪ Φ+)− is

pointed. In that case, we can find δ ∈ Span Φ∨ such that 〈λ, δ〉 > 0 for all λ ∈ Ψ ∪ Φ+.

However, if ν ∈ Λ is dominant, then so is ν̄, and hence ν̄ is in the Q+-span of Φ+ (this

is equivalent to the fact that the inverse of a Cartan matrix is nonnegative). Therefore,

〈ν, δ〉 = 〈ν̄, δ〉 > 0 for all dominant ν ∈ Λ. This proves that there can only finitely many

dominant ν 6 µ, since each such ν must have the form ν = µ−
∑

aiλi (ai ∈ N, λi ∈ Ψ) and

there are only finitely many integer points (a1, a2, . . . ) in the simplex
∑

ai〈λi, δ〉 6 〈µ, δ〉.

9



5. Alternatives and Other Remarks

The best feature of the algorithm discussed in the previous section is that the Weyl

group W and the partition function PΨ have been (mostly) finessed away. The worst

feature is that the space requirements could be huge, although we expect that this might

be a problem only for discrete series involving G of type E8, in which case the root system

Φ (assuming it is proper) is of type D8 or A1 ⊕ E7.

A third significant aspect is that the algorithm is tailor-made for computing BΨ(µ, ν; t)

for µ fixed and varying ν. Whether this is a bug or a feature will depend on the application.

For computing within a single discrete series, this is a bug, since this means fixing the

Harish-Chandra parameter of the series (hence fixing ν), and computing BΨ(µ, ν; 1) for

(say) all dominant µ up to some height h. This means throwing away the table of values

for BΨ(µ, ν′; t) each time we change µ.

An alternative approach that we have not (yet) implemented would be to use similar

techniques to compute the graded partition function PΨ(γ; t) via (4), and then compute

BΨ(µ, ν; t) directly from (3). The analogue of the Problem from §4 in this approach is:

Problem. Given γ, µ, ν ∈ Λ with µ, ν dominant,

(a) quickly test γ > 0,

(b) quickly visit all members of the W -orbit of µ + ρ that are > ν + ρ.

We expect that the two algorithms should have roughly equivalent time and space

requirements for the computation of a single instance of BΨ(µ, ν; t). On the other hand,

the big advantage of this new approach is that we get to re-use and add to the table of

values for PΨ(γ; t) during the computation of each BΨ(µ, ν; t).

Finally, let us mention that if the space requirements do turn out to be a major ob-

stacle, there is still the possibility of using sophisticated lattice-point counting methods

to compute each value of the partition function PΨ(γ; 1) separately from scratch. These

methods have minimal space requirements (good), but we cannot afford to save previous

values (bad), so they are likely to be much slower if we accumulate the cost of computing

all multiplicities up to some height.
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