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1. Setup

Let G be a connected reductive complex algebraic group, defined over R, and let G be
a subgroup of G such that G(R)◦ ⊂ G ⊂ G(R). Let θ be a Cartan involution of G,
and let K = Gθ be the corresponding maximal compact subgroup of G. Using lowercase
German letters for the corresponding Lie algebras, we have a decomposition

g = k⊕ p

where k (p) is the +1 (−1) eigenspace of θ on g.
Let Z(g) be the center of the universal enveloping algebra of g, and fix a character

χ of Z(g). Let HC be the category of Harish-Chandra modules for G (i.e. finitely
generated (g,K)–modules), and let HCχ be the full subcategory of HC of the modules
with generalized central character χ. We are interested in the distribution characters,
say, of the irreducible modules in HCχ.

These are of course a basis of the Grothendieck group of HCχ. Now there is another
basis D of this Grothendieck group, which we may consider known, made up by the
characters of standard representations (parabolically induced from discrete series on
cuspidal parabolic subgroups.) To each γ ∈ D, Langlands assigns a specific irreducible
subquotient γ; this establishes a bijection from D to the irreducibles in HCχ. If we
denote m(γ, δ) the multiplicity of γ in δ, we can write

δ =
∑
γ∈D

m(γ, δ)γ

in the Grothendieck group (or as distribution characters). In a suitable ordering of D,
the matrix m(γ, δ) is unipotent upper triangular; so we can invert it and write

δ =
∑
γ∈D

M(γ, δ)γ

The problem is to compute the integers M(γ, δ).

In the sequel, we will assume for simplicity that χ is the infinetisimal char-
acter of the trivial representation of G. Also we fix a Cartan subalgebra ha

of g, and a Borel sublagebra ba containing ha. Denote W = W (g, ha).
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2. Kazhdan-Lusztig polynomials

Let’s take the problem to a higher level (to understand where this comes from,
one needs the geometric interpretation of the category HCλ in terms of K–equivariant
constructible sheaves on the flag manifold of G, where K is the complexification of K.)
Let M be the free Z[q1/2, q−1/2]–module with basis D.

Let H = H(W ) be the Hecke algebra of W ; it is an algebra over the same ring
Z[q1/2, q−1/2]. The main ingredient in all that follows will be the definition of an H–
module structure on M, which we shall describe later; also we shall define a certain
graded partial order relation ≤ on D, with associated length function l. It will turn out
that there is a unique Z[q1/2, q−1/2]–antilinear involution D on M such that

(a) D(hm) = D(h)D(m) for all h ∈ H, m ∈M, where we denote also by D the usual
Kazhdan–Lusztig involution on H.

(b) D(tδ) = tδ +
∑

γ<δ r(γ, δ)tγ , r(γδ) ∈ Z[q1/2, q−1/2], where we have put tγ =
q−l(γ)/2γ for each γ ∈ D.

Then, from general principles, there is a unique basis cδ of M (the Kazhdan-Lusztig
basis), such that

(a) cδ = tδ +
∑
γ<δ

p(γ, δ)tγ p(γ, δ) ∈ q−1/2Z[q−1/2]

(b) D(cδ) = cδ

It will turn out that Pγ,δ = q(l(δ)−l(γ))/2p(γ, δ) belongs to Z[q], and that its evaluation
at q = 1 yields the M(γ, δ) up to sign :

M(γ, δ) = (−1)l(δ)−l(γ)Pγ,δ(1)

The computation of the basis cδ is a purely formal exercise once the involution D is
known. In practice, however, making use of the H–action we can get direct recursion
formulas which are probably quite a bit more efficient than the formal approach.

The Pγ,δ above are the Kazhdan-Lusztig polynomials for G.

3. Parametrization of the irreducible representations

If we want to do anything at all explicitly of course our first task should be to make
the set D explicit. Here is how this goes. The set D is the set of K–conjugacy classes of
triples (H,λ,Φ), where H is a θ–stable Cartan subgroup of G, λ ∈ h∗ is in the W (g, h)–
orbit corresponding to χ under the Harish-Chandra isomorphism Z(g) → S(h)W , and Φ
is a character of the compact part T of H, whose differential dΦ is known from λ. The
precise definition is this : let H = TA be the Cartan decomposition of H, and let L be
the centralizer of A in G. Then we have a decomposition L = MA, and t is a Cartan
subalgebra of m. Since λ is a regular weight, no coroot vanishes on λ. Let

ρI
λ =

1
2

∑
〈α∨,λ〉>0
α∈∆(m,t)

α ρI,c
λ =

1
2

∑
〈α∨,λ〉>0

α∈∆(k∩m,t)

α

2



be the half-sums of roots of t in m (resp. k ∩ m) which are positive w.r.t. λ. Then we
ask that

dΦ = λ|t + ρI
λ − 2ρI,c

λ

Since the component group of T is a commutative 2–group, there are as many such Φ
as there are connected components in T , and this number is a power of 2.

The K–conjugacy classes of θ–stable Cartan subgroups are in (1, 1) correspondence
with the G–conjugacy classes of Cartan subgroups in G; there are finitely many. If we
choose a set of representatives {Hi}i∈I of θ–stable Cartans, we see that for each i ∈ I,
(λ, Φ) has to be considered up to the action of the normalizer of Hi in K, divided by
the centralizer; this is also the Weyl group W (G, Hi).

Let Λi ⊂ h∗i be the W (g, hi)–orbit corresponding to our chosen infinitesimal character
χ. Then for each λ ∈ Λi there is a unique isomorphism iλ : ha → hi which takes
the positive chamber defined by ba to the positive Weyl chamber in hi defined by λ,
and which is induced by conjugation with an element of Ad(g). So Λi is in canonical
bijection with a subset of Hom(ha, hi), and we have a canonical right action of W on
Λi by composition on the right; this commutes with the left action of W (g, hi) and in
particular with the left action of W (G, Hi).

Let Di be the part of D corresponding to Hi. The upshot is that we have a decom-
position

D =
∐
i∈I

Di

where each Di is fibered over a the set of W (G, Hi)–orbits in Λi, and each fiber is
provided with a simply transitive action of the group (Hi/H◦

i )∧.

4. The cross action and the Cayley transforms

The Hecke algebra action on M lifts the coherent continuation action of the group
W on the Grothendieck group of HCλ. It is convenient to first introduce an action of W
on the set D, the so-called the cross-action. For this action, the group W acts in fact
separately on each Di.

The action is just a lift of the action of W on Λi, defined in the previous section. To
make it a left action, set w×λ = λw−1. We may also write this as w×λ = w−1

λ (λ), with
wλ = iλwi−1

λ ∈ W (g, hi). Clearly w × λ − λ is an integral linear combination of roots.
Also, ρI

λ − ρI
w×λ and ρI,c

λ − ρI,c
w×λ are integral linear combinations of roots in ∆(mi, ti).

Now it turns out that the differential is a bijection from the lattice in the space X(Hi)
of characters of Hi generated by the root characters, to the root lattice in hi. So there
is a unique element in the “root lattice” of X(Hi) corresponding to

(w × λ + ρI
w×λ − 2ρI,c

w×λ)− (λ + ρI
λ − 2ρI,c

λ )

This element we take as w×Φ−Φ. Now if γ = (Hi, λ,Φ), we set w×γ = (Hi, w×λ, w×Φ).
Of course it should be checked that this is indeed an action.

As a further preparation for the definition of the Hecke algebra action on M, we
need the so-called Cayley transforms. These will establish a link between representations
associated to various Cartans.
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Let α ∈ ∆(g, ha) be a simple root; and fix γ = (Hi, λ,Φ) ∈ D. Set αλ = iλ(α) ∈
∆(g, hi). Then the Cayley transform cα(γ) is defined whenever αλ is noncompact imag-
inary; the idea is that it will take γ to an element associated with a Cartan where α
is real. Let hi = ti ⊕ ai be the Cartan decomposition of hi. Let l be the subalgebra
of g generated by hi and the root vectors ±αλ. Then l is θ–stable, defined over R,
and has exactly two θ–stable conjugacy classes of Cartan subalgebras; hi represents the
maximally compact one, and the other, say conjugate to hj in g, the maximally split
one. In fact, hi∩hj is of codimension one in each of them if we take the representative of
hj to lie inside l. Then there are just two λ′ ∈ Λj such that λ′|Kerα = λ|Kerα; moreover
these two λ′ are conjugate under the reflection by α, which now lies in W (G, Hj). So
(Hj , λ

′) is well-defined up to K–conjugacy.
It remains to see what happens with the Φ–part of γ. What we want is to consider

all γ′ = (Hj , λ
′,Φ′) such that Φ = Φ′ on Ti ∩ Tj . There are two cases : (a) Tj ⊂ Ti, in

which case Φ′ is entirely determined, and we set cα(γ) = {γ′} (b) Tj 6⊂ Ti; then Ti ∩ Tj

is of index two in Tj , and it is easy to see that in this case Tj ' (Ti ∩Tj)×Z/2Z; hence
there are exactly two possibilities for Φ′, traditionally labelled γα

+ and γα
−, although this

notation is a bit unfortunate because really the two are indistinguishable at this point.
We say that α is type I in the first case, type II in the second case.

The inverse Cayley transform goes in the other direction, from the more split Cartan
to the more compact one. It turns out that there is a nice duality : when α is type one
for γ, then it is also for s× γ, we have s× γ 6= γ, cα(s× γ) = cα(γ), and those are the
only two elements δ ∈ D such that γα ∈ cα(δ); we will write cα(γα) = {γ, s× γ}. When
α is type II for γ, we have s×γ = γ, s×γα

+ = γα
−, s×γα

− = γα
+, and γ is the only element

δ ∈ D such that cα(δ)∩{γα
+, γα

−} is non-empty; we write cα(γα
+) = cα(γα

−) = γ. In short,
the domain of cα is the range of cα, and the image of γ under cα is its preimage under
cα; when cα(γ) has two elements, we also denote it as {γ+

α , γ−α }. An element γ ∈ D
can be in the domain of cα only if αλ is real; if it is in the domain, we say that α is
type I real if it comes from a type I noncompact imaginary root, so that cα(γ) has two
elements; and type II real if it comes from a type II noncompact imaginary root, so that
cα(γ) has one element.

5. The Hecke algebra action and the Bruhat order

Now we are ready for the definition of the Hecke operators. Given γ ∈ D and
a Coxeter generator s ∈ W , corresponding to a simple root α ∈ ∆(g, ha), we define
Tsγ ∈M as follows.

(a) if αλ is compact imaginary, then Tsγ = qγ;

(b) if αλ is noncompact type I imaginary, then Tsγ = s× γ + γα;

(c) if αλ is noncompact type II imaginary, then Tsγ = γ + γα
+ + γα

−;

(d) if αλ is complex, and θλα ∈ ∆+(g, ha), then Tsγ = s× γ;

(e) if αλ is complex, and θλα ∈ ∆−(g, ha), then Tsγ = q s× γ + (q − 1)γ;
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(f) if α is type I real for γ, then Tsγ = (q − 2)γ + (q − 1)(γ+
α + γ−α );

(g) if α is type II real for γ, then Tsγ = (q − 1)γ − s× γ + (q − 1)γα;

(h) if α is real and γ is not in the domain of cα, then Tsγ = −γ.

Also, we can now define the length function on D. For each γ = (Hi, λΦ) ∈ D,
transfer the involution θ on hi to ha by setting θλ = i−1

λ θiλ. Then θλ is an involution
of ha which preserves the root system; in particular it takes Weyl chambers to Weyl
chambers. So we may define

L(γ) =
1
2
#

{
α ∈ ∆+(g, ha) | θλ(α) ∈ ∆−(g, ha)

}
+

1
2

dim(−1 eigenspace of θλ)

This is a half-integer, but length-differences between comparable elements in the Bruhat
ordering (which we are about to define) are always integers.

Let s ∈ S be given, and γ, γ′ ∈ D. We write γ
s→ γ′ if L(γ) = L(γ′) + 1, and γ′

appears in Tsγ. It is equivalent to say that either (a) αλ is complex, θλ(α) 6∈ ∆+(g, ha),
and γ′ = s× γ, or (b) αλ is real, γ is in the domain of cα, and γ′ occurs in cα(γ). For a
given γ, the set of s for which there is an arrow γ

s→ γ′ is denoted by τ , and called the
abstract τ–invariant (or the descent set) of γ.

The Bruhat ordering on D is defined as follows. It is the weakest partial order ≤
with the property that for each γ, γ′ ∈ D and s ∈ S such that γ

s→ γ′ we have δ ≤ γ if
and only if either δ ≤ γ′, or there are δ, δ′ ∈ D such that δ′ ≤ γ′ and δ

s→ δ′. Note that
contrary to the group case, it is necessary to take into account all the s ∈ τ(γ), and not
justo one of them.

This completes the definition of all the data occurring in the Kazhdan-Lusztig algo-
rithm.

6. Recursion formulas

As we have mentioned in sect. 2, there are two possible approaches for the computa-
tion of the Kazhdan-Lusztig polynomials. Either one determines first the involution D,
and deduces the cγ purely formally, or one sets up direct recursion formulas for the cγ .
In practice, the second approach is more efficient; the difficulties in making the recursion
effective are the same anyway, whether one wants to determine D or the cγ .

Let us review how things work out for the Hecke algebra. It is better to replace
the basis Tw by tw = q−l(w)/2Tw. The involution on the Hecke algebra is an antilinear
algebra involution, given on tw by D(tw) = t−1

w−1 . It is easy to see that t−1
s = ts + α,

where α = q−1/2 − q1/2, and that the element cs of the Kazhdan-Lustig basis of H is
given by cs = ts + q−1/2.

Then to compute the cw by induction on the length of w, we assume that l(w) > 0,
we pick s ∈ S such that sw < w, and we look at cscsw ∈ H. This is certainly a selfdual
element, of the form

cscsw = tw +
∑
z<w

aztz
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It is easy to see that az ∈ Z[q−1/2]; they might, however, have constant terms. In fact,
it is easy to see that a constant term occurs in az if and only if z < ws, sz < z, and the
element p(z, ws) has a term in degree −1/2. If we denote the coefficient of degree −1/2
in p(x, y) by µ(x, y), we then see that

cscsw −
∑
z<sw
sz<z

µ(z, sw)cz

satisfies all the conditions required of cw. When we write the corresponding formulas
for the coefficients of cw, we get the familiar recursion formulas for Kazhdan-Lusztig
polynomials.

In the current situation, one could try something similar. Let us denote l the absolute
length function on D, i.e. the one where minimal elements have length 0, and for non-
minimal γ, the length of γ is one more than the length of the maximal elements < γ.
Define tγ as in section 2.

Clearly for γ minimal, we have cγ = tγ . Now if γ is not minimal, there is at
least one γ′, and an element s ∈ S, such that γ

s→ γ′. Then we may consider the
element cscγ′ ∈ M. Again, it is clearly selfdual. Let α ∈ ∆(g, ha) be the simple root
corresponding to s. Now there are two cases :

(a) αλ′ is complex, or noncompact type I imaginary. Then cscγ′ is of the form

tγ +
∑
δ<γ

aδtδ

and we have aδ ∈ Z[q−1/2] just as in the Hecke algebra case. Defining µ(δ, γ)
exactly in the same way, we may subtract an integral linear combination of cδ for
δ < γ, to obtain the required basis element cγ .

(b) αλ′ is noncompact type II imaginary. Then cscγ′ is of the form :

tγ + ts×γ +
∑
δ<γ

aδtδ

and the same kind of thing will lead to a formula for cγ + cs×γ .

It is not so easy to get around the difficulty in case (b). Denote ∼ the smallest
equivalence relation on D such that γ and s × γ are equivalent whenever αλ is type
II real. Clearly the formulas in (b) will allow to compute the cγ for all γ in a given
equivalence class, once one of them is known. So we are fine if at least one δ ∼ γ is such
that τ(δ) is not made un entirely of type II real roots. Notice also that if there is a loop
in the graph defined on the class by the edges γ, s × γ, s ∈ τ(γ), where are again fine.
So the case where we seem to be really stuck is when in addition this graph is a tree;
the simplest example of this arises in GL(2,R) already.
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Nevertheless it may be shown that there is always a way out, which will allow the
computation of p(δ, γ) using induction on l(γ) − l(δ) — I’ll not go into this as it is a
little bit technical and I don’t feel I have understood it well enough yet.

7. Computational assessment

It seems to me that the difficulties in the computation lie mostly within the realm
of structure theory. I think one should take everything back to our fixed Cartan algebra
ha. Then at least the set of λ corresponding to the central character χ will be fixed.

In fact, it is probably best to work within a fundamental Cartan subgroup H = TA.
It is known that conjugacy classes of Cartan subgroups are in (1, 1) correspondence with
W (K, T )–conjugacy classes of sets of strongly orthogonal noncompact imaginary roots.

To each class Hi will correspond to an involution θi on ha. Determining the compo-
nent group of Hi from θi is not hard. One of the delicate things will be to determine
the Weyl group W (G, Hi), but there are algorithms for that in Vogan’s papers. An-
other delicate aspect is how to describe the component group of G(R), and how to keep
track of the difference between G and G(R) in the computations. In fact, it might be
reasonable as a first approach to assume G = G(R).

The cross-action of W should be no problem, although it involves the determination
of the action of W on W/W (G, Hi), which is not so easy, as W (G, Hi) is not a reflection
subgroup in general. This will probably require some version of Todd-Coxeter coset
enumeration.

What looks a bit more delicate is the Cayley transform, but perhaps not that much
: after all, the new θj should basically correspond to changing α from a +1–eigenvector
into a −1–eigenvector, and the new +1–eigenspace is just Ker(α). (check this!)

Once all these are defined, we should be in good shape. The only thing left, then,
would be a reasonably efficient implementation of the recursion process; this may involve
some fairly complicated parts for those rare cases where one gets stuck in the situation
described in sect. 6, but still should not be all that different from the Hecke algebra
case.
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