
BRANCHING EXAMPLE: Sp(4, R)

DAVID A. VOGAN, JR.

1. Introduction

The purpose of these notes is to list the restrictions-to-K of continued
standard representations of the split real group Sp(4, R) as explained in
“Branching to a maximal compact subgroup,” published in Harmonic Anal-
ysis, Group Representations, Automorphic Forms and Invariant Theory: In
Honour of Roger E. Howe, edited by Jian-Shu Li, Eng-Chye Tan, Nolan
Wallach and Chen-Bo Zhu, Singapore University Press and World Scientific
Publishing. Details of the parametrization are meant to follow the imple-
mentation in the atlas software sketched by Fokko du Cloux in 2006, partly
implemented by Alfred Noel in 2007, and now (2008) being pursued by Marc
van Leeuwen.

In particular this means that we will fix forever a complex reductive group
G with Borel and Cartan subgroups B ⊃ H, defining a based root datum
(notably including a character lattice X∗ always identified with Z` and a
set of positive roots ∆+ ⊂ X∗). We fix also a “pinning” of G, which in the
presence of the preceding choices means a collection of simple root vectors in
the Lie algebra. We have in mind an inner class of real forms, and therefore
an extended group GΓ = G n Z/2Z. The non-trivial element of the second
factor is called δ0; its action on G preserves B and H, and permutes the
simple root vectors in the pinning. Write

θ0 = Ad(δ0) ∈ Aut(H)

for the involutive automorphism defined by δ0. This is an involutive auto-
morphism of the based root datum, and defines the inner class of real forms.
We will also fix an element

δ1 = t1δ0 (t1 ∈ H, δ2
1 ∈ Z(G)).

Notice that δ1 also acts on H by θ0. The atlas software does not actually
compute a choice of t1, but it could do so. What it does compute and
remember is the grading of the imaginary roots induced by δ1; this is called
the “base grading.”

All the other strong involutions considered by the software are of the form

δ = σδ1,
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with σ in the Tits group (for H in G, with respect to the specified pin-
ning). The Tits group is a subgroup of NG(H). Group-theoretically it is an
extension of the Weyl group by

H(2) = elts of order 2 in H ' X∗/2X∗.

A little more explicitly,

1 → H(2) → Tits group → W (G, H) → 1.

The structure theory and the pinning provide a natural section of the last
projection (not a group homomorphism) so that set-theoretically there is a
natural identification

Tits group = H(2)×W.

Recall that a twisted involution is an element w ∈ W (G, H) with the
property that the automorphism θ = w ◦ θ0 of H has order 2. A strong
involution δ is stored by the software as a Tits group element σ = (t, w);
the actual strong involution is

δ = (t, w)δ1.

In particular this means that w is a twisted involution in W ; the action of
δ on H is by the (Cartan) involution

θ = w ◦ θ0.

There is a structural subtlety here that I don’t understand: is (1, w)δ1 a
strong involution? (In fact we want it to have the same square in Z(G)
as δ1.) If that isn’t true, then more or less there needs to be a preferred
torus part tw ∈ H(2) so that (tw, w)δ1 is a strong involution (with the same
square as δ1). Then the set of all strong involutions related to δ (up to H
conjugacy) becomes

(xtw, w)δ1, x ∈ Xθ
∗/(1 + θ)X∗.

That is, the parameter x runs over some fiber group; it is recorded (in
the class standardRepK) by a small bit vector; that is, by a bit vector of
dimension at most the rank of G. (The product xtw would fit in such a class
as well, but it’s pretty clear that is not what is wanted; all the elements x
of the fiber group give strong involutions (although not necessarily attached
to the same real form). This would not be true any more if we were storing
a full element of H(2).)

In the example below I’m going to assume that (1, w)δ1 is always a strong
involution, so that tw = 1 and we can record our strong involution just by
the fiber group element

x ∈ Xθ
∗/(1 + θ)X∗.

Here is the root datum:

X∗ = Z2 = X∗, ∆+ = {(0, 2), (1,−1), (1, 1), (2, 0)}.
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The first two positive roots listed are simple; call them

α1 = (0, 2), α2 = (1,−1).

The group W has order 8, acting by permutations and sign changes on Z2.
The Tits group is generated by the torus part

H(2) = X∗/2X∗ = (Z/2Z)× (Z/2Z)

and representatives for the simple reflections

σ1 = σα1 , σ2 = σα2

satisfying
σ2

1 = (0, 1) ∈ H(2), σ2
2 = (1, 1) ∈ H(2).

Since I am writing about so many small integers, I found it confusing to
write elements of Z/2Z as 0 and 1. I will therefore try to write them as e
and o (for “even” and “odd”) instead. The relations above become

σ2
1 = (eo) ∈ H(2), σ2

2 = (oo) ∈ H(2).

The basic strong involution δ1 satisfies
• δ1 acts trivially on X∗ (all roots are imaginary)
• δ2

1 = (oo) ∈ H(2) (the element “minus identity” in Z(G))
• α1 and α2 are both noncompact.

We work always with H̃, the “ρ double cover of H”: the double cover
defined by the square root of the algebraic character 2ρ, the sum of the
positive roots. In our example 2ρ = (4, 2), which has the square root (2, 1)
already as a character of H. It follows that the ρ double cover is trivial in
this example, and I will ignore it.

On each Cartan subgroup, we work with algebraic characters λ of H̃θ.
These are parametrized by

(X∗ + ρ)/(1− θ)X∗;

in our case, by X∗/(1 − θ)X∗. For each θ (representing a conjugacy class
of distinguished involutions), each x in the corresponding fiber group, and
each λ ∈ (X∗ + ρ)/(1− θ)X∗, we therefore get a “continued standard repre-
sentation restricted to K” π(x, λ). This is the restriction to K of a virtual
Harish-Chandra module for the real form corresponding to x (that is, to the
strong involution (xtw, w)δ1. It is therefore an (infinite) sum of irreducible
representations of K, occurring with (finite) integer multiplicities that we
wish to compute.

In order for this virtual representation to be an honest representation
(with non-negative multiplicities of representations of K), it is enough for
the parameter to be “standard.” This means that λ is weakly dominant
with respect to the positive imaginary roots (for θ):

〈λ, γ∨〉 ≥ 0, (γ ∈ ∆+, θ(γ) = γ).

This condition should be tested in the software by “IsStandard.”
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Some of the standard representations are zero: assuming that the param-
eter is standard, the condition to vanish is precisely

〈λ, γ〉 = 0, some simple imaginary γ which is compact.

Of course this condition depends on the grading of the imaginary roots, and
therefore on x.

The Hecht-Schmid character identities sometimes allow one to write a
standardRepK as a sum of one or two standardRepK’s on a (more compact)
Cayley transformed Cartan subgroup. We are interested ultimately only
in standard representations admitting no such expression. These are called
“final”; the condition for a standard representation to be final is

λ(mβ) = −1, all simple real roots β.

Here mβ ∈ H(2) is the image of the coroot for β. Of course the condition
can be written

〈λ, β∨〉 is odd, all simple real roots β.

This is the condition that the software should test with “IsFinal.” (The
corresponding “finalization” function should start with a simple real root
β so that 〈λ, β∨〉 is even, and rewrite the standard representation using a
Cayley transform through the real root β.)

2. Compact Cartan subgroup

The involution is θ0 = Ad(δ1), which is trivial on H. There are four
(conjugacy classes of) strong involution

(xε1,ε2 , 1)δ1, εi ∈ Z/2Z.

Here are the corresponding gradings of the (simple) imaginary roots:

α1 α2

xeeδ1 n n
xeoδ1 n c
xoeδ1 n c
xooδ1 n n

Here are the four two-parameter families of standardRepK’s (the limits of
discrete series).

π0(xee, (l1, l2)) l1 ≥ l2 ≥ 0
π0(xeo, (l1, l2)) l1 ≥ l2 ≥ 0 zero if l1 = l2
π0(xoe, (l1, l2)) l1 ≥ l2 ≥ 0 zero if l1 = l2
π0(xoo, (l1, l2)) l1 ≥ l2 ≥ 0

Notice that everything is final, since there are no real roots.
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3. Long real root Cartan subgroup

We next consider the Cartan subgroup corresponding to the strong invo-
lution σ1δ1: Cayley transform through the long simple root. The Cartan
involution acts by

θ1(l1, l2) = (l1,−l2).

Therefore the imaginary roots are±(2, 0), and the real roots are±(0, 2). The
fiber group turns out to have order 2, represented by a parity on the first
coordinate; these elements are written xε1 , with ε1 ∈ Z/2Z. The imaginary
roots are always noncompact. The lattice (1− θ1)X∗ is {(0, 2l) | l ∈ Z}, so
the parameters λ are taken from X∗/(1− θ1)X∗ = Z× Z/2Z. Here are the
families of standardRepK’s.

π1(x0, (l1, ε2)) l1 ≥ 0, ε2 ∈ Z/2Z final if and only if ε2 = o
π1(x1, (l1, ε2)) l1 ≥ 0, ε2 ∈ Z/2Z final if and only if ε2 = o

4. Short real root Cartan subgroup

We next consider the Cartan subgroup corresponding to the strong invo-
lution σ2δ1: Cayley transform through the short simple root. The Cartan
involution acts by

θ2(l1, l2) = (l2, l1).

Therefore the imaginary roots are ±(1, 1), and the real roots are ±(1,−1).
The fiber group turns out to be trivial; the identity element will be written
x··. The imaginary roots are always noncompact. The lattice (1− θ2)X∗ is
{(l,−l) | l ∈ Z}, so the parameters λ are taken from X∗/(1 − θ2)X∗ ' Z;
the isomorphism from left to right adds up the two coordinates. Here are
the families of standardRepK’s.

π2(x··, l) l ≥ 0 final if and only if l is odd.

5. Split Cartan subgroup

We next consider the Cartan subgroup obtained by two successive Cayley
transforms, for example σ(2,0)σ(0,2)δ1. The Cartan involution acts by

θ2(l1, l2) = −(l1, l2).

The fiber group is trivial; we write the identity element as x. The lattice
(1− θ3)X∗ is 2X∗, so the parameters λ are taken from X∗/2X∗ = (Z/2Z)×
(Z/2Z). The four standardRepK’s are π3(x, (ε1, ε2)), with εi ∈ Z/2Z. The
condition to be final for the long simple root α1 is that ε2 = o; for the short
simple root α2 it is ε1 − ε2 = o. There is therefore just one final parameter:

π3(x, eo).
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6. Hecht-Schmid character identities

In this section we record the Hecht-Schmid character identities. We will
use these (first) to relate non-standard continued standard representations to
(more) standard representations on (weakly) more split Cartan subgroups;
and (second) to relate non-final standard representations to (more) final
standard representations on (strictly) more compact Cartan subgroups.

The first identitities relate the compact Cartan with trivial involution θ0

to the long real root Cartan with involution θ1 (reflection in the long simple
root):

π0(xee, (l1, l2)) + π0(xeo, (l1,−l2)) = π1(xe, (l1, (l2 mod 2Z))).

π0(xoe, (l1, l2)) + π0(xoo, (l1,−l2)) = π1(xo, (l1, (l2 mod 2Z))).
(6.1)

The next identity relates the compact Cartan with the short real root
Cartan and θ2 by Cayley transform in the short simple root:

(6.2) π0(xee, (l1, l2)) + π0(xoo, (l2, l1)) = π2(x··, l1 + l2).

The last identity is only defined when the short simple root is noncompact;
that is why the fiber elements xeo and xoe are not present on the left. Those
elements contribute to the “easy” Hecht-Schmid identities

π0(xeo, (l1, l2)) + π0(xeo, (l2, l1)) = 0

π0(xoe, (l1, l2)) + π0(xoe, (l2, l1)) = 0.
(6.3)

Next is the Cayley transform through 2e1 relating θ1 and θ3:

(6.4) π1(xe, (l1, ε2)) + π1(xo, (−l1, ε2)) = π3(x, (ε2, l1 mod 2Z)).

Last is the Cayley transform through e1 + e2 relating θ2 and θ3. This is
the only “type II” Cayley transform for G, having two terms on the right:
(6.5)
π2(x··, l) + π2(x··,−l) = π3(x, (e, (l mod 2Z)) + π3(x, (o, o + (l mod 2Z))).

7. Explicit lowest K-types

A fundamental part of the algorithm is the fact that each (standard final
normal limit) representation has a unique lowest K-type, and that passage
to lowest K-types makes a bijection between these standard representations
and K̂. In order to implement the algorithm it is enough to take this bijec-
tion as parametrizing K̂, but users will probably want to relate it to more
traditional parametrizations, such as by highest weight. The problem of
translation is briefly discussed in the paper (sections 11 and 13). Here I will
just record the answer for this example.

The (complex) group K is GL(2, C), the complexification of the unitary
group U(2). Its based root datum lives on Z2, with one positive root e1−e2.
Irreducible representations of K are parametrized by dominant weights:

K̂ = {µ(m1,m2) | m1 ≥ m2}.
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(It would be more “natural” to realize the root datum of K inside that of
G, as the compact roots attached to (xee, 1)δ1; again this would live on Z2,
but the positive root would be e1 + e2.)

Here are the lowest K-types of the final standard representations.

standard reps conditions lowest K-types explicit list
π3(x, eo) µ(0, 0)
π2(x··, l) l ≥ 0 odd µ( l+1

2 , −l−1
2 ) µ(1,−1), µ(2,−2)···

π1(xe, (l1, o)) l1 ≥ 0 µ(l1 + 1, 1) µ(1,1), µ(2,1), µ(3,1)···
π1(xo, (l1, o)) l1 ≥ 0 µ(−1,−(l1 + 1)) µ(−1,−1), µ(−1,−2)···
π0(xee, (l1, l2)) l1 ≥ l2 ≥ 0 µ(l1 + 1,−l2)
π0(xeo, (l1, l2)) l1 > l2 ≥ 0 µ(l1 + 1, l2 + 2)
π0(xoe, (l1, l2)) l1 > l2 ≥ 0 µ(−l2 − 2,−l1 − 1)
π0(xoo, (l1, l2)) l1 ≥ l2 ≥ 0 µ(l2,−l1 − 1)

8. Formulas for irreducibles of K in terms of (continued)
standards

In this section we record the (finite) formulas for irreducible representa-
tions of K as alternating sums of (continued) standard representations of G.
Whenever πm(x, λ) is a final standard limit representation, write µm(x, λ)
for its lowest K-type. (Often it’s possible to attach a meaning to this symbol
even if (x, λ) is not standard: some finite-dimensional virtual representation
of K, not necessarily irreducible or non-zero. More about this later, per-
haps.)

We begin with the compact Cartan, the trivial involution θ0, and the
strong involution (xee, 1)δ1. The noncompact positive imaginary roots are

{(0, 2), (1,−1), (2, 0)}.

The formula we want is a sum over subsets of this three-element set:

µ0(xee, (l1, l2)) = π0(xee, (l1, l2))− π0(xee, (l1, l2 + 2))− π0(xee, (l1 + 2, l2))

−π0(xee, (l1 + 1, l2 − 1)) + π0(xee, (l1 + 2, l2 + 2))

+π0(xee, (l1 + 1, l2 + 1)) + π0(xee, (l1 + 3, l2 − 1))

−π0(xee, (l1 + 3, l2 + 1)).

(8.1)

There are three terms on the right that may fail to be standard (even if
l1 ≥ l2 ≥ 0): they are the boldfaced terms. The Hecht-Schmid character
identities can be used to express them in terms of standard representations.
For example,

π0(xee, (l1, l2 + 2)) = −π0(xoo, (l2 + 2, l1)) + π2(x··, (l1 + l2 + 2));

if l1 ≥ l2 ≥ 0 but l2 + 2 > l1, then the two terms on the right are standard.
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The formula for xoo is identical, since the grading of the imaginary roots
defined by it is the same. For xoe, the noncompact roots are

{(0, 2), (1, 1), (2, 0)}.
The formula we want is therefore

µ0(xoe, (l1, l2)) = π0(xoe, (l1, l2))− π0(xoe, (l1, l2 + 2))− π0(xoe, (l1 + 2, l2))

−π0(xoe, (l1 + 1, l2 + 1)) + π0(xoe, (l1 + 2, l2 + 2))

+π0(xoe, (l1 + 3, l2 + 1)) + π0(xoe, (l1 + 1, l2 + 3))

−π0(xoe, (l1 + 3, l2 + 3)).

(8.2)

The formula for xeo is identical.
At the other extreme is the formula for µ3(x, oe) (the trivial representation

of K) attached to the split Cartan subgroup, and involving a sum over kgb
for G (which is the Levi subgroup generated by real roots). Always the
parameter λ is represented by something in the W orbit of ρ. Here is the
formula.

µ3(x, eo) = π3(x, eo)− π1(xe, (1, e))− π1(xo, (1, e))

+π1(xe, (2, o)) + π1(xo, (2, o))− π2(x··, 1) + π2(x··, 3)

−π0(xee, (2, 1))− π0(xoe, (2, 1))− π0(xeo, (2, 1))− π0(xoo, (2, 1)).

(8.3)

All the terms are standard, but the two boldfaced terms fail to be final.

9. Cheating to get formulas for irreducibles of K

Suppose G is any reductive algebraic group, Gd is the (semisimple) derived
group, and G̃d is the universal cover of Gd. Any real form of G defines
a real form of G̃d. A representation of G(R) is unitary if and only if it
is Hermitian, and some constituent of its restriction/pullback to G̃d(R) is
unitary. (I may not have made that statement correctly, but something
equally powerful is true.) So to study unitary representations, there is no
loss of generality in restricting to simply connected semisimple G. (This
is not true for the problem of branching to K; I’m only saying that for
applications of branching to unitary representations, you can take G simply
connected.)

If G is semisimple and simply connected, then K is connected, so irre-
ducible representations of K are parametrized by certain characters of the
(connected) torus T = Hθ0 . Here is how to write these irreducible represen-
tations in terms of continued standard representations.

Theorem 9.1. Suppose that (x, 1)δ1 is a strong involution representing the
Cartan involution θ0, and that K = Gθ0 is connected. (This is automatic
if for example G is semisimple and simply connected.) Write T = Hθ0, a
maximal torus in K.
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• The character lattice X∗(T ) may be identified with the (torsion-free)
quotient X∗(H)/X∗(H)−θ0. (Because T is connected, X∗(H)−θ0 =
(1 − θ0)X∗(H).) The cocharacter lattice X∗(T ) may be identified
with X∗(H)θ0.

• The positive roots of T in K are the restrictions to T of the positive
compact imaginary roots β of H in G, together with the restrictions
to T of one root from each pair {α, θ0(α)} of complex positive roots.
The corresponding coroots are β∨ and α∨ + θ0(α∨)

• Irreducible representations of K correspond to K-dominant weights
µ ∈ X∗(T ). These are the restrictions of weights µ̃ ∈ X∗(H) satis-
fying

〈µ̃, β∨〉 ≥ 0 (β compact positive imaginary),

〈µ̃, α∨ + θ0(α∨)〉 ≥ 0, (α complex positive).
• The set of positive weights of T on the −1 eigenspace of θ0 is the set

of restrictions to T of

S = {pos noncpt imag roots} ∪ {root from each cplx pos pr {α, θ0(α)}}.
• Suppose µ is a dominant weight for K. Write 2ρc for the sum of the

positive roots of T in K. Finally define

λ(µ) = µ + 2ρc − ρ ∈ (X∗ + ρ)/(1− θ0)X∗.

Then the continued standard representation π0(x, λ) has “lowest K-
type” of highest weight µ, in the precise sense that

irr of hwt µ =
∑
A⊂S

(−1)|A|π0(x, λ(µ) + 2ρ(A)).

The weight λ(µ) may be very far from dominant for the imaginary roots,
so the terms on the right in the last formula are very far from standard.
Nevertheless they can be rewritten in terms of standard representations
using the Hecht-Schmid character identities, and this may be easier than
implementing the Zuckerman character identity (involving the sum over kgb
for some Levi L generated by real roots).

About general G: the K-dominant characters of T = Hθ0 parametrize
irreducible representations of the group K] (described in the paper) which
is between K0 and K. The sum of continued standard representations in the
theorem still makes sense. I think that the left side of the formula becomes

IndK
K](irreducible of K]).

10. Cheating formulas for Sp(4, R)

In this section we will make explicit the formulas from the last theorem
in our example, and see what is required to put standard representations
on the right. If we use the (trivial) fiber group element xee, then the only
compact imaginary root is e1 + e2, so

K̂ = {µee(m1,m2) | m1 + m2 ≥ 0}.



10 DAVID A. VOGAN, JR.

The subscript on µ reflects the dependence of the parametrization on the
choice of strong involution. Using the three other fiber group elements
would lead to three other parametrizations, related to each other and to
the parametrization of section 7 by

µoe(m1,m2) = µee(m1,−m2) = µ(m1,m2),

µeo(m1,m2) = µee(−m2,m1) = µ(−m2,−m1),

µoo(m1,m2) = µee(m2,m1) = µ(m2,−m1).
(10.1)

Here is a formula for any irreducible of K in terms of continued standard
representations:

µee(m1,m2) = π0(xee, (m1 − 1,m2))− π0(xee, (m1 − 1,m2 + 2))

−π0(xee, (m1 + 1,m2))− π0(xee, (m1,m2 − 1))

+π0(xee, (m1 + 1,m2 + 2)) + π0(xee, (m1,m2 + 1))

+π0(xee, (m1 + 2,m2 − 1))− π0(xee, (m1 + 2,m2 + 1)).

(10.2)

This formula is obtained from equation (8.1) by substituting for (l1, l2)
the parameter

(m1,m2) + 2ρc − ρ = (m1,m2) + (1, 1)− (2, 1) = (m1 − 1,m2)

from Theorem 9.1. The requirement now is only that m1 + m2 ≥ 0, so any
of the terms on the right can fail to be standard. Here is the formula for
the trivial representation of K:

µee(0, 0) = π0(xee, (−1, 0))− π0(xee, (−1, 2))

−π0(xee, (1, 0))− π0(xee, (0,−1))

+π0(xee, (1, 2)) + π0(xee, (0, 1))

+π0(xee, (2,−1))− π0(xee, (2, 1)).

(10.3)

Only the third and last terms are standard. The next to last is standardized
by the Hecht-Schmid identity

(10.4) π0(xee, (2,−1)) = −π0(xeo, (2, 1)) + π1(xe, (2, o)).

For the two preceding terms of (10.3), we need the Hecht-Schmid identity
(6.2):

π0(xee, (0, 1)) = −π0(xoo, (1, 0)) + π2(x··, 1),(10.5)

π0(xee, (1, 2)) = −π0(xoo, (2, 1)) + π2(x··, 3).(10.6)

Applying the Hecht-Schmid identity (6.1) to the fourth term of (10.3)
gives

π0(xee, (0,−1)) = −π0(xeo, (0, 1)) + π1(xe, (0, o)).
The second term on the right is standard, but to the first we need to apply
the “easy” Hecht-Schmid identity (6.3)

π0(xeo, (0, 1)) = −π0(xeo, (1, 0)).
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This gives finally a formula in terms of standard representations

(10.7) π0(xee, (0,−1)) = +π0(xeo, (1, 0)) + π1(xe, (0, o)).

Applying the short simple root identity to the first and second terms of
(10.3) gives

π0(xee, (−1, 0)) = −π0(xoo, (0,−1)) + π2(x··,−1),

π0(xee, (−1, 2)) = −π0(xoo, (2,−1)) + π2(x··, 1).
(10.8)

Almost all the terms on the right need further work. The Hecht-Schmid
identity (6.1) says

π0(xoo, (0,−1)) = −π0(xoe, (0, 1)) + π1(xo, (0, o)),

(10.9) π0(xoo, (2,−1)) = −π0(xoe, (2, 1)) + π1(xo, (2, o)).

Now everything on the right is standard except the first term on the right
in the first equation. For that we need the easy identity (6.3)

π0(xoe, (0, 1)) = −π0(xoe, (1, 0)),

leading to the formula

(10.10) π0(xoo, (0,−1)) = π0(xoe, (1, 0)) + π1(xo, (0, o)).

To fix the nonstandard term π2, we use the Hecht-Schmid identity (6.5):

π2(x··,−1) = −π2(x··, 1) + π3(x, eo) + π3(x, oe)

The two terms on the right are standard, but the second is not final. It can
be made final using the Hecht-Schmid identity (6.4)

π3(x, oe) = π1(xe, (0, o)) + π1(xo, (0, o)).

Putting these together gives

(10.11) π2(x··,−1) = −π2(x··, 1) + π1(xe, (0, o)) + π1(xo, (0, o)) + π3(x, oe).

Now we can plug formulas (10.9), (10.10), and (10.11) into (10.8), obtaining
(after canceling a couple of terms)

π0(xee, (−1, 0)) = −π0(xoe, (1, 0)) + π1(xe, (0, o))− π2(x··, 1) + π3(x, oe)

π0(xee, (−1, 2)) = π0(xoe, (2, 1))− π1(xo, (2, o)) + π2(x··, 1).

(10.12)
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Having rewritten all the terms in (10.3), we can now plug (10.4), (10.5),
(10.7), and (10.12) into (10.3), obtaining

µee(0, 0) = −π0(xoe, (1, 0)) + π1(xe, (0, o))− π2(x··, 1) + π3(x, oe)

−π0(xoe, (2, 1)) + π1(xo, (2, o))− π2(x··, 1)

−π0(xee, (1, 0))

−π0(xeo, (1, 0))− π1(xe, (0, o))

−π0(xoo, (2, 1)) + π2(x··, 3)

−π0(xoo, (1, 0)) + π2(x··, 1)

−π0(xeo, (2, 1)) + π1(xe, (2, o))

−π0(xee, (2, 1)).

Here we have made one line for each term on the right in (10.3). Making
two cancellations and rearranging the terms by Cartan, we are left with

µee(0, 0) = π3(x, oe)− π2(x··, 1) + π2(x··, 3) + π1(xe, (2, o)) + π1(xo, (2, o))

−π0(xee, (1, 0))− π0(xoe, (1, 0))− π0(xeo, (1, 0))− π0(xoo, (1, 0))

−π0(xee, (2, 1))− π0(xoe, (2, 1))− π0(xeo, (2, 1))− π0(xoo, (2, 1)).

(10.13)

This is essentially Zuckerman’s formula (8.3), after the two non-final terms
π1 there are written as sums of limits of discrete series π0.


