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1 Introduction

The Atlas of Lie Groups and Representations is a project in the representa-
tion theory of real reductive groups. The main goal of the atlas computer
software, currently under development, is to compute the unitary dual of any
real reductive Lie group G. As a step in this direction it currently computes
the admissible representations of G.

The underlying mathematics of the software is described in Algorithms
for Representation Theory of Real Reductive Groups [1]. See Sections 1 and
2 of [1] for an overview of the algorithm. This paper is a complement, and
consists of a guide to the software illustrated by numerous examples.

The software is currently in an early stage of development (version 0.3 as
of April 2008). It is available from the Atlas web site www.liegroups.org.

The help command in the atlas software is a another useful source of in-
formation. Also see the software section of www.liegroups.org, including
examples and Tables of Structure and Representation Theory. We
plan to publish a manual for the software at the time version 1.0 is released.

Marc van Leeuwen is currently working on the interpreter, which provides
simpler and more powerful input and output methods for the software. This
is included in the current software distribution; see the makefile and the
source/interpreter directory. We do not discuss this here since it is in a
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state of flux. The input methods described in this paper will be available
indefinitely. The interpreter will provide additional output routines, but
there should only be minor changes to the output described here.

The atlas software was written by Fokko du Cloux. Alfred Noel has also
contributed to it. In addition to writing the interpreter, Marc van Leeuwen
has made substantial changes to the software, and since version 0.3 has been
in charge of software development.

This paper grew out of lectures at the conference in honor of Dragan
Milicic and Bill Casselman at Snowbird, July 2006. Bill had a catalytic
effect on the Atlas project, which got started at a conference he organized in
Montreal in 2002.

1.1 How to read this paper

You should start by downloading the atlas software from the Atlas web
site www.liegroups.org and installing it. Currently it runs under unix,
including Solaris and linux, Mac OSX, and Windows. You should also have
the paper Algorithms for Representation Theory of Real Reductive Groups
handy.

A good approach to learning the software and the Algorithms paper is go
through this paper, and do the examples using the software. Each section
begins with a brief summary of the relevant material from Algorithms. We
being very simply, and build up to more complicated examples by the end.
We assume some familiarity with the theory of real reductive groups, for
example see Chapters 1-8 of [2].

2 Defining basic data

The starting point of the algorithm is a complex reductive algebraic group
G together with an inner class of real forms of G. The latter is determined
by an involution γ ∈ Out(G), the group of outer automorphisms of G. We
refer to (G, γ) as basic data [1, Section 4].

We define a semidirect product GΓ = G ⋊ Γ, where Γ = Gal(C/R) =
{1, σ}. We let σ act on G by a “distinguished” involution τ ∈ Aut(G)
mapping to γ ∈ Out(G), via the map Aut(G) → Out(G). (A distinguished
involution is one which fixes a splitting datum (B, H, {Xα}); it is the “most
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compact” involution in this inner class.) Write GΓ = 〈G, δ〉 where δ = 1×σ.
See [1, Section 5].

A real form of G in this inner class is a conjugacy class of involutions
θ ∈ Aut(G) mapping to γ ∈ Out(G). If θ is an involution of G let σ be an
antiholomorphic involution of G commuting with θ. Then G(R) = Gσ is a
real group in the usual sense, and G(R)θ is a maximal compact subgroup of
G(R). See [1, Section 5].

The reader should keep in mind the basic example of γ = 1, so GΓ =
G×Γ. This is known as the compact or equal rank inner class; it contains the
compact real form of G, and all groups in this inner class contain a compact
Cartan subgroup.

The first step in using the atlas software is to define basic data (G, γ).
This proceeds in three steps:

(1) Define a complex reductive Lie algebra g, and let G∗ be the product
of a complex torus and a simply connected, semisimple complex group
with Lie algebra g;

(2) Choose a finite subgroup A of Z(G∗), and set G = G∗/A;

(3) Choose an inner class of real forms of G.

All three steps are accomplished by the type command. We break this
up into three steps.

2.1 Defining g and G∗

A complex reductive Lie algebra is given by a list of types A n,B n,...,

E 8, T n, where T n is the abelian Lie algebra Cn. In response to the type

command, the software asks for the Lie type:. The user then enters such a
list, with terms separated by a period. The order is irrelevant here, although
it plays a role in steps (2) and (3). The entry T 2 is the same as T 1.T 1.

This defines the complex reductive Lie algebra g, and group G∗. Here are
some simple examples.

Example 2.1 We start with SL(2, C):

main: type

Lie type: A1
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Here is SL(2, C)× SL(2, C):

main: type

Lie type: A1.A1

Here is SL(2, C)×C×:

main: type

Lie type: A1.T1

and finally SL(2, C)2 × Spin(5, C)× Sp(4, C)× Sp(6, C)×C×4:

main: type

Lie type: A1.T1.B2.C2.T1.C3.T2.A1

2.2 Defining a complex group G

The second step is to pick a finite subgroup of the center Z∗ of G∗.
The center of each simple factor of G is a finite cyclic group except in

type D2n in which case it is Z2 × Z2. The finite cyclic group of order n is
denoted Z/n, and is viewed as the group

1

n
Z/Z = {

0

n
,
1

n
, . . . ,

n− 1

n
}.

The elements of finite order in C× are isomorphic to Q/Z, and an element of
this group is given by an element of Q.

Once the user has given the Lie type, the software prompts the user for
a finite subgroup of Z∗, generated by a set of elements of Z∗. Each such
element is given by a list of fractions, one for each term in the Lie type (two
for D2n), separated by commas. Each element is given on a single line; the
empty line terminates this aspect of the input. For example simply typing
return in response to this prompt takes A = 1 and G = G∗. Typing sc has
the same effect. Typing ad gives the adjoint group (actually a torus times
the adjoint group of the derived group of G∗).

Example 2.2 Here is the group SL(2, C):

main: type

Lie type: A1

elements of finite order in the center of the simply connected group:
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Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es):

Entering a carriage return alone also gives SL(2, C).

Example 2.3 To define PSL(2, C) take A to be the center of SL(2, C),
which is generated by the element of order 2:

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2

enter inner class(es):

Entering ad instead of 1/2 has the same effect.

Example 2.4 Here is SO(10, C), which is the quotient of Spin(10, C) by
the element of Z∗ of order 2:

main: type

Lie type: D5

elements of finite order in the center of the simply connected group:

Z/4

enter kernel generators, one per line

(ad for adjoint, ? to abort):

2/4

Often a reductive group is a quotient of G∗ by a diagonal subgroup.

Example 2.5 Here is GL(2, C) ≃ SL(2, C)×C∗/{(−I,−1)}:
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main: type

Lie type: A1.T1

elements of finite order in the center of the simply connected group:

Z/2.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

The center of Spin(4n, C) is not cyclic, and therefore requires two terms.

Example 2.6 Here is SO(8, C) ≃ Spin(8, C)/A where A is the diagonal
subgroup of Z∗ = Z2 × Z2:

main: type

Lie type: D4

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

Example 2.7 We can also take the quotient of Spin(8, C) by a non-diagonal
Z2 subgroup:

main: type

Lie type: D8

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

This is not isomorphic to SO(8, C).

This defines the group G = G∗/A and completes step 2.
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2.3 Defining an inner class of real forms

We next define an inner class of real forms. Recall this is determined by an
involution in Out(G).

The trivial element of Out(G) corresponds to the inner class of real forms
containing a compact Cartan subgroup. This is the compact inner class, and
is denoted c, and also e for equal rank. In particular if G has a torus factor
its real points are S1 × · · · × S1.

Another natural inner class is that of the split real form This class is
denoted s; for a torus the real points are R× × · · · × R×. In many cases the
classes c and s are the same, for example if Out(G) = 1.

Now suppose G = G1 × G1. The outer automorphism switching the two
factors corresponds to the inner class of the real form G1(C), viewed as a real
group. This class is denoted C; in the case of a torus this gives C××· · ·×C×

(viewed as a real group).
If G is simple, then except in type D2n the classes c,s exhaust every inner

class. In type D2n the classes c and s coincide, and there is another inner
class denoted u, for unequal rank. See example 2.14. This class is allowed in
any type for which the Dynkin diagram has a non-trivial automorphism.

Now suppose G = G∗. An inner class of real forms of G is specified by
choosing c,e,s,u for each simple or T 1 factor, or C for each pair of identical
(simple or T 1) factors, or factor of type T 2n. In general an inner class of
real forms of G is given by an allowed inner class of real forms of G∗: the
involutions in this inner class must factor to G.

To summarize, to specify an inner class of real forms of G, give a list of
choices for each simple or torus factor, or pair of identical entries in the case
of C:

• c: compact

• e: equal rank (same as c)

• s: split

• u: unequal rank

• C: complex (for an identical pair of entries).
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The order of the choices corresponds to the order in which the simple and
torus factors of G∗ were specified. If G 6= G∗ some choices may not be
allowed.

Here are some examples. Getting slightly ahead of ourself, the showrealforms
command lists the real forms in the given inner class. In the terminology of
atlas these are weak real forms; see Sections 3 and 4. Also note that the first
three inputs to the type command can be entered on a single line, provided
the second input is ad or sc.

Example 2.8 The group SL(2, C) has two real forms SL(2, R) and SU(2),
both of which are in the same inner class. Thus c=e=s in this case.

empty: showrealforms

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

This example also illustrates a general principle of the software: entering a
command such as showrealforms which requires other input is allowed; the
system will prompt the user for the missing information.

Example 2.9 The smallest simple group with two inner classes is type A2.
Here is the split inner class, with only one real form:

empty: showrealforms

Lie type: A2 sc s

(weak) real forms are:

0: sl(3,R)

Here is the compact inner class, with two real forms:

empty: showrealforms

Lie type: A2 sc c

(weak) real forms are:

0: su(3)

1: su(2,1)

Example 2.10 Here is SL(2, C) viewed as a real group:
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empty: showrealforms

Lie type: A2.A2 sc C

(weak) real forms are:

0: sl(3,C)

Example 2.11 If the group is a product specify the inner class as a list. For
example here is the inner class of SU(3)× SL(3, R):

empty: showrealforms

Lie type: A2.A2 sc cs

(weak) real forms are:

0: su(3).sl(3,R)

1: su(2,1).sl(3,R)

(The sc means simply connected, and cs means compact×split).

Example 2.12 Here is the inner class of GL(2, R):

empty: showrealforms

Lie type: A1.T1

elements of finite order in the center of the simply connected group:

Z/2.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): ss

(weak) real forms are:

0: su(2).gl(1,R)

1: sl(2,R).gl(1,R)

Group 1 is GL(2, R) (group 0 is the multiplicative group of the quaternions).

Example 2.13 On the other hand here is the inner class of U(1, 1):

main: showrealforms

Lie type: A1.T1

elements of finite order in the center of the simply connected group:

Z/2.Q/Z

enter kernel generators, one per line
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(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): cc

(weak) real forms are:

0: su(2).u(1)

1: sl(2,R).u(1)

Groups 0 and 1 are U(2) and U(1, 1), respectively.

Example 2.14 The group SO(12, C) has the following real forms, in two
inner classes. One inner class consists of the groups SO(12, 0), S(10, 2),
SO(8, 4), SO(6, 6) and SO∗(12). This is both the compact inner class (it
contains SO(12, 0)) and split (it contains SO(6, 6)), and is therefore the
class c=e=s. There is another inner class consisting of SO(11, 1), SO(9, 3)
and SO(7, 5). This is the inner class u of unequal rank. This is an example
where u is needed.

Here is the compact and split inner class:

empty: showrealforms

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): e

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

For an explanation of the two version of so*(12) see Example 3.3.
The same input with u in place of e gives the unequal rank inner class:
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enter inner class(es): u

(weak) real forms are:

0: so(11,1)

1: so(9,3)

2: so(7,5)

Example 2.15 Here is an example in which the inner class for G∗ is not
defined for G:

main: type

Lie type: A1.A1

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): C

sorry, that inner class is not compatible with the weight lattice

What this means is: the automorphism which switches the two factors in
G∗ = SL(2, C) × SL(2, C) does not preserve A, and so does not factor to
G = PSL(2, C)× SL(2, C).

Example 2.16 A more subtle example is the non-diagonal quotient of Spin(8, C)
of Example 2.7:

main: type

Lie type: D4

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): u

sorry, that inner class is not compatible with the weight lattice
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3 Defining a real group

We suppose the user has completed the type command, which defines G and
an inner class of real forms. We next specify a particular real form of G in
the inner class. We discuss strong real forms in the next section.

The command showrealforms, discussed in the preceding section, gives
a list of the real forms of g in the given inner class; the command realform

gives the same list, and the user can choose the real form from the list.
The real forms of the classical Lie algebras are given in the usual notation.

Some examples are sl(4,R), su(3,1), su(4), sl(4,H), sp(3,2), so(3,2),
and so*(10). For a torus the real form is specified by gl(1,R), u(1) or
gl(1,C).

For each exceptional group the real form is specified by specifying the type
of the maximal compact subgroup, except that the split real form is denoted
R. For example the real forms of E7 are e7, e7(e6.u(1)), e7(so(12).su(2))
and e7(R); otherwise known as compact, Hermitian, quaternionic and split,
respectively.

Example 3.1 Here is the group SL(2, R):

empty: realform

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Example 3.2 Here is PSL(2, R) ≃ PGL(2, R) ≃ SO(2, 1).

main: type

Lie type: A1 ad s

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Note that the real forms listed don’t depend on the fact that the complex
group is PSL(2, C) here instead of SL(2, C); the real form is determined by
a real form of g.
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Example 3.3 The equal rank forms of SO(12, C) were given in Example
2.14:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

The two copies of so*(12) illustrate a technical point. We say two real forms
are equivalent if they are conjugate by G. See [1, Section 5]. In the literature
equivalence is defined to be conjugacy by Aut(G). If G is simple the two
notions agree in most cases.

There are two real forms (in our sense) of SO(12, C) corresponding to the
real group SO∗(12). In other words there are two isomorphic subgroups of
SO(12, C), which are not conjugate to each other. They are related by an
outer automorphism of SO(12, C). (In the Kac classification of real forms
each is labelled by a 2 on one of the branches of the fork in the Dynkin di-
agram). These two groups are denoted SO∗(12)[1, 0] and SO∗(12)[0, 1]. The
fact that there are two copies of SO∗(12) manifests itself in the representation
theory of SO(p, q). See Example 8.8.

In fact we can even see this distinction in terms of the structure theory of
the groups themselves. If G = Spin(12, C), SO(12, C) or PSO(12, C) the two
real groups locally isomorphic to SO∗(12) are isomorphic, and interchanged
by an outer automorphism of G. However in the non-diagonal quotient of
Spin(12, C) this fails, as is illustrated in the next example.

Example 3.4 Here are two versions of SO∗(12) in the non-diagonal quotient
of Spin(12, C):

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2
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enter inner class(es): c

main: realform

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

enter your choice: 2

real: components

component group is (Z/2)^1

real: realform

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

enter your choice: 3

real: components

group is connected

These two groups are not isomorphic. This illustrates the command
components, which gives the component group of the real group (an ele-
mentary abelian two-group).

In D4 the situation is even more interesting. Let G = Spin(8, C) and
consider the three real forms, Spin(6, 2) and the two versions of Spin∗(8). In
fact these are isomorphic; Spin(6, 2) ≃ Spin∗(8), and these three groups are
interchanged by the outer automorphism group of Spin(8, C), which is S3.
Similar statements hold in PSO(8, C). We leave it to the reader to analyze
real forms of SO(8, C) and the non-diagonal quotient of Spin(8, C), in which
this symmetry is broken in different ways. See Examples 2.6 and 2.7.

In general in SO(4n, C) (type D2n) there are two non-conjugate copies of
SO∗(4n). However in SO(4n+2, C) (type D2n+1) all copies of SO∗(4n+2) are
in fact conjugate by SO(2n + 2, C). This is illustrated by the next example.
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Example 3.5 Here are the equal rank real forms of SO(10, C):

empty: showrealforms

Lie type: D5

elements of finite order in the center of the simply connected group:

Z/4

enter kernel generators, one per line

(ad for adjoint, ? to abort):

2/4

enter inner class(es): c

(weak) real forms are:

0: so(10)

1: so(8,2)

2: so*(10)

3: so(6,4)

Note that there is only one real form SO∗(10).

4 The Spaces X and X r

Fix basic data (G, γ) as in Section 2.
By a strong involution for (G, γ) we mean an element ξ ∈ GΓ\G satisfying

ξ2 ∈ Z (Z = Z(G) is the center of G). Let I be the set of strong involutions.
A strong real form is an equivalence class of strong involutions (equivalence
is by conjugacy by G). If ξ is a strong involution then θξ = int(ξ) is an
involution of G in the inner class of γ, and this gives a surjective map from
strong real forms to real forms in this inner class. If G is adjoint this map is
bijective, but not otherwise. Let Kξ = Gθξ ; this is the complexified maximal
compact subgroup of the corresponding real group G(R). See Section 2.

Recall (Section 2) δ = 1 × σ is the distinguished element of GΓ. We fix
once and for all a Cartan subgroup H of G stable by int(δ). Define

(4.1)
X̃ = {g ∈ NormGΓ\G(H) | g2 ∈ Z}

X = X̃ /H

(the quotient is by the conjugation action of H). See [1, Section 9]. The space
X is our main combinatorial object, known as the (one sided) parameter
space.
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Mathematically the space X is a natural object. From the point of view
of computations it has the disadvantage that (if G is not semisimple) it may
be infinite, and the fibers of the map from strong real forms to real forms
may be infinite. The software works exclusively with the reduced parameter
space X r which we now describe. See [1, Section 13].

Let θ = int(δ) and choose a set Zr ⊂ Z of representatives of

(4.2) {z ∈ Z | θ(z) = z}/{zθ(z) | z ∈ Z}.

Define reduced versions of I, X̃ and X :

(4.3)
Ir = {g ∈ GΓ\G | g2 ∈ Zr}

X̃ r = {g ∈ NormGΓ\G(H) | g2 ∈ Zr},X r = X̃ r/H.

Henceforth we define a strong real form in this revised sense: Ir is the space
of strong real forms, with equivalence given by conjugacy by G as before.
The map from strong real forms to real forms is still surjective. The fibers
of this map are finite, and X r is a finite set.

Choose a set {ξi | 1 ≤ i ≤ n} ⊂ X̃ of representatives of strong real forms
(in the sense of the reduced parameter space). That is

(4.4) {ξ1, . . . , ξn}
1−1
←→ Ir/G.

For each i let xi be the image of ξi in X r, θi = int(ξi) and Ki = Gθi . See [1,
5.15].

Let W Γ = NormGΓ(H)/H and

IW = {τ ∈W Γ\W | τ 2 = 1}.

We continue to write δ for the image of δ ∈ GΓ in W Γ, and θ for the involution
int(δ) of W . Then W Γ = 〈W, δ〉. By a twisted involution in W we mean an
element w ∈ W satisfying wθ(w) = 1, and we say two such elements w, w′

are twisted-conjugate if w′ = ywθ(y−1) for some y ∈W . The map w → wδ is
a bijection between the space of twisted involutions and IW , taking twisted-
conjugacy to ordinary conjugacy by W . We refer to IW as the space of
twisted involutions, and pass back and forth between the two notions. See
[1, 9.14].

There is a natural surjective map p : X r → IW [1, Lemma 9.12]. The
fiber over an element τ ∈ IW is denoted X r

τ .
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The group NormG(H) acts by conjugation on X̃ r, and this factors to an
action of W on X r. Because of its relationship to the cross action of [3,
Definition 8.3.1] we call this the cross action of W , and denote it w × x.
This action is equivariant for p and the conjugation action of W on IW :
p(w × x) = wp(x)w−1.

5 Cartan subgroups

Fix basic data (G, γ). Let θqs be a quasisplit involution in this inner class
and let Kqs = Gθqs. Thus Kqs is the complexified maximal compact sub-
group of the quasisplit form Gqs(R) of G. The conjugacy classes of Cartan
subgroups of Gqs(R), equivalently the Kqs-conjugacy classes of θqs-stable Car-
tan subgroups of G, are in natural bijection with IW /W , conjugacy classes
of twisted involutions in W . The conjugacy classes of Cartan subgroups for
any real form of G are a subset of those for the quasisplit real form. See [1,
Propositions 12.9 and 12.12].

The cartan command gives a list of Cartan subgroups for a given inner
form. For each Cartan subgroup it gives the following information. See the
help file for the cartan command for more details.

First it gives the structure of the Cartan subgroup as a real torus: H(R)
is isomorphic to (R×)a × (S1)b × (C×)c for integers (a, b, c); these are the
split, compact and complex entries in the output of cartan.

Each conjugacy class of twisted involutions contains a unique canonical
representative τ = wδ. The next line of output is a reduced expression for
w.

The first entry on the next line is the number of twisted involutions in
this conjugacy class. For an explanation of fiber rank see and #X r see
Section 9.

Associated to any Cartan subgroup are the sets of real and imaginary
roots (see Section 7), each of which is a root system. These are given by
imaginary root system and real root system, respectively. The complex
factor line in the output has to do with the Weyl group; see Section 6.

The lines beginning real form... give information about X r
τ . For now

we observe only that for a given Cartan subgroup only the real forms which
contain this Cartan subgroup are displayed. See Section 9.1.

Example 5.1 Let G = SL(2, C), which has a unique inner class of real
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forms. Then IW = W × Γ; we can drop Γ and write IW /W = {1, s}. There
are two conjugacy classes of Cartan subgroups of SL(2, R), compact and
split.

empty: cartan

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 1; complex: 0

canonical twisted involution:

twisted involution orbit size: 1; fiber rank: 1; #X_r: 2

imaginary root system: A1

real root system is empty

complex factor is empty

real form #1: [0] (1)

real form #0: [1] (1)

Cartan #1:

split: 1; compact: 0; complex: 0

canonical twisted involution: 1

twisted involution orbit size: 1; fiber rank: 0; #X_r: 1

imaginary root system is empty

real root system: A1

complex factor is empty

real form #1: [0] (1)

Cartan #0 is always the fundamental (most compact) Cartan subgroup,
in this case S1. The corresponding twisted involution is the identity, and its
orbit is itself. Both real forms contain this Cartan subgroup.

Cartan #1 is the split Cartan subgroup R×, and this occurs only in real
form #1, i.e. SL(2, R).

Example 5.2 Here is the complex group SL(2, C):
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empty: cartan

Lie type: A1.A1 sc C

there is a unique real form: sl(2,C)

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 0; complex: 1

canonical twisted involution:

twisted involution orbit size: 2; fiber rank: 0; #X_r: 2

imaginary root system is empty

real root system is empty

complex factor: A1

real form #0: [0] (1)

There is one real form, and one conjugacy class of Cartan subgroups, iso-
morphic to C×. For a complex group the twisted involutions are in bijection
with the Weyl group, so in this case there are 2.

Example 5.3 Here are the Cartan subgroups of Sp(4, R). See [1, Example
14.19].

empty: cartan

Lie type: C2 sc s

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 2; complex: 0

canonical twisted involution:

twisted involution orbit size: 1; fiber rank: 2; #X_r: 4

imaginary root system: B2

real root system is empty

complex factor is empty

real form #2: [0,1] (2)
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real form #1: [2] (1)

real form #0: [3] (1)

Cartan #1:

split: 0; compact: 0; complex: 1

canonical twisted involution: 2,1,2

twisted involution orbit size: 2; fiber rank: 0; #X_r: 2

imaginary root system: A1

real root system: A1

complex factor is empty

real form #2: [0] (1)

real form #1: [1] (1)

Cartan #2:

split: 1; compact: 1; complex: 0

canonical twisted involution: 1,2,1

twisted involution orbit size: 2; fiber rank: 1; #X_r: 4

imaginary root system: A1

real root system: A1

complex factor is empty

real form #2: [0] (1)

Cartan #3:

split: 2; compact: 0; complex: 0

canonical twisted involution: 1,2,1,2

twisted involution orbit size: 1; fiber rank: 0; #X_r: 1

imaginary root system is empty

real root system: B2

complex factor is empty

real form #2: [0] (1)

There are four conjugacy classes of Cartan subgroups, isomorphic to S1×
S1, C×, S1 × R× and R× × R×. All four are contained in the split group
Sp(4, R); two of them are contained in Sp(1, 1), and only the compact Cartan
subgroup occurs in Sp(2, 0).

Example 5.4 Here is the real form of E6 with K of type F4:

empty: cartan
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Lie type: E6 sc s

(weak) real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 0

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 2; complex: 2

canonical twisted involution:

twisted involution orbit size: 45; fiber rank: 2; #X_r: 180

imaginary root system: D4

real root system is empty

complex factor: A2

real form #1: [0,1,2] (3)

real form #0: [3] (1)

This group has a unique conjugacy class of Cartan subgroups. See Example
8.14.

We discuss Cartan subgroups of the Classical groups.

Example 5.5 Type An−1. It is most convenient to take G = GL(n, C).
First let γ = 1, so W Γ = Sn × Γ. It is well known that the conjugacy

classes of involutions in Sn are parametrized by ordered pairs (a, b) ∈ N2

satisfying a + 2b = n: in cycle notation take w = (1, 2)(3, 4) . . . (2b− 1, 2b).
The quasisplit group in this inner class is the unitary group U(m, m) or

U(m + 1, m). The Cartan subgroup corresponding to (a, b) is isomorphic
to (S1)a × (C×)b; the identity element corresponds to the compact Cartan
subgroup.

Now suppose γ is given by the unique non-trivial automorphism of the
Dynkin diagram (n ≥ 3). The split real form is GL(n, R). It turns out
that the twisted involutions in W are also parametrized by pairs (a, b) with
a + 2b = n; in this case the corresponding Cartan subgroup is isomorphic to
(R×)a × (C×)b. (This is an aspect of Vogan duality; see Section 8 and [1,
1.35 and Corollary 10.9].)

Example 5.6 Types Bn and Cn.
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In this case case γ is necessarily trivial, and the Cartan subgroups of
SO(n+1, n) or Sp(2n, R) are parametrized by conjugacy classes of involutions
in W ≃ Sn ⋉ Zn

2 . These are are parametrized by (a, b, c) with a + b +2c = n,
and the corresponding Cartan subgroup is isomorphic to (S1)a × (R×)b ×
(C×)c.

Is is interesting to consider the Hasse diagram of these Cartan subgroups.
This is the graph, with one node for each Cartan subgroup, and an edge for
each Cayley transform (cf. Section 7) relating two Cartan subgroups. We
make a node black if the corresponding Cartan subgroup is the most split
Cartan subgroup of a real form of G. The split rank is given in the first
column.
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Cartan diagram for SO(7, 6) Cartan diagram for Sp(12, R)

Example 5.7 Type Dn.
In this case (for n ≥ 2) there are two choices of γ, corresponding to

the quasisplit groups SO(n, n) and SO(n + 1, n − 1) (γ = 1 corresponds to
SO(n, n) if n is even, and SO(n + 1, n − 1) if n is odd). It is most conve-
nient to group these two real forms together. Then the Cartan subgroups are
parametrized by (a, b, c) with a + b + 2c = n, except that (0, 0, c) is counted
twice. (These two Cartan subgroups are conjugate by the outer automor-
phism of SO(n, n) coming from O(n, n).) Again the corresponding Cartan
subgroup is isomorphic to (S1)a × (R×)b × (C×)c. If a is even this Cartan
subgroup occurs in SO(n, n) and in SO(n + 1, n− 1) otherwise.
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Example 5.8 Note that the Cartan subgroups in G(R) only depend on W Γ,
and are therefore independent of isogeny (this is not true in the p-adic case).
While the list of Cartan subgroups is independent of isogeny, the description
as a real torus is not, and the nature of the torus can change unexpectedly
under isogenies.

For example suppose G is of type D2 ≃ A1 × A1 and γ 6= 1. There
a unique conjugacy class of Cartan subgroups in this case. In the simply
connected case G(R) ≃ SL(2, C) and the Cartan subgroup is isomorphic to
C× (cf. Example 5.2).

For SO(3, 1) we get S1 × R×:

split: 1; compact: 1; complex: 0

and for PSO(3, 1) ≃ PSL(2, C) we get C× again:

split: 0; compact: 0; complex: 1

Note that G(R) is a connected complex group if G(C) = Spin(4, C) or
PSO(4, C), but not SO(4, C). In fact we have:
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G G(R) H(R)
Spin(4, C) ≃ SL(2, C)× SL(2, C) Spin(3, 1) ≃ SL(2, C) C×

SO(4, C) SO(3, 1) R× × S1

PSO(4, C) ≃ PSL(2, C)× PSL(2, C) PSO(3, 1) ≃ PSL(2, C) C×

Remark 5.9 If G(R) is a real form of GL(n, C), SL(n, C), Sp(2n, C) or
SO(n, C) then two Cartan subgroups are isomorphic if and only if they are
conjugate by G(R), or by an automorphism of G(R) in the case of (C×)n ⊂
SO(2n, 2n) (cf. Example 5.7). It is perhaps surprising that this fails badly
for isogenous groups, as the following example shows.

Example 5.10 Let G(R) = Spin(n, n) or PSO(n, n) with n even (n ≥ 4).
There are three non-conjugate Cartan subgroups isomorphic to R× × S1 ×
(C×)

n
2
−1. Two of these are interchanged by an outer automorphism of G(R).

(The corresponding Cartan subgroups of SO(n, n) are isomorphic to (C×)
n
2 .)

The third one is not related to the others: it has a different real Weyl group
(see the complex factor entry).

Here are the three Cartan subgroups in question for Spin(6, 6).

empty: cartan

Lie type: D6 sc s

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

enter your choice: 5

Name an output file (return for stdout, ? to abandon):

...

Cartan #4:

split: 1; compact: 1; complex: 2

canonical twisted involution: 3,4,5,6,4,3,2,3,4,5,6,4,3,1,2,3,4,5,6,4,3,2,1

twisted involution orbit size: 180; fiber rank: 1; #X_r: 360

imaginary root system: A1.A1.A1

real root system: A1.A1.A1

complex factor: A1
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real form #5: [0] (1)

real form #4: [1] (1)

Cartan #5:

split: 1; compact: 1; complex: 2

canonical twisted involution: 6,4,5,3,4,6,2,3,4,5,1,2,3,4,6

twisted involution orbit size: 60; fiber rank: 1; #X_r: 120

imaginary root system: A1.A1.A1

real root system: A1.A1.A1

complex factor: A2

real form #5: [0] (1)

real form #3: [1] (1)

Cartan #6:

split: 1; compact: 1; complex: 2

canonical twisted involution: 5,4,6,3,4,5,2,3,4,6,1,2,3,4,5

twisted involution orbit size: 60; fiber rank: 1; #X_r: 120

imaginary root system: A1.A1.A1

real root system: A1.A1.A1

complex factor: A2

real form #5: [0] (1)

real form #2: [1] (1)

...

A similar phenomenon holds in the split real forms of F4 and G2.

6 Weyl Groups

Fix basic data (G, γ), ξ ∈ X̃ , and set K = Gθξ (cf. Section 4). The “real”
Weyl group W (K, H) = NormK(H)/H ∩ K plays an important role. It is
isomorphic to W (G(R), H(R)) = NormG(R)(H(R))/H(R) where G(R) is a
real form of G corresponding to K, and H(R) is the corresponding real form
of H . See [1, Section 12].

We briefly recall some constructions from [1, Section 8], also see [4, Propo-
sition 4.16]. Let τ be the image of ξ in IW . We have

(6.1) W (K, H) ≃ (WC)τ ⋉ (W (M ∩K, H)×Wr).

Here
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• Wr is the Weyl group of the system of real roots;

• (WC)τ is the Weyl group of a certain root system constructed using
complex roots ([4, Proposition 3.12]);

• W (K ∩ M, H) ≃ Wi,c ⋉ A(H) ⊂ Wi, where Wi,c is the Weyl group
of the root system of compact imaginary roots, and A(H) is a certain
elementary abelian two-group.

See Section 7 for the definition of real and imaginary roots.
To describe W (K, H) it is therefore sufficient to describe Wr, Wi,c, (WC)τ

and A(H). The first three are Weyl groups of root systems. The realweyl

command describes these three root systems, denoted W r, W ic, and W^C

respectively; and A(H), denoted A.

Example 6.2 As usual we start with SL(2, R):

empty: realweyl

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

cartan class (one of 0,1): 0

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is trivial

A is trivial

W_ic is trivial

W^R is trivial

This is the compact Cartan subgroup, for which W (K, H) is trivial. Here is
the split Cartan subgroup:

real: realweyl

cartan class (one of 0,1): 1

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:
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W^C is trivial

A is trivial

W_ic is trivial

W^R is a Weyl group of type A1

generators for W^R:

1

For the split Cartan subgroup the only non-trivial factor is Wr, and W (K, H) =
Wr ≃ Z2.

Example 6.3 There is a small change when we compute the Weyl group for
the compact Cartan subgroup of PSL(2, R) instead:

empty: realweyl

Lie type: A1 ad s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

cartan class (one of 0,1): 0

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is trivial

A is an elementary abelian 2-group of rank 1

W_ic is trivial

W^R is trivial

generators for A:

1

In this case A(H) = Z2, so W (K, H) = Z2. Recall PSL(2, R) ≃ SO(2, 1) is
disconnected; the non-trivial Weyl group element is given by an element in
the non-identity component.

Example 6.4 Here is an example, for split groups of type D2m, in which the
group A(H) is quite large. We take the Cartan subgroup (S1)2 × (C×)m−1
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(cf. Example 5.7). In the notation at the beginning of [1, Section 12] we
have

(6.5)

∆i = Am−1
1 ×D2 ≃ Am+1

1

∆r = Am−1
1

∆C = Am−2 × Am−2

Wi ≃ Zm+1
2 , Wr ≃ Zm−1

2

Wi,c = 1

(WC)τ ≃ Sm−1

W τ ≃ Sm−1 ⋉ [Zm+1
2 × Zm−1

2 ].

Here Sm−1 acts trivially on the final two factors of Zm+1
2 , and W τ is the

centralizer of τ in W ; this group contains W (K, H). So far this discussion is
independent of isogeny.

Since Wi,c = 1 the real Weyl group is the same as W τ , with the factor
Wi = Zm+1

2 replaced by A(H) ⊂ Wi. The group A(H) depends on the
isogeny. If G is adjoint it is equal to Wi. The smallest possible value of
A(H) occurs when G is simply connected. It isn’t as easy to compute A(H)
in this case; the software will tell us.

For example consider the split group Spin(8, 8) of type D8 (m = 4). The
Cartan class is #5:

Cartan #5:

split: 0; compact: 2; complex: 3

canonical twisted involution: 6,7,8,6,5,[truncated]

twisted involution orbit size: 3360; fiber rank: 2; #X_r: 13440

imaginary root system: A1.A1.A1.A1.A1

real root system: A1.A1.A1

complex factor: A2

...

and here is the relevant output from realweyl:

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A2

A is an elementary abelian 2-group of rank 3

W_ic is trivial

W^R is a Weyl group of type A1.A1.A1
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Thus A(H) ≃ Zm−1
2 .

If H is a fundamental (most compact) Cartan subgroup then H ∩K is a
Cartan subgroup of K, and it is not hard to see that W (G, H) ≃W (K, H ∩
K). In particular if K is connected this is the Weyl group of the root system
of H ∩K in K. It is interesting to consider this in the case of real forms of
E6 of unequal rank.

Example 6.6 First consider E6(F4):

empty: realweyl

Lie type: E6 sc s

(weak) real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A2

A is trivial

W_ic is a Weyl group of type D4

W^R is trivial

Thus W (K, H) ≃ W (A2) ⋉ W (D4) ≃ S3 ⋉ W (D4). The action of S3 on
W (D4) is induced by the action of S3 on the Dynkin diagram of D4. By the
remarks above we have obtained the classical isomorphism

(6.7) W (F4) ≃ S3 ⋉ W (D4).

Example 6.8 Something similar happens for the split real form of E6, in
which K is of type C4. In this case realweyl gives:

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A2

A is an elementary abelian 2-group of rank 2

W_ic is a Weyl group of type A1.A1.A1.A1

W^R is trivial
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Thus

(6.9)
W (C4) ≃ S3 ⋉ (Z2

2 × Z4
2)

≃ S4 ⋉ Z4
2.

Example 6.10 Complex groups.
Fix basic data (G = G1×G1, γ) for some group G1, with γ the inner class

of the complex group (γ switches the two factors). Thus G(R) = G1(C) and
K = G∆

1 (the diagonal embedding). If H1 is a Cartan subgroup of G1 then
H = H1×H1 is a Cartan subgroup of G, W (G, H) ≃W (G1, H1)×W (G1, H1),
and W (K, H) = W (G1, H1)

∆.
In the notation of the output of realweyl all terms are trivial except W^C,

which equals W (G1, H1).

empty: type

Lie type: A3.A3 sc C

main: realweyl

there is a unique real form: sl(4,C)

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A3

A is trivial

W_ic is trivial

W^R is trivial

generators for W^C:

2,5

3,6

1,4

Simple roots 1, 2, 3 give the first copy of G1, and 4, 5, 6 give the second. The
elements s1s4, s2s5 and s3s6 generate W (G1, H1)

∆ = W (A3) = S4.
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7 K orbits on the flag variety and X r

Fix basic data (G, γ) (Section 2) and let X r be the reduced parameter space
(Section 4). Given x ∈ X r let

X r[x] = {x′ ∈ X r | x′ is G-conjugate to x}

(see [1, 9.7]). Choose a preimage ξ of x in X̃ r and let θ = int(ξ), K = Gθ.
Then X r[x] is isomorphic to K\G/B. In fact, one of the important properties
of X r is that it captures information about the K orbits on G/B for all K
in this inner class. Recall (4.4) {ξi | 1 ≤ i ≤ n} is a set of representatives of
the strong real forms in this inner class, and for each i ∈ I we let Ki = Kξi

.
Then [1, Corollary 9.9]:

X r =
n∐

i=1

X [xi] ≃
n∐

i=1

Ki\G/B.

The structure of Ki\G/B is determined to a large extent by the cross
action (cf. Section 4), and Cayley transforms, which appear in the space X r

as follows. Fix x ∈ X r and let τ = p(x) ∈ IW . Then τ acts on the roots,
and a root α is classified as imaginary, real or complex with respect to τ if
τ(α) = α,−α or neither, respectively. Let ξ be a preimage of x in X̃ r. If
α is imaginary we say it is compact or noncompact with respect to x if this
holds with respect to θξ (independent of the choice of ξ). See [1, Section 14]
for details.

Now suppose α is a noncompact imaginary root with respect to x. Then
associated to α and x is a new element of X r denoted cα(x). It satisfies
p(cα(x)) = sαp(x), and α is real with respect to sατ . Its inverse is the single
or double-valued real Cayley transform cα(x): if α is real with respect to x
then cα(x) is a set with one or two elements.

The (finite) set of orbits of K on G/B is described by the kgb command.

Example 7.1 We first consider SL(2, R) and PGL(2, R). See [1, Example
12.20].

main: kgb

(weak) real forms are:

0: su(2)

1: sl(2,R)
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enter your choice: 1

kgbsize: 3

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n] 1 2

1: 0 0 [n] 0 2

2: 1 1 [r] 2 * 1

Here G(R) = SL(2, R), K(R) = S1 and K = K(C) = C×. This acts on
G/B = P 1(C) = C ∪ ∞ by C× ∋ z : w → z2w. The entry kgbsize gives
the number of orbits, 3 in this case. These are 0,∞ and C×, labelled #0,1,2

respectively (the first entry in each line) in the output of kgb. (We describe
other parts of the output below).

Here is the result for PGL(2, R); see [1, Example 12.25] for more detail.

0: 0 0 [n] 0 1

1: 1 1 [r] 1 * 1

In this case G/B is the same, but K = O(2, C); an element from the non-
identity component identifies 0 and ∞, so there are only two orbits.

We now explain the other information given in the output. Fix a row i

with corresponding xi ∈ X
r[x] ≃ Kξ\G/B, and write Oi for the correspond-

ing orbit of Kξ on G/B.
The image of xi in IW corresponds to a Cartan subgroup; the first entry

gives the number of this Cartan subgroup in the output of the cartan com-
mand. The second number is the length of this orbit, which is dim(Oi) −
dim(O0). In the equal rank case (γ = 1) dim(O0) = 0.

The simple roots are labelled 1, . . . , n. The term in brackets in row i of
the output gives the type of each simple root: r,C,n,c for real, complex,
noncompact imaginary, or compact imaginary, respectively.

The next n columns give the cross action of the simple roots. An entry j

in column k of row i means that the the cross action of the kth simple root
takes xi to xj .

The next n columns give Cayley transforms by noncompact imaginary
roots. There is an entry in in column k of row i only if the kth simple root
is noncompact imaginary for xi; in this case an entry j means this Cayley
transform takes xi to xj . These Cayley transforms are single valued (the
inverse, multivalued Cayley transforms are not listed).
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The final entry is the twisted involution in W corresponding to xi, as a
product of simple reflections (cf. Section 4).

Here is the SL(2, R) example again:

0: 0 0 [n] 1 2

1: 0 0 [n] 0 2

2: 1 1 [r] 2 * 1

Here is the information we can read off from this output. Orbits #0 and
#1 correspond to the compact Cartan subgroup (#0), and are 0-dimensional.
Orbit #2 corresponds to the split Cartan subgroup and is one dimensional.
The first two orbits are interchanged by the cross action of the simple root.
For orbits #0,#1 this root is noncompact, and the Cayley transform takes
each of these orbits to orbit #2.

See [1, Example 14.19] for a detailed discussion of Sp(4, R).

Example 7.2 Here is SL(3, R):

empty: kgb

Lie type: A2 sc s

there is a unique real form: sl(3,R)

kgbsize: 4

Name an output file (return for stdout, ? to abandon):

0: 0 0 [C,C] 2 1 * *

1: 1 0 [n,C] 1 0 3 * 2,1

2: 1 0 [C,n] 0 2 * 3 1,2

3: 2 1 [r,r] 3 3 * * 1,2,1

This is not an equal rank case; the dimension of the closed orbit is 1, and
the dimension of the unique open orbit is 1 + 2 = 3, the dimension of G/B.

Example 7.3 We illustrate one way to compute the order of X r using this
information. Consider equal rank real forms of SL(4, C), i.e. SU(4), SU(3, 1)
and SU(2, 2).

Using kgb we compute the number of orbits in each case, given by kgbsize.
The result is:

G |K\G/B|
SU(2, 2) 21
SU(3, 1) 10
SU(4, 0) 1
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We will see later (Example 9.3) there are two strong real forms mapping
to SU(4) and SU(3, 1), and one mapping to SU(2, 2). This means that the
set K\G/B for SU(3, 1), of order 10, appears twice in X r, and similary for
SU(4). Therefore the order of X r is

(7.4) 2× 1 + 2× 10 + 1× 21 = 43.

This agrees with the counting done a different way in Example 9.3.

Example 7.5 We do the same example again for equal rank forms of the
adjoint group PSL(4, C).

G |K\G/B|
PU(2, 2) 12
PU(3, 1) 10
PU(4, 0) 1

Since G is adjoint the map from strong real forms to real forms is bijective,
so X r has order 12 + 10 + 1 = 23. See Example 9.1

Example 7.6 If G = Sp(4, R) there are 11 orbits of K on G/B, 4 of which
are closed.

0: 0 0 [n,n] 1 2 6 4

1: 0 0 [n,n] 0 3 6 5

2: 0 0 [c,n] 2 0 * 4

3: 0 0 [c,n] 3 1 * 5

4: 1 2 [C,r] 8 4 * * 2

5: 1 2 [C,r] 9 5 * * 2

6: 1 1 [r,C] 6 7 * * 1

7: 2 1 [n,C] 7 6 10 * 2,1,2

8: 2 2 [C,n] 4 9 * 10 1,2,1

9: 2 2 [C,n] 5 8 * 10 1,2,1

10: 3 3 [r,r] 10 10 * * 1,2,1,2

For G = PSp(4, R) = SO(3, 2) there are 7 orbits, 2 of them closed:

0: 0 0 [n,n] 0 1 3 2

1: 0 0 [c,n] 1 0 * 2

2: 1 2 [C,r] 5 2 * * 2

3: 1 1 [r,C] 3 4 * * 1
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4: 2 1 [n,C] 4 3 6 * 2,1,2

5: 2 2 [C,n] 2 5 * 6 1,2,1

6: 3 3 [r,r] 6 6 * * 1,2,1,2

See Example 8.13.

Example 7.7 Complex Groups.
As in Example 6.10 let G = G1×G1, K = G∆

1 , and G(R) = G1(C). Then
B = B1 × B1. It is well known, and easy to see, that (g, h)→ gh−1 induces
a bijection

(7.8) G∆
1 \G1 ×G1/B1 × B1 ≃ B1\G1/B1.

By the Bruhat decomposition the right hand side is parametrized by the
Weyl group of G1.

For example take G(R) = G1(C) = SL(3, C).

main: type

Lie type: A2.A2 sc C

main: kgb

there is a unique real form: sl(3,C)

kgbsize: 6

Name an output file (hit return for stdout):

0: 2 1 2 1 * * * * [CCCC] 0

1: 4 0 3 0 * * * * [CCCC] 1 2,4

2: 0 3 0 4 * * * * [CCCC] 1 1,3

3: 5 2 1 5 * * * * [CCCC] 2 2,1,3,4

4: 1 5 5 2 * * * * [CCCC] 2 1,2,4,3

5: 3 4 4 3 * * * * [CCCC] 3 1,2,1,3,4,3

Since all roots are complex there are no Cayley transforms. The cross action
of the Weyl group W (A2) ≃ S3 is simply transitive. The last column gives
the Weyl group element (w, w) as a product of simple reflections; just taking
the first half of each entry we see W = {id, s2, s1, s2s1, s1s2, s1s2s1}. See
Example 6.10.
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8 Representation Theory: Blocks and the two-

sided parameter space

The final ingredient in the algorithm is the two-sided parameter space. Let
G∨ be the dual group of G. The involution γ ∈ Out(G) defines an involution
γ∨ ∈ Out(G∨) and (G∨, γ∨) is also basic data. See [1, Section 2] for details.
Let X ∨ be the one-sided parameter space defined by (G∨, γ∨).

Suppose x ∈ X and ξ ∈ X̃ is a pre-image of x in X̃ . Then θξ restricted
to H is independent of the choice of ξ, and we denote it θx,H . We also write
θx,H ∈ End(h) for its differential. There is a natural pairing between h and
h∨ (a Cartan subalgebra on the dual side); the adjoint θt

x,H of θx,H is an
element of End(h∨).

We can now define the two-sided parameter space:

(8.1) Z = {(x, y) ∈ X × X ∨ | θt
x,H = −θy,H∨}.

See [1, Section 10]. We define the reduced two-sided parameter space Zr by
replacing X and X ∨ with the corresponding reduced spaces (cf. Section 4).
This is a finite set.

With the obvious notation W ×W∨ acts on Z and Zr; this is the cross
action. By the condition relating x and y in (8.1), if α is a real root with
respect to x then α∨ is an imaginary root with respect to y, and vice-versa.
Thus Cayley transforms are defined on Zr, via a real root on one side, and
an imaginary noncompact root on the other.

The main result in [1], Theorem 10.3, (also see [1, Theorem 7.15]), is
that the space Z parametrizes the irreducible representations of strong real
forms of G “up to translation”; equivalently with certain regular integral
infinitesimal characters. Because of our emphasis on the reduced parameter
space, we give a slightly different version here.

Apply the construction in the paragraph preceding (4.1) to choose a sub-
set Z∨r of the center Z∨ of G∨. The pairing of h and h∨ gives an isomorphism
h∗ ≃ h∨, and let

(8.2) L = {λ ∈ h∗ | exp(2πiλ) ∈ Z∨r}.

Note that L is a subset of the weight lattice P = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z}.
Choose a set Λ of representatives of L/X∗(H), satisfying 〈λ, α∨〉 6= 0 for all
λ ∈ Λ and all roots α. This is a finite set.
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Choose a set {ξi | 1 ≤ i ≤ n} as in (4.4) For each i let Gi(R) be the
real form of G defined by ξi, and let Π(Gi(R), Λ) be the set of irreducible
admissible representations of Gi(R) with infinitesimal character contained in
Λ.

Theorem 8.3 There is a natural bijection

(8.4) Zr 1−1
←→

n∐

i=1

Π(Gi(R), Λ).

This differs from [1, Theorem 10.3] in several ways. First of all on the left
hand side we’re using Zr instead of Z. On the right hand side the union is
over strong real forms in the sense of the reduced parameter space, instead
of the possibly infinite set I/G of [1, 5.15]. Finally the set Λ = L/X∗(H) is
contained in the corresponding set P/X∗(H) of [1].

Fix (x, y) ∈ Zr, and consider the representations associated to the pairs
(x′, y′) in the subset X r[x]×X ∨,r[y] of Zr. Choose i so that x is G-conjugate
to xi. Then these are representations of Gi(R), all with the same infinitesimal
character. In fact this set of irreducible representations is a block in the sense
of [3, Chapter 9], and every block is obtained this way.

The entire construction is obviously symmetric in G and G∨, so an ele-
ment (x, y) ∈ Zr, which defines a representation π of a real form of G, also
defines a representation π∨ of a real form of G∨. The map π → π∨ is a ver-
sion of Vogan Duality; see [4] and [1, 1.35 and Corollary 10.9]. In particular
this is a duality of blocks: the set X r[x] × X ∨r[y] defines a block B of a real
form of G, a block B∨ of a real form of G∨, and gives a bijection B ↔ B∨.

Before we look at individual representations, it is helpful to look at the
sizes of blocks, which are given by the blocksizes command.

Example 8.5 Here are the blocks for real forms of SL(2, C):

main: type

Lie type: A1 sc s

main: blocksizes

0 1

1 3
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The rows and columns correspond to real forms of G and G∨, respectively.
Adding some labelling by hand the picture is:

SO(3) SO(2,1)

SU(2) 0 1

SL(2,R) 1 3

Thus SU(2) has a single block, dual to a block of SO(2, 1), and SL(2, R) has
two blocks, dual to SO(3), and SO(2, 1), respectively. See Example 8.11.

Example 8.6 The corresponding output for PSL(2, C) is the same, but
there is a subtle point here.

main: type

Lie type: A1 sc s

main: blocksizes

0 1

1 3

Since the dual group SL(2, C) is not adjoint, the map from strong real
forms to real forms (on the dual side) is not injective. There are two
strong real forms mapping to SU(2), and we can label the strong real forms
SU(2, 0), SU(1, 1) and SU(0, 2). Consequently there are two blocks of SO(2, 1)
of size 1. See Example 8.12. We could display this information by construct-
ing a table by hand showing strong real forms on the dual side:

SU(2,0) SU(0,2) SL(2,R)

SO(3) 0 0 1

SO(2,1) 1 1 3

Blocks tend to be concentrated on the quasisplit forms of G or G∨.

Example 8.7 Here is the output of blocksizes for real forms of Sp(12, C),
with the real forms added:

SO(13) SO(12,1) SO(11,2) SO(10,3) SO(9,4) SO(8,5) SO(7,6)

Sp(6) 0 0 0 0 0 0 1

Sp(5,1) 0 0 0 0 0 0 36

Sp(4,2) 0 0 0 0 0 0 315

Sp(3,3) 0 0 0 0 0 0 680

Sp(12,R) 1 13 108 556 1975 4707 7416
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Example 8.8 In the case of equal rank real forms of SO(12, C) we get some
other elements:

SO(12) SO(10,2) SO*(12) SO*(12) SO(8,4) SO(6,6)

SO(12) 0 0 0 0 0 1

SO(10,2) 0 0 0 0 15 66

SO*(12) 0 0 0 60 0 692

SO*(12) 0 0 60 0 0 692

SO(8,4) 0 15 0 0 300 885

SO(6,6) 1 66 692 692 885 2320

Note that this diagram is symmetric: SO(12, C) is self-dual (and the equal
rank and split inner classes coincide). For a discussion of the two versions of
SO∗(12) see Example 3.3. Note that the two versions of SO∗(12) on the dual
side account for the fact that SO(6, 6) has two distinct blocks of size 692.

Example 8.9 We break the symmetry between G and G∨ of the previous
example by taking Spin(12, C), which is dual to PSO(12, C).

PSO(12) PSO(10,2) PSO*(12) PSO*(12) PSO(8,4) PSO(6,6)

Spin(12) 0 0 0 0 0 1

Spin(10,2) 0 0 0 0 15 87

Spin*(12) 0 0 0 60 0 692

Spin*(12) 0 0 60 0 0 692

Spin(8,4) 0 15 0 0 300 915

Spin(6,6) 1 66 436 436 885 2180

There is an interesting phenomenon here. Note that Spin(6, 6) has a
block BSpin of size 66, dual to a block of PSO(10, 2). From the previous
example SO(6, 6) also has a block of size 66, denoted BSO, dual to a block
for SO(10, 2). From the output of the block command one can see these
blocks are isomorphic.

All representations in a block have the same central character, and the
representations in BSpin factor to the image of Spin(6, 6) in SO(6, 6). The
image of this map has index 2 in SO(6, 6). Therefore it is not obvious that
BSpin and BSO should be isomorphic (and this doesn’t happen for the blocks
of Spin(6, 6) of size 436 and 2, 180).

The explanation is seen by looking at the dual side. The map SO(10, 2)→
PSO(10, 2) is surjective. It follows that these dual blocks are isomorphic,
hence the blocks themselves are isomorphic.
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We leave it to the reader to see that the symmetry between the two ver-
sions of SO∗(12) is broken by taking the “non-diagonal” quotient of SO(12, C).
See Examples 2.7 and 3.3.

Example 8.10 Here is the output of blocksizes for E8, with the real forms
added:

compact quaternionic split

compact 0 0 1

quaternionic 0 3150 73410

split 1 73410 453060

The quaternionic real form is the one denoted e8(e7.su(2)) in the software.
The software computes the structure of the block of size 453, 060 easily. How-
ever computing Kazhdan-Lusztig-Vogan polynomials for this block required
special techniques. See www.liegroups.org for more information.

We now look at individual representations in a few examples. The cases of
real forms of SL(2, C) and PSL(2, C) are explained in detail in [1, Example
12.20]. In particular see the table at the end of Section 12. Here is a brief
summary.

Example 8.11 SL(2, R) and SU(2):

empty: block

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

0(0,1): 0 0 [i1] 1 (2,*)

1(1,1): 0 0 [i1] 0 (2,*)

2(2,0): 1 1 [r1] 2 (0,1) 1
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This is the block of SL(2, R) of size 3 of example 8.5. We can take the
infinitesimal character to be ρ, and this block contains the two discrete series
representations #0,#1, and the trivial representation #2. The singleton block
of SL(2, R) is found taking the dual group to be compact:

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 0

Name an output file (return for stdout, ? to abandon):

0(2,0): 1 1 [rn] 0 (*,*) 1

This is an irreducible (non-spherical) principal series representation of SL(2, R)
at ρ (with odd K-types).

Example 8.12 The adjoint group PSL(2, R) ≃ SO(2, 1) has a block of size
3 dual to the preceding one:

0(0,2): 0 0 [i2] 0 (1,2)

1(1,0): 1 1 [r2] 2 (0,*) 1

2(1,1): 1 1 [r2] 1 (0,*) 1

We can take infinitesimal character ρ, and the block consists of the unique
discrete series representation #0 and the two one-dimensional representations
#1,#2. These are all of the irreducible representations of PSL(2, R) with
infinitesimal character ρ.

As before taking the dual group to be compact we obtain a singleton:

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 0

Name an output file (return for stdout, ? to abandon):

0(1,0): 1 1 [rn] 0 (*,*) 1

This block occurs at infinitesimal character 2ρ; in this case the set Λ
of Theorem 8.3 can be taken to be {ρ, 2ρ}. Note that SO(2, 1) has two
irreducible representation PS± at infinitesimal character 2ρ. The fact that
there are two such representations (each of which is a block) is reflected in
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the fact that on the dual side there are two strong real forms SU(2, 0 and
SU(0, 2). See Examples 8.5 and 8.6, and the table at the end of [1, Section
12].

We illustrate the other information in the output of block by looking at
Sp(4, R). See [1, Example 14.19].

Example 8.13 Here is the block of size 12 for Sp(4, R):

0( 0,6): 0 0 [i1,i1] 1 2 ( 6, *) ( 4, *)

1( 1,6): 0 0 [i1,i1] 0 3 ( 6, *) ( 5, *)

2( 2,6): 0 0 [ic,i1] 2 0 ( *, *) ( 4, *)

3( 3,6): 0 0 [ic,i1] 3 1 ( *, *) ( 5, *)

4( 4,4): 1 2 [C+,r1] 8 4 ( *, *) ( 0, 2) 2

5( 5,4): 1 2 [C+,r1] 9 5 ( *, *) ( 1, 3) 2

6( 6,5): 1 1 [r1,C+] 6 7 ( 0, 1) ( *, *) 1

7( 7,2): 2 1 [i2,C-] 7 6 (10,11) ( *, *) 2,1,2

8( 8,3): 2 2 [C-,i1] 4 9 ( *, *) (10, *) 1,2,1

9( 9,3): 2 2 [C-,i1] 5 8 ( *, *) (10, *) 1,2,1

10(10,0): 3 3 [r2,r1] 11 10 ( 7, *) ( 8, 9) 1,2,1,2

11(10,1): 3 3 [r2,rn] 10 11 ( 7, *) ( *, *) 1,2,1,2

The 12 representations, numbered 0, . . . , 11, are parametrized by pairs
(x, y), the second entry on each line, from the corresponding kgb commands
for G and G∨. See Example 7.6; note that for G = Sp(4, R) there are 11
orbits numbered 0,..., 11 and for G∨ = SO(3, 2) there are 7 orbits, labelled
0,...,6.

The next two columns give the Cartan subgroup, and length of the pa-
rameter, just as in the output of kgb for x (Section 7).

The term in brackets list each of the simple roots as:

• compact imaginary: ic

• noncompact imaginary, type I/II: i1/i2

• complex: C+,C-

• real, not satisfying the parity condition: rn

• real, satisfying the parity condition type I/II: r1/r2
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For information about type I/II roots and the parity condition see [3, Section
8.3].

The next two columns give cross actions of the simple roots, similar to
the kgb command, followed by two columns for Cayley transforms. These
follow from the cross action/Cayley transforms for kgb on both the G and
G∨ side. In this setting (unlike kgb) these can be double valued, even for a
noncompact imaginary root, since this corresponds to a real root on the dual
side.

The final column is the corresponding twisted involution, exactly as in
the kgb command for x.

Example 8.14 We conclude with a large example.

empty: block

Lie type: E6 sc c

(weak) real forms are:

0: e6

1: e6(so(10).u(1))

2: e6(su(6).su(2))

enter your choice: 2

possible (weak) dual real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 0

This is the block for E6(A5 × A1) (simply connected), dual to E6(F4)
(adjoint).

0( 851,44): 8 4 [C+,rn,rn,rn,rn,C+] 2 0 0 0 0 1

1(1013,43): 9 4 [C+,rn,rn,rn,C+,C-] 4 1 1 1 3 0

2(1014,42): 9 4 [C-,rn,C+,rn,rn,C+] 0 2 5 2 2 4

3(1165,41): 10 4 [C+,rn,rn,C+,C-,rn] 8 3 3 6 1 3

4(1166,40): 10 4 [C-,rn,C+,rn,C+,C-] 1 4 9 4 8 2

5(1167,39): 10 4 [rn,rn,C-,C+,rn,C+] 5 5 2 7 5 9

6(1304,38): 11 4 [C+,C+,C+,C-,rn,rn] 11 10 10 3 6 6

7(1305,37): 11 4 [rn,C+,rn,C-,C+,C+] 7 14 7 5 14 12

8(1306,36): 11 4 [C-,rn,C+,C+,C-,rn] 3 8 13 11 4 8

9(1307,35): 11 4 [rn,rn,C-,C+,C+,C-] 9 9 4 12 13 5

10(1430,34): 12 4 [C+,C-,C-,rn,rn,rn] 18 6 6 10 10 10

11(1431,33): 12 4 [C-,C+,C+,C-,rn,rn] 6 18 15 8 11 11

12(1432,32): 12 4 [rn,C+,rn,C-,C+,C-] 12 19 12 9 17 7

13(1433,31): 12 4 [rn,rn,C-,C+,C-,rn] 13 13 8 16 9 13

14(1434,30): 12 4 [rn,C-,rn,rn,C-,C+] 14 7 14 14 7 19

15(1536,29): 13 4 [C+,C+,C-,C+,rn,rn] 24 24 11 20 15 15
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16(1537,28): 13 4 [rn,C+,C+,C-,C+,rn] 16 22 20 13 21 16

17(1538,27): 13 4 [rn,C+,rn,C+,C-,C+] 17 23 17 21 12 23

18(1539,26): 13 4 [C-,C-,C+,rn,rn,rn] 10 11 24 18 18 18

19(1540,25): 13 4 [rn,C-,rn,rn,C+,C-] 19 12 19 19 23 14

20(1620,24): 14 4 [C+,C+,C-,C-,C+,rn] 28 26 16 15 25 20

21(1621,23): 14 4 [rn,C+,C+,C-,C-,C+] 21 29 25 17 16 27

22(1622,22): 14 4 [rn,C-,C+,rn,C+,rn] 22 16 26 22 29 22

23(1623,21): 14 4 [rn,C-,rn,C+,C-,C-] 23 17 23 27 19 17

24(1624,20): 14 4 [C-,C-,C-,C+,rn,rn] 15 15 18 28 24 24

25(1684,19): 15 4 [C+,C+,C-,rn,C-,C+] 32 31 21 25 20 30

26(1685,18): 15 4 [C+,C-,C-,C+,C+,rn] 34 20 22 34 31 26

27(1686,17): 15 4 [rn,C+,C+,C-,rn,C-] 27 33 30 23 27 21

28(1687,16): 15 4 [C-,C+,rn,C-,C+,rn] 20 34 28 24 32 28

29(1688,15): 15 4 [rn,C-,C+,C+,C-,C+] 29 21 31 33 22 33

30(1730,14): 16 4 [C+,C+,C-,rn,rn,C-] 37 36 27 30 30 25

31(1731,13): 16 4 [C+,C-,C-,C+,C-,C+] 38 25 29 35 26 36

32(1732,12): 16 4 [C-,C+,rn,rn,C-,C+] 25 38 32 32 28 37

33(1733,11): 16 4 [rn,C-,C+,C-,rn,C-] 33 27 36 29 33 29

34(1734,10): 16 4 [C-,C-,rn,C-,C+,rn] 26 28 34 26 38 34

35(1760, 9): 17 4 [C+,rn,C+,C-,C+,C+] 40 35 39 31 40 39

36(1761, 8): 17 4 [C+,C-,C-,C+,rn,C-] 41 30 33 39 36 31

37(1762, 7): 17 4 [C-,C+,rn,rn,rn,C-] 30 41 37 37 37 32

38(1763, 6): 17 4 [C-,C-,rn,C+,C-,C+] 31 32 38 40 34 41

39(1777, 5): 18 4 [C+,rn,C-,C-,C+,C-] 43 39 35 36 42 35

40(1778, 4): 18 4 [C-,rn,C+,C-,C-,C+] 35 40 42 38 35 43

41(1779, 3): 18 4 [C-,C-,rn,C+,rn,C-] 36 37 41 43 41 38

42(1786, 2): 19 4 [C+,rn,C-,rn,C-,C+] 44 42 40 42 39 44

43(1787, 1): 19 4 [C-,rn,C+,C-,C+,C-] 39 43 44 41 44 40

44(1790, 0): 20 4 [C-,rn,C-,rn,C-,C-] 42 44 43 44 43 42

The last column (twisted involution) has been deleted, as have the Cayley
transoforms, which are all empty, i.e. (*,*).

All of these representations come from a the same Cartan subgroup. This
is the entry 4 in each row; by the output of the cartan command this is the
most split Cartan subgroup, and is isomorphic to R××R××C××C×. Note
that every root is of type C± or rn, so there are no Cayley transforms. This
is surprising, since this group has 5 conjugacy classes of Cartan subgroups
including a compact Cartan subgroup but not a split one. The reason is that
the dual block is for the adjoint group E6(F4), which has only one conjugacy
class of Cartan subgroup (cf. Example 5.4).

There are 1, 791 orbits of K on G/B, and 45 for the dual group, given
by the kgb command. In the parameters (x, y) given in parentheses each
0 ≤ y ≤ 44 appears once, since the dual Cartan subgroup is connected. The
fact that 45 distinct values of x (between 0 to 1790) occur is more subtle.
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9 The Geometry of X r

Fix (G, γ) and let X r be the reduced parameter space defined in Section 4.
It is helpful to give some detail about the structure of X r. Recall (Section 4)
there is a map from X r to the space IW of twisted involutions in W . We
discuss the fibers of this map.

9.1 The Adjoint Case

Fix (G, γ) with G adjoint. This case is simplest, since real forms and strong
real forms coincide. Fix τ ∈ IW .

Let H−τ = {h ∈ H | τ(h) = h−1}. There is a natural simply transitive
action of H−τ/(H−τ)0 on X r

τ [1, Section 11]. Note that H−τ/(H−τ )0 ≃ Zb
2

where b is the number of S1 factors of the real form of H defined by τ . Fix
x ∈ X r

τ . Via a choice of basepoint in X r
τ the output of cartan identifies X r

τ

with {0, 1, . . . , 2b − 1}. The element of Zb
2 corresponding to 0 ≤ k ≤ 2b − 1

is the binary expansion of k.
The rank of X r

τ is also given by fiber rank in the output of cartan. For
each Cartan the number #X r is the number of strong involutions lying over
this conjugacy class in IW , i.e. twisted involution orbit size×2ˆfiber
rank.

The imaginary Weyl group Wi,τ (the Weyl group of the imaginary roots
with respect to τ) acts on X r

τ , and the orbits are in one to one correspondence
with real forms containing this Cartan subgroup. The cartan command gives
this decomposition. For example a line

real form #2: [0,1,2] (3)

means that corresponding to real form #2 (from the output of the realform

command) are three elements of X r
τ , labelled 0,1,2 (the number in paren-

theses is the number of elements in brackets).

Example 9.1 Here are the equal rank real forms of PSL(4, C):

empty: cartan

Lie type: A3 ad c

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)
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enter your choice: 2

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 3; complex: 0

canonical twisted involution:

twisted involution orbit size: 1; fiber rank: 3; #X_r: 8

imaginary root system: A3

real root system is empty

complex factor is empty

real form #2: [0,2,5] (3)

real form #1: [1,3,4,6] (4)

real form #0: [7] (1)

This is the fundamental fiber τ = δ. In this case Wi,δ = W . This
fiber has 23 = 8 elements. There is a fixed point of the action of W on Xδ,
corresponding to the compact real form PSU(4) (realform #0). The largest
orbit, of size 4, corresponds to the group SU(3, 1).

Here are the remaining Cartan subgroups:

Cartan #1:

split: 0; compact: 1; complex: 1

canonical twisted involution: 1,2,3,2,1

twisted involution orbit size: 6; fiber rank: 1; #X_r: 12

imaginary root system: A1

real root system: A1

complex factor is empty

real form #2: [0] (1)

real form #1: [1] (1)

Cartan #2:

split: 1; compact: 0; complex: 1

canonical twisted involution: 2,1,3,2

twisted involution orbit size: 3; fiber rank: 0; #X_r: 3

imaginary root system is empty

real root system: A1.A1

complex factor: A1

real form #2: [0] (1)
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There are 6 elements τ here for which X r
τ has order 2; both noncompact

real forms appear. Finally only the quasisplit group PSU(3, 3) contains the
maximally split Cartan, in which case there are 3 twisted involutions τ , each
with |X r

τ | = 1.
Therefore X r has 1× 8 + 6× 2 + 3× 1 = 23 elements. See Example 7.5

9.2 Strong Real Forms and Fibers

The strongreal command gives information about strong real forms (see
Section 4), which may also be interpreted as information about the fibers
p : X r → IW in the general case.

The strong real forms “containing” (H, τ) are parametrized by X r
τ /Wi,τ .

In particular every strong real form contains the fundamental Cartan sub-
group (H, δ), so strong real forms are parametrized by X r

δ /Wi,δ. Things are
particularly simple if G has equal rank, say n, in which case

(9.2) X r
δ /W ≃ {h ∈ H | h2 ∈ Zr}/W.

Note that |X r
δ | = |Z

r|2n in this case.
In general not every element of Zr is of the form x2 for some x ∈ X .

The software labels the elements which are of this form as {z0, . . . , zr−1},
denoted class #0, class #1,...class #r-1. In fact r = 2s for some s.
For each zj the set X r

τ (zj) = {x ∈ Xτ | x
2 = zj} is isomorphic to H−τ/(H−τ)0

(independent of j) which has cardinality 2b (b is the number of S1 factors as
in the preceding section) so |X r

τ | = 2b+s.
The group Wi,τ acts on Xτ (zj), and the orbits correspond to strong real

forms. All of this information is given by the strongreal command. See [1,
Section 11] and the help file for the strongreal command.

Note that the order of X r may be computed by summing over Cartan
subgroups, taking into account the size of the conjugacy classes of twisted
involutions.

Example 9.3 Consider the equal rank inner class of SL(4, C). Compare
Example 9.1.

main: strongreal

Lie type: A3 sc c

(weak) real forms are:

0: su(4)
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1: su(3,1)

2: su(2,2)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

there are 2 real form classes:

class #0:

real form #2: [0,1,2,4,5,6] (6)

real form #0: [3] (1)

real form #0: [7] (1)

class #1:

real form #1: [0,2,3,5] (4)

real form #1: [1,4,6,7] (4)

First of all, reading the lines beginning realform, we see there is one
strong real form mapping to SU(2, 2) (real form #2), two mapping to SU(4)
(real form #0), and two mapping to SU(3, 1) (real form #1). We can think
of these as SU(4, 0), SU(3, 1), SU(2, 2), SU(1, 3), and SU(0, 4).

This is the fundamental fiber, i.e. τ = δ. In this case Z ≃ Z4 and
Z/Z2 ≃ Z2, so |Zr| = 2. In this case b (the number of S1 factors) is 3, so
|X r

δ (z)| = 8 for each z ∈ Zr (it is never 0 in this case), and |X r
δ | = 16. We

can take Z/Z2 = {z0, z1} = {I, iI}. These are the elements class #0 and
class #1 respectively.

There are three orbits of W = Wi,δ onX r
δ (I). The W -orbit of diag(1, 1,−1,−1)

has 6 elements; given in the line real form #2: [0,1,2,4,5,6] (6); the
corresponding real form is SU(2, 2). The elements ±I are each fixed by W ,
and correspond to the two lines beginning real form #0. (The software
does not specify which of these is I, and which −I).

We could have chosen z0 = −I instead of I. Then SU(2, 2) would be
given by i times the preceding ones, i.e. the W -orbit of diag(i, i,−i,−i).
Similarly the two strong real forms mapping to SU(2) would be ±iI. The
software does not make an actual choice of Zr; the output of the software,
and the combinatorics of the algorithm, are independent of any such choice.
See [1, Section 13].

Now consider z = iI. Then X r
δ (iI) consists of the elements ζ(±1, . . . ,±1)
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where ζ = eπi/4, with an odd number of plus signs. The 8 such elements
constitute 2 W -orbits, hence the two strong real forms mapping to SU(3, 1).

Here are the strong real forms containing the other two Cartan subgroups
in this example.

real: strongreal

cartan class (one of 0,1,2): 1

Name an output file (return for stdout, ? to abandon):

there are 2 real form classes:

class #0:

real form #2: [0,1] (2)

class #1:

real form #1: [0] (1)

real form #1: [1] (1)

The compact real form real form #0 only contains the compact Cartan
subgroup and doesn’t occur. In this case |X r

τ (I)| = |X r
τ (iI)| = 2, |X r

τ | = 4,
and both SU(2, 2) and SU(3, 1) occur.

real: strongreal

cartan class (one of 0,1,2): 2

Name an output file (return for stdout, ? to abandon):

real form #2: [0] (1)

For the most split Cartan subgroup |X r
τ (I)| = 0, |X r

τ (iI)| = 1, and only
SU(2, 2) occurs.

The number of twisted involutions in each conjugacy class are 1, 6 and 3,
as given by the cartan command. Therefore the cardinality of X r is

(9.4) 16× 1 + 4× 6 + 1× 3 = 43.

See Example 7.3.

Example 9.5 Type A2n is a little different than A2n+1. Here are the funda-
mental fiber and the equal rank strong real forms of SL(5, C):
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Lie type: A4 sc c

main: strongreal

(weak) real forms are:

0: su(5)

1: su(4,1)

2: su(3,2)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

real form #2: [0,1,2,4,5,6,8,10,11,13] (10)

real form #1: [3,9,12,14,15] (5)

real form #0: [7] (1)

In this case Z ≃ Z/5Z and Z/Z2 = 1. We can take z = I in this case, and
the map from strong real forms to real forms is bijective.

We conclude with a discussion of the inner class of SL(n, R). If n is odd
this is the unique real form in this inner class; if n is even there is one other
real form SL(n/2, H). We can take θ(diag(z1, . . . , zn)) = diag( 1

zn
, . . . , 1

z1

),
and Zr = {I} if n is odd, or {±I} if n is even.

Here is an example of each case.

Example 9.6 There is only one strong real form in the inner class of SL(3, R):

empty: strongreal

Lie type: A2 sc s

there is a unique real form: sl(3,R)

Here Zr = {I} and

(9.7) Xδ(I) = {diag(z, w, z) | z2w = 1}/{diag(ac, b2, ac) | abc = 1} = I

Example 9.8 Now consider the inner class of SL(4, R), which also contains
the real form SL(2, H). In this case Z = ±I.

empty: strongreal

Lie type: A5 sc s

(weak) real forms are:

0: sl(3,H)
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1: sl(6,R)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (return for stdout, ? to abandon):

there are 2 real form classes:

class #0:

real form #1: [0,1] (2)

class #1:

real form #0: [0] (1)

real form #0: [1] (1)

We compute

H−τ/(H−τ)0 = {diag(z, w, w, z) | z2w2 = 1}/{diag(ad, bc, bc, ad) | abcd = 1}

= {I, diag(1,−1,−1, 1)}.

Taking z = I (this is class #1) we therefore have

(9.9) Xδ(I) = {δ, diag(1,−1,−1, 1)δ}.

These elements are not conjugate by W , so there are two strong real forms
mapping to the real form SL(2, H) (real form #0).

On the other hand take z = −I (class #0). Then x = diag(1, 1,−1,−1)δ ∈
Xδ(−I), and Xδ(−I) is obtained by multiplying x on the left by H−τ/(H−τ)0.
This gives

Xδ(−I) = {diag(1, 1,−1,−1)δ, diag(1,−1, 1,−1)δ}.

These elements are conjugate by W , so there is only one strong real form
mapping to the real form SL(4, R) (real form #1).
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