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Peter talked about a procedure to attach to a complex even nilpotent orbit @V for
GV a set of "special unipotent representations"; these are unions of the form

Ut oy).
oY

Here [] (OY) is a set of representations attached to a real form Oy of OV; this orbit
Oy is a nilpotent KV orbit on (g¥/€¥)" for a “real form” KV of GV. These sets [] (OY)
are what Jeff calls “honest” Arthur packets.

Question: How to compute these subsets [] (OY)?

This is an aspect of the more general problem: How to compute the associated
variety of a Harish-Chandra module?
Back to the G side...

Atlas point of view: Choose an inner class of real forms
G'=GxT.

We have fixed G O B D T (I'-stable). A “strong real form” of G is an element x in the
nonidentity coset such that z?> € Z(G). This gives us K = Centg(x).

Start with a complex nilpotent orbit O for G. We want to describe all real forms
(for all K’s in the inner class). One way to do this:

Jacobson-Morozov:
v SL(Q) — G

*This material is based upon work supported by the National Science Foundation under Grant No.
0554278.
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We can line things up so that

U(diagonal elements) C T and ¥ (; I) C B.

If GY is the centralizer of im(¥) in G, let

Gy = GY U {z € G"\G : Ad(z) acts on im(¥) by inverse transpose} ;

Ad(2) (B(y)) = ¥ ((_01 (1)> Y <—01 é) 1) |

Lemma 1 The second component is non-empty <= Cent(imW¥) meets the second com-
ponent of GY' <= the Dynkin diagram of O is stable by the diagram automorphism
corresponding to GT.

ie.,

Theorem 2 (Kostant-Rallis) There is a 1-1 correspondence between real forms of O
(i.e., G-conjugacy classes of pairs (x, O1), where x is a strong real form, and O a nilpo-
tent K-orbit on (g/t,)") and G¥ orbits on {x in the second component of Gy, : 2* € Z(G)}.

Corollary 3 (Reformulation) There is a bijection

{pairs (z,01)} /G-conj. — {y € Cent(W) in G°\G : 2 € ¥ ( _01 _01> .Z(G)} .

The twist was chosen to get a nicer condition. The Cartan involution is now given
by - T 0 1
Yy Y 1 0)
0.1 Example: G = Sp(2n,C)

Consider the split inner class G'' = G x I', and an orbit given by a partition into even
parts
O+ 2n=2m)" + ...+ 2m,)", my >my > ... >m, > 0.

This corresponds to
U SL(2) — Sp(2n)



given by
P (a; copies of the m;-dimensional representation of SL(2)).
i=1

We have
G\p = O(al,C) X O(GQ,C) X ..o X O(QT,C)

(this is explained in Collingwood/McGovern). The component group is
A(O) =(Z/27)", since O(a;, C)/ident.comp. = Z/27.
We have
v 0) — _respen
0 -1~ pren
and
(G xT)" = Cent(¥) in G* (without the twist).
The corollary says that real forms of O are in bijection with
{O(a1) x ... x O(a,) conj. classes of elts z € [O(a;) x ... x O(a,)] - (1,0) s.t. 2> = £1}
(We may ignore the factor (1,0).)
Case 1: 2?2 = 1; the eigenvalues are £1. Choose py, ..., pr, such that 0 < p; < a;

(giving the number of —1 eigenvalues in O(a;)). These r-tuples correspond to real forms
of O in Sp(2n,R). This is because these give

B 0 1 2 -1 0\ _
a:—\IJ<_1 0)z,sox—\ll(0 _1>— 1,

and the split real form Sp(2n, R) corresponds to 2% = —1.

Case 2: 22 = —1.

Lemma 4 —1 is a square in O(a) <= a is even; in this case the square Toot is one
conjugacy class.

If all a; are even then we get one more real form

nn n
v — 5p(3:3) 26L (3H):
this is characterized by:
the nilpotent orbit over R meets G L (g, H); this corresponds to the partition
n ax ay
5 = m15 + ...+ mTE.

Note: In the equal rank case, the real form of O is given by this element z € G¥

-1 0
. . 2 _
satisfying z* = W ( 0 _1>.



0.2 Recall Peter/Dan’s Example F}
Self-dual orbit O:

GY ~ S, (the identity component is trivial);

U <—01 _01> € Z(Fy) (since O is even).

Note: Z(Fy) = {1}.
Kostant/Rallis says: real forms correspond to elements of order 1 or 2 in S4 (modulo
conjugacy). These are

1~~~ Sy
(12) ~ SQ X SQ
(12)(34) ~ D,

0.3 Computing associated varieties

Fix a special nilpotent orbit O for G. Because of the things Birne/Steve/Alfred ex-
plained, we can identify cells with

AV (annihilators for cell) = O.
List the real forms of O: Oy,...,0,

0.3.1 Aside:
If O is even (corresponding to some parabolic ), use Peter’s list:
e list the minimal kgb elements “in each W (L) orbit”
e list the ones corresponding to a f-stable ()
e list the corresponding block elements Xi,..., X,
This is easy to do.
Peter’s procedure then says to check whether G- (uNp) =G - u.
This is hard to compute!

Instead: Check whether cell(X;) is attached to O. This is equivalent, but now com-

putable! We get “yes” for a list X, , ..., X; . Conclusion:
av(cell(X;))) = O;

Real forms of O are in 1 — 1 correspondence with nice cells for X, .
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0.3.2 Back to the general case (O not necessarily even)

Suppose X is irreducible, in a cell corresponding to @. The module X has an associated
cycle

ac(X) =>_ mi(X)O;

where the m;(X) are nonnegative integers, and the O; are “real forms” of O. By
definition,
av(X) ={0; : m;(X) #0}.

Computing honest Arthur packets is equivalent to computing av(X) when O is even nilpotent.

We would like to know ac(X) ...What are the difficulties?

First problem: m;(X) is not constant on translation families.

Given X, we have Ann(X) (a two-sided ideal in U(g)), which has rank rk(Ann(X))
(the Goldierank of the annihilator).

Joseph: As X varies in a translation family, rk(Ann(X)) is a homogeneous poly-
nomial on the translation parameters. The degree of this polynomial is the number of
positive roots minus 1 dim(0).

Proposition 5 The numbers m;(X) are given by
m;(X) = ¢;(X)rk(Ann(X)),
for some rational numbers c;(X) which are constant on translation families.

This suggests to try to compute the numbers ¢;(X).
A natural question: Is ¢;(X) constant on cells?
Guess: Probably not. We need to modify the question to make the answer “yes”.

atlas gives character formulas (functions on CSG’s) which allow to compute some-
thing like ¢;(X) (not quite). It is a horrible computation. We may look at how to clear
this up...

Another problem: No one knows how to compute 7k(Ann(X)) - just how to
compute the polynomials up to a constant.



0.4 Question/Desideratum

(Think on the dual side G; for simplicity of notation we make the statements for G.)
Choose G D K and a block B at regular integral infinitesimal character.

virtual characters characters vanishing

2 ~
(distributions on G(R)) | = near 1 ZByan

ZB(virtual rep’'ns) ~~

Recall that

ZByan, = span{I(y) — I(7) : I(7),1(v') stand. chars supp. on same K-orbit on G/B}.

There is a W-action on ZB, and the sublattice ZB,,,, is W-invariant. Consider
VATV

which carries a W-action and is dual to stable characters on the other side.

Question: Relate this to the cell filtration of ZB (as W-representations).

Beilinson-Bernstein:
7B = Grothendieck group of some category of K-equivt. D-modules on G/B. We
have a the characteristic cycle map

Z-span of conormal

ch:ZB — bundles of K-orbits
Proposition 6 Ker ch = ZB,,.

Remark 7 W acts naturally on the right-hand side. Peter: Outside of type A, we do
NOT get the KL W -graphs.

What does this have to do with honest Arthur packets?
Fix a K-orbit on G/B. This gives KB, ~ K/K N B, and the conormal bundle
K Xgng, (g/t+b,)" CT* (G/B).
We have the moment map (Grothendieck-Springer resolution)
p:T(G/B) — N
(here N'= the nilpotent elements in g*) such that

H conormal NN (g/€)" (the nilpotent cone in p).

to K-orbits



Proposition 8

p (K Xknp, (8/8+06.)7) = K- (g/t+ by)"
= the closure of a single K-orbit O, C NN (g/€)".

Moreover, we get all K-orbit closures (special and non-special) this way.

See P. Trapa: Leading term cycles of Harish-Chandra modules and partial orders on
components of the Springer fiber, Compositio Mathematica 2007.

This says: To compute av(X), it would be enough to compute

o ch(X) — which is REALLY HARD, and

e i — which is just hard.

This should tell you how many elements are in cells related to a given nilpotent,
modulo ZB,,,.



