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2 IVAN PENKOV AND GREGG ZUCKERMAN

AsstraCT. We continue the study of the fundamental series of generalized Harish-Chandra modules initiated
in [PZ2]. Generalized Harish-Chandra modules are (g, f)-modules of finite type where g is a semisimple Lie
algebra and f C g is a reductive in g subalgebra. A first result of the present paper is that a fundamental
series module is a g-module of finite length. We then define the notions of strongly and weakly reconstructible
simple (g, f)-modules M which reflect to what extent M can be determined via its appearance in the socle of a
fundamental series module.

In the second part of the paper we concentrate on the case f ~ s/(2) and prove a sufficient condition for
strong reconstructibility. This strengthens our main result from [PZ2] for the case t = sl(2). We also compute
the sl(2)-characters of all simple strongly reconstructible (and some weakly reconstructible) (g, s/(2))-modules.
We conclude the paper by discussing a functor between a generalization of the category O and a category of
(9,51(2))-modules, and we conjecture that this functor is an equivalence of categories.

Mathematics Subject Classification (2000). Primary 17B10, 17B55.

INTRODUCTION

This paper is a continuation of our work [PZ2]. By g we denote a semisimple Lie algebra and by
t an arbitrary reductive in g subalgebra. In [PZ2] we introduced the fundamental series of generalized
Harish-Chandra modules (or equivalently, (g, f)-modules of finite type over f) and proved that any simple
generalized Harish-Chandra module with generic minimal f-type arises as the socle of an appropriate
fundamental series module. Using this result we were able to show that any simple generalized Harish-
Chandra module with generic minimal f-type can be reconstructed from its n-cohomology. This led to a
classification of generalized Harish-Chandra modules with generic minimal f-type.

In the present paper we study the fundamental series further. After recalling the necessary prelimi-
naries from [PZ2]], we prove in Section 2 that any fundamental series generalized Harish-Chandra module
has finite length. In Section 4 we introduce the concepts of a strongly reconstructible and a weakly re-
constructible simple generalized Harish-Chandra module. Theorem 3 from [PZ2] implies that any simple
Harish-Chandra module with generic minimal f-type is strongly reconstructible; however our aim is to
study strong and weak reconstructibility of simple generalized Harish-Chandra modules which do not
necessarily have a generic minimal f-type.

From Section 5 on, we concentrate on the case when the subalgebra { of g is isomorphic to sl(2), i.e. we
consider generalized Harish-Chandra (g, sI(2))-modules. Under this assumption we are able to considerably
strengthen the results of [PZ2] and establish new results about strong and weak reconstructibility. In
particular, we prove that if M is a simple (g, s/(2))-module with minimal t-type V(u) satisfying u > 3(A1 +A5)
(note that u € Zg as t = sl(2)), A1, A, being the maximum and submaximum eigenvalues in g of a Cartan
subalgebra t of t = s/(2), then M is reconstructible by its n-cohomology. This yields a classification of simple
(g,5s1(2))-modules M with u > %(/\1 + A7) and proves that all such simple (g, f)-modules have finite type over
t. For the principal sl(2)-subalgebra the bound %(/\1 + Ap) is linear in rk g, while the bound established in
[PZ2] is cubic in rk g. In addition, when { is a direct summand of a symmetric subalgebra f of g, we obtain
new reconstruction results for Harish-Chandra modules.

In Section 7 we prove that for u > 314, the socle of the fundamental series module is isomorphic
to R'T+(Ly(E)), where Ly(E) is the simple lowest weight module associated to the data (p, E). The relative
Kazhdan-Lusztig theory [CC] yields an explicit formula for the t-character of L,(E). In turn, the theory of
the derived Zuckerman functors yields an explicit formula for the f-character of the strongly reconstructible
module R'Tt(L,(E)).

Section 8 is devoted to examples. We consider six explicit pairs (g, s/(2)) with rk g = 2 and we compute
the respective sharp bounds on u which ensure that a simple (g, s(2))-module with minimal sI(2)-type V(u)
is strongly reconstructible. For a principal sI(2)-subalgebra of sp(4) this sharp bound is the one established
in the present paper, in the other five cases it turns out to be the bound from [PZ2].
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In the final Section 9 we discuss the possibility that, for f ~ s/(2) and a large enough 1, the functor R'T
is an equivalence between a certain category of p-finite modules Cy 142 and a category of (g, f)-modules
Ci. Proving or disproving this statement is an open problem. We conjecture that if n > 1(1; + A,), then
erf’t is an equivalence of categories between Cy 1 42 and Cy ;.

Acknowledgements. We thank Vera Serganova for pointing out to us Examples 1 and 2 in Subsection
8.7. Both authors acknowledge partial support through DFG Grant PE 980/3-1(SPP 1388). 1. Penkov
acknowledges the hospitality and partial support of Yale university, and G. Zuckerman acknowledges the
hospitality of Jacobs University Bremen.

1. NOTATION AND PRELIMINARY RESULTS

We start by recalling the setup of [PZ2].

1.1. Conventions. The ground field is C, and if not explicitly stated otherwise, all vector spaces and Lie
algebras are defined over C. The sign ® denotes tensor product over C. The superscript * indicates dual
space. The sign &€ stands for semidirect sum of Lie algebras (if | = I'€l”, I’ is an ideal in [ and 1" = [/T").
H (1, M) stands for the cohomology of a Lie algebra [ with coefficients in an I-module M, and M' = H(I, M)
stands for space of l-invariants of M. By Z(I) we denote the center of [. A’() and 5'( ) denote respectively
the exterior and symmetric algebra.

If Tis a Lie algebra, then U(I) stands for the enveloping algebra of [ and Z;;y denotes the center of
U(l). We identify [-modules with U(I)-modules. It is well known that if [ is finite dimensional and M is
a simple [-module (or equivalently a simple U(l)-module), Zy;1) acts on M via a Zy-character, i.e. via an
algebra homomorphism Oy : Zyq) — C.

We say that an [-module M is generated by a subspace M’ ¢ M if U(I) - M’ = M, and we say that M
is cogenerated by M’ C M, if for any non-zero homomorphism i) : M — M, M’ N ker ¢ = {0}. By SocM we
denote the socle (i.e. the unique maximal semisimple submodule) of an [-module M; by TopM we denote
the unique maximal semisimple quotient of M, when M has finite length.

If [is a Lie algebra, M is an [-module, and w € I, we put M¥ := {m e M | [-m = w()m VI € I}. By
suppM we denote the set {w € I' | M # 0}.

A finite multiset is a function f from a finite set D into IN. A submultiset of f is a multiset f” defined on
the same domain D such that f’(d) < f(d) for any d € D. For any finite multiset f, defined on an additive
monoid D, we can put py := 1 Yep f(d)d.

IfdimM < oo and M = @mev M%, then M determines the finite multiset chjM which is the function
w — dim M® defined on supp,M.

1.2. Reductive subalgebras, compatible parabolics and generic i-types. Let g be a finite-dimensional
semisimple Lie algebra. By g-mod we denote the category of g-modules. Let f C g be an algebraic
subalgebra which is reductive in g. We fix a Cartan subalgebra t of f and a Cartan subalgebra b of g such
thatt C . By A we denote the set of h-roots of g,i.e. A = {suppbg} \ {0}. Note that, since fis reductive in g, g

is a t-weight module, i.e. g = @ et g, We set Ay := {supp,a} \ {0}. Note also that the IR-span of the roots
of b in g fixes a real structure on b, whose projection onto t* is a well-defined real structure on t*. In what
follows, we will denote by ReA the real part of an element A € t*. We fix also a Borel subalgebra b; C f with
bt O t. Then b; = tan;, where 1; is the nilradical of bs. We set p := pehn,- The quintet g, b, f, by, t will be fixed
throughout the paper. By W we denote the Weyl group of g, and by C(:) - centralizer in g.

As usual, we will parametrize the characters of Z;(,) via the Harish-Chandra homomorphism. More
precisely, if b is a given Borel subalgebra of g with b > §) (b will be specified below), the Zy;)-character
corresponding to k € h* via the Harish-Chandra homomorphism defined by b will be denoted by 0, (0

is the trivial Z;(4)-character).

P chbb



4 IVAN PENKOV AND GREGG ZUCKERMAN

By (, ) we denote the unique g-invariant symmetric bilinear form on g* such that {(a, @) = 2 for any
long root of a simple component of g. The form ( , ) enables us to identify g with g*. Then | is identified
with b*, and f is identified with . We will sometimes consider ( , ) as a form on g. The superscript L
indicates orthogonal space. Note that there is a canonical f-module decomposition g = f@® . We also set
Il % |I?:= (x, %) for any x € b*.

We say that an element A € t* is (g, f)-regular if (ReA, o) # 0 for all 0 € A;. To any A € t* we associate
the following parabolic subalgebra p, of g:

pr=he (@ g,

aEA,

where A) = {a € A | (ReA, o) > 0}. By my and n; we denote respectively the reductive part of p (containing
bh) and the nilradical of p. In particular p; = my®n,, and if t is br-dominant, then py Nt =b,. We call p, a
t-compatible parabolic subalgebra. A t-compatible parabolic subalgebra p = m®n (i.e. p = p, for some A € t*)
is minimal if it does not properly contain another t-compatible parabolic subalgebra. It is an important
observation that if p = m®n is minimal, then t C Z(m). In fact, a t-compatible parabolic subalgebra p is
minimal if and only if m equals the centralizer C(t) of t in g, or equivalently if and only if p = p; with A
(g, f)-regular. In this case n N f = n;.

Any t-compatible parabolic subalgebra p = p, has a well-defined opposite parabolic subalgebra
P := p_y; clearly p is minimal if and only if P is minimal.

Lemma 1.1. If ReA([t, f] N t) # 0, then p, and t generate the Lie algebra g.

Proof Since ReA([f, f] N't) # 0, there exists an s/(2)-subalgebra ¥’ C f such that ReA(t N ¥') # 0. By
definition, p, contains all ¥'-singular vectors of g. Hence p, generates g as a f'-module, i.e. p) and ¥
generate g. O

A t-type is by definition a simple finite-dimensional f-module. By V(u) we denote a f-type with bs-
highest weight u (u is then f-integral and bi-dominant). Let V(u) be a -type such that 1 +2p is (g, f)-regular,
and let p = m@n be the minimal compatible parabolic subalgebra p42,. Put py := pengn and pn := pPengn-
Clearly pn = pult. We define V(u) to be generic if the following two conditions hold:

(1) (Reu +2p — py,a) > 0 Va € suppns;
(2) (Rep +2p — ps, ps) > 0 for every submultiset S of chin.

It is easy to show that there exists a positive constant C depending only on g,f and p such that
(Reu +2p, ) > C for every a € supp;n implies p,12, = p and that V(u) is generic.

In agreement with [PZ2], we define a g-module M to be a (g, )-module if M is isomorphic as a f-module
to a direct sum of isotypic components of f-types. If M is a (g, f)-module, we write M[u] for the V(u)-isotypic
component of M, and we say that V(u) is a T-type of M if M[u] # 0. We say that a (g, f)-module M is of finite
type if dim M[u] # oo for every t-type V(). We will also refer to (g, f)-modules of finite type as generalized
Harish-Chandra modules.

Let ©; be the discrete subgroup of Z(f)" generated by supp,;a. By M we denote the class of (g, f)-
modules M for which there exists a finite subset S C Z(})* such that suppzpM C (S + ©y). If M is a module
in M, a t-type V(u) of M is minimal if the function i’ || Rey’ + 2p ||*> defined on the set {i” € t* | M[p’'] # 0}
has a minimum at y. Any non-zero (g, f)-module M in M has a minimal f-type. This follows from the fact
that the squared length of a vector has a minimum on every shifted lattice in Euclidean space.

1.3. The fundamental series of generalized Harish-Chandra modules. Recall that the functor of t-locally
finite vectors TI'yt is a well-defined left exact functor on the category of (g, t)-modules with values in (g, f)-
modules,
Ti(M) = Y M.
M’ cM,dim M’=1,dim U(f)-M’ <co
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By RTyy := EB 50 R’Tﬁ we denote as usual the total right derived functor of I't, see [PZ1] and the references
therein. -

If M is a (g, )-module of finite type, then I't o(M*) is a well-defined (g, f)-module of finite type and
It o(-") is an involution on the category of (g, f)-modules of finite type. We put I'1o(M") = M;. There is an
obvious g-invariant non-degenerate pairing M x M; — C.

Lemma 1.2. Let W be a finite-dimensional g-module and M be a finite length (g, ¥)-module of finite type over . Then
a) W® M is a (g, ¥)-module of finite type.
b) W ® M is a g-module of finite length.

Proof a) Since tis finite dimensional and reductive in g, the class of (g, f)-modules is closed under tensor
products. Let V(u) be a t-type. Since W is finite dimensional, Hom:(V(u), W ® M) = Hom:(V (1) ® W*, M),
which is finite dimensional, since V(i) ® W* is finite dimensional and M has finite type over .

b) Since M has finite length, M is finitely generated over g. Note that M, the t-finite dual of M is
a (g, f)-module of finite length and hence M; is finitely generated over g and likewise W* ® M; is finitely
generated. Hence, (W ® M); is finitely generated, and satisfies the ascending chain condition. We have
already seen that W ® M is finitely generated; thus W ® M satisfies the ascending chain condition. We
conclude that W ® M has finite length. O

We also introduce the following notation: if q is a subalgebra of g and | is a g-module, we set
indy] = U(g) ®u(q) J and prog] := Homy ) (U(g),]). For a finite-dimensional p- or p-module E we set
Ny(E) := Ftlo(prog(E ® AMM T (n))), N(E") := Ftlo(prog(E* ® A9mn(1*))). Note that both Np(E) and N(E*) have
simple socles, as long as E itself is simple.

The fundamental series of (g, f)-modules of finite type F'(p, E) is defined as follows. Let p = m@n be a
minimal compatible parabolic subalgebra, E be a simple finite dimensional p-module on which t acts via
the weight w € t*, and p := w + 2p;r where py := pn — p. Set

F(p,E) := RTy(Ny(E)).

Then the following assertions hold under the assumptions that p = p,42, and that u is bi-dominant,
f-integral and yields a generic f-type V(1) (Theorem 2 of [PZ2]).

a) F(p, E)is a (g,f)-module of finite type in the class M, and Zy; ) acts on F'(p, E) via the Zy;4-character
Ov+5 where p := pey,p for some fixed Borel subalgebra b of gwithb > ), b C pand b Nt = by, and where v
is the b-highest weight of E (note that v|; = w).

b) Fi(p,E) =0 fori # s := dimmn; .

¢) There is a f-module isomorphism

F(p,E)[u] = CH™E @ V(y),

and V(u) is the unique minimal f-type of F*(p, E).

d) Let F*(p,E) be the g-submodule of F*(p, E) generated by F5(p, E)[u]. Then F°(p,E) is the unique simple
submodule of F*(p, E), and moreover, F*(p, E) is cogenerated by F°(p, E)[u]. This implies that F*(p, E); is
generated by F°(p, E);[ww(—p)], where wy, € Wy is the element of maximal length in the Weyl group W;
of t.

e) For any non-zero g-submodule M of F°(p, E) there is an isomorphism of m-modules

H'(n, M)* = E.

2. ON THE FUNDAMENTAL SERIES OF (g, f)-MODULES

In the rest of the paper, p is a minimal t-compatible parabolic subalgebra and E is a simple finite-
dimensional p-module. Then n- E = 0 and E is a simple m = C(t)-module. Fix a Borel subalgebra b,, in m
such that ) € b,,,. Write b = b,,®1; then b is a Borel subalgebra of g. Set p = Pchyb-



6 IVAN PENKOV AND GREGG ZUCKERMAN

Theorem 2.1. Assume that p = pu40, and that y is generic. Assume in addition that Ny(E) is a simple g-module.
Then F*(p, E) is a simple (in particular, non-zero) g-module.

Proof By the Duality Theorem from [EW],
(1) (RT(X)); = R¥Tiy(X})

for any (g, t)-module X of finite type over t. Set X = N,(E). Then X is a (g,t)-module of finite type over t
(see for instance [Z]), and (D) yields fori =s

F(p, E); = R°T14(Np(E)y).
We have (ind%(E* ® Adimn 1))y pro%(E ® AYM (1)), Thus
Np(E) = Ty o(prod(E ® AY™"(n))) = (ind$(E* ® AY™"(n)));.

Moreover, N, (E) has finite type over t. Hence, Ny(E); = indj(E* ® Ad™"(n)).
By Frobenius reciprocity, there is a canonical g-module homomorphism

N(E); = ind%(E* ® AY™ (")) 5 Ny(E")

whose restriction to E* ® AY™™(n*) is the identity. As N p(E); is simple by our assumption, ¢ is injective.
Moreover, ¢ must be surjective as the t-characters of Ny(E); and N3(E") are equal. Therefore there is a
commutative diagram of isomorphisms

RTi(Ny(E);) — RT14(Ng(E"))
]l vl
y: FMmE; S FpE).

The fact that V(u) is generic for p implies immediately that V(u)* is generic for p. Thus F°(p, E)
is cogenerated by its minimal f-isotypic component F°(p, E)[u], and F*(p, E*) cogenerated by its minimal
f-isotypic component. On the other hand, the isomorphism y implies that F*(p, E”) is also generated by its
minimal t-isotypic component as F*(p, E); is generated by its minimal t-isotypic component. We conclude
that F°(p, E*) = F°(p, E); is simple, which in turn shows that F°(p, E) = (F*(p, E);); is simple. O

Assume that the b-highest weight of E is v € h*. Set w := v|y and p := w + 2p;;.

Corollary 2.2. Let v + p be b-dominant, i.e. Re{v + p,y) > 0 for any root y of b in b. Then, under the assumption
that u is generic and that p = py42p, we have F'(p,E) = 0 for i # s. Moreover F*(p, E) is simple. Thus, F'(p, E) has
finite length for all i > 0.

Proof Under the hypothesis on v, ind%(E* ® Admn (1)) = Ny(E); is simple, hence Ny(E) is simple, and
the statement follows from Theorem 21100
In the rest of this section, p is an arbitrary minimal t-compatible parabolic subalgebra.

Lemma 2.3. For any C € Zs, there exists a b-dominant integral weight o of g such that {ool;, a) > C for every
weight a of tin .

2, vl
S22

Regard t* as a subspace of h* via the Killing form of g restricted to ). Then, )
hin nand (x, y) = 0 for every root y of h in m. Hence, x is a dominant integral weight of f) in g. Finally,
choose a positive integer r such that (rx, @) > C for every weight a of t in n. Then 0¢ = r« is a b-dominant
weight of g as required. O

Proof Since p is t-compatible, there exists xk € t* such that € Zsy for every root y of b in n.

€ Zs for every root y of

Proposition 2.4. Suppose that v + p is b-dominant. Then, Fi(p,E) = 0 for i # s, and F*(p, E) has finite length.
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Proof Fix a constant C € Z.o. Chose m € Z.( such that (Reu +2p, a) > —mC for every a € supp;n. Set
o1 = (m + 1)og, where 0¢ is defined in Lemma[2.3] Then (Rey + 01 +2p, a) > C for every a € supp;n, and by
possibly making C larger, we can assume that u + 07 is generic. In particular, py4q,42p = P.

Next, let v; := v + 01, and E; be a simple finite-dimensional m-module with highest weight v;. Set
p1 := p+o1l. Then, by Corollary2.2] Fi(p, Eq) =0fori #s,and F*(p, E1) is a simple g-module. Furthermore,
by Propositions 2.6 and 2.12 in [Z]], Fi(p,E) is a direct summand of Vy(01)* ® Fi(p, E1) where V,(01) stands
for the finite-dimensional g-module with b-highest weight 1. Lemma [[.2limplies the statement. O

Remark. By a more refined argument with translation functors [BG] one can show using the result
of [PZ3] that F(p, E) is simple and hence non-zero,while Fi(p, E) = 0if i # s.

Theorem 2.5. The (g, )-module F'(p, E) has finite length for any simple p-module E and any i € Z..

Proof We will assume at first that v+ p is a regular weight of h in g. Then, there exists a unique element
w € W such that w™! (v + p) is dominant for f) in g. Denote by d(v) the length I(w). We will argue by induction
on d(v). The theorem is true for d(v) = 0 by Proposition[2.4l

Suppose we assume the theorem for d(v) = n € Z, n being fixed. If d(v) = n+1, we can choose a root
y of b in g such that d(s,(v)) = n. Let D have highest weight s, (v + p) — p. We will show that the finiteness

of the length of F(p, D) for all i implies the finiteness of the length of Fi(p, E) for all i.
2(Rev+p, )
Case I: o € Zy.
Choose a translation functor W so that W(N,(D)) has a central character which is singular with respect
to precisely ). Let ®@ be the translation functor adjoint to W. By highest weight module theory we have a
short exact sequence
0 — Ny(D) = @ 0 W(N,(D)) — Ny(E) = 0.

This short exact sequence yields a long exact sequence
... = RTi1(Np(D)) = RT11® o W(Ny(D)) — RT4(Np(E)) = RHT(Np(D)) — .. .
We can rewrite this long exact sequence as
... > ®oW(Fi(p,D)) - Fi(p,E) —» F*(p,D) — ...

By assumption, Fi(p,D) and F*1(p, D) have finite length. Hence, by Lemma [1.21 ® o Y(Fi(p, D)) has
finite length. By the long exact sequence, F'(p, E) has finite length.

CaseII: % ¢ Z>p.

Choose an integral weight o € h* such that if w(v + p) is dominant, s, w(v — o + p) is dominant. Let D be
a finite-dimensional simple m-module such that the highest weight of D is v — 0. There exists a translation
functor W such that W(N,(E)) = Ny(D).

For the adjoint functor ®, ®(N(D)) = Ny(E). Then RT;(®(N(D))) = RT(Ny(E)).

Hence, Fi(p, E) = ®(F(p, D)), and by Lemma [L.2] the finiteness of the length of Fi(p, D) implies the
same for Fi(p,E). O

Corollary 2.6. Let A be a finite-dimensional (p,t)-module. Then RTy(Ny(A)) has finite length for all i.

Proof Induction on the length of A as a p-module: if A has length 1, then n- A = 0, and we are back to
Theorem[2.5 O

In what follows we denote by Cj the full subcategory of g-modules consisting of finitely generated
(g, t)-modules which are locally p-finite.

Lemma 2.7. Let N € Cp. Then N has finite length, each simple constituent of N is isomorphic to SocNy(D) for
some simple finite-dimensional m-module D, and N has finite type over t.
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Proof Let {vy, ..., v,} generate N over U(g) and let B = (U(P))v; + (U(P))v2 + ... + (U(P))v,. Then Bis a
finite-dimensional p-module. Moreover, N is a quotient of ind%B, for which the lemma is well known. O

Proposition 2.8. Let N € Cyt. Then R'T:(N) has finite length for all i.

Proof By Lemmal.7, N; € Cp+. Any module in C,; admits a resolution by modules of the form ind}C.,
where each Cy is a finite-dimensional (p, t)-module: ind%C. — N; — 0. By considering the t-finite dual
of this resolution, we obtain a resolution of (N}); = N by modules of the form N,(A’), where each Akis a
finite-dimensional (p, t)-module.

Write this resolution as N < N,(A’). We have a convergent spectral sequence of g-modules with
E;’b = RT11(Np(A?)), and which abuts to RT;(N). If we fix i € Zs, there are only finitely many terms Eg’b
with a + b = i, since botha > 0 and b > 0. Hence, P E%’ has finite length. Finally, RT;(N) has finite
length O

By Ct we denote the full subcategory of g-mod consisting of (g, f)-modules which have finite type
over f and have finite length over g.

Theorem 2.9. IfN € C and i > 0, then R'Ty4(N) € Cy.

a+b=i

Proof The statement follows from Proposition2.8land from the “finiteness statement” of Theorem 2.4
oin[Z]. o
If A is a full abelian subcategory of g-mod, let Ko(A) be the Grothendieck group of ‘A.

Definition 2.1. If N € Cy, let @4(N) = Y.(=1)/[RT11(N)] in Ko(C).
The fact that ©¢(N) is well-defined follows from the vanishing statement of Theorem 2.4 b) in [Z].
Proposition 2.10. The map N — ©x(N) yields a non-zero homomorphism Ozt : Ko(Cpt) — Ko(Cy).

Proof This is a well-known fact which follows from the long exact sequence of cohomology. O

Example.

a) If E is a finite-dimensional simple m-module with highest weight v such that v + f is regular and
g-dominant, then ®;(Ny(E)) = (=1)°[F*(p, E)]. If u is bi-dominant and f-integral, then ©;(N,(E)) # 0 by the
remark after Proposition[2.4l

b) ©:+(C) = |W;|[C], where W; is the Weyl group of f. Indeed, in the proof of Theorem 2.4 in [Z] it is
shown that

Homy(V, RT+(C)) = Ext;(V,C)

for any simple finite-dimensional f-module V. Since Ext;t(V, C) = 0for V # C, we conclude that ©4(C) =
Y (=1)' dim Ext;' +(C, C). Moreover, Ext;' (C,C)=H i(t,t,C), where H'(f, t, C) stands for the relative Lie algebra
cohomology. / /

It is well-known that Hi(f, t,C) is the cohomology of the variety Ko/Ty, Ko being a connected affine
real algebraic group with Lie algebra t and Ty being a torus in Ky with Lie Tp = ty. Moreover, Ko/Ty is
homeomorphic to the flag variety of K and hence the Euler characteristic of Ky/Ty is [Wil, by the Bruhat
decomposition of the flag variety. Thus,

Z(—l)i dim H'(£,t,C) = |Wl.
i

3. ON THE M-COHOMOLOGY OF (g, f)-MODULES

We start by recalling [PZ2, Proposition 1] in the case when f is semisimple. In what follows, M will
denote a (g, f)-module. Note that M is automatically in the class M.
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Proposition 3.1. In the category of t-weight modules, there exists a bounded (not necessarily first quadrant)
cohomology spectral sequence which converges to H (n, M), with

Eq,b — Ha+b—R(a)(nf, M) ® V;,
where a runs over {0,...,y} for some y,R is a monotonic function on {0,...,y} with values in Z-o such that
R(a) < aand R(y) = r, V, is a t-submodule of AR@Om N 1) for every a, and V,, = A"(n N t+). We also have
@R(a):p V,= AP(nnth).

Suppose we are interested in H/(n, M) for a fixed j. Write

r
El = @ HI™P(n, M) ® AP(n N T
p=0

a,b
a+b=I El :

Then E{ =P
Lemma 3.2. Fix x € t"and j, 0 < j < dimn = n. Assume that (E{_l)" = (E{H)“ = 0. Then

2 Hi(n, M)* = (E])* = @ (H/7 (n, M) @ AP (n N 1))
p=0

u

Proof This follows immediately from the definition of a convergent spectral sequence of vector spaces.

As a special case we have the following lemma. Recall that s := dim(n N f), 7 := dim(n N ).
Lemma 3.3. If H*(ng, M)* = 0 for %’ := x + 2p;t, then H"(n, M)* = 0.

Proof The isomorphism (2) implies H"(n, M)* =~ H(n;, M)*' ® A"(n N #)*). O
As a consequence we have the following.

Proposition 3.4. If %’ = x + 2py is t-dominant integral, then H" (n, M)* = 0.

Proof Kostant’s theorem [Ko] implies that if 1 is f-dominant integral, H*(1y, V(1)) has pure weight
—wm(n) — 2p, where w,, is the longest element of W;. We have as a consequence that H*(n;, V(n))"' =0if 2’
is f-dominant integral. Since M is a direct sum of simple finite dimensional f-modules V(1) for various 7,
we conclude that H¥(1;, M)*" = 0. (We have used our assumption that rk f;; > 0). Then H"(n, M)* = 0 by
Lemma[3.3l O

We now recall that H (11, M) is an (m, mN f)-module. This is established in [V2, Ch. 5] in the case when
f is a symmetric subalgebra but the argument extends to the case of a general reductive in g subalgebra t.
Note that m N f = t. The following statement is identical to [PZ2, Corollary 3].

Proposition 3.5. a) If M is a (g, f)-module of finite type, then H (n, M) is an (m, t)-module of finite type. Moreover,
if M is Zyg)~finite (i.e. the action of Zyyq) on M factors through a finite-dimensional quotient of Zy) ) then H (n, M)
is Zu(m)—ﬁnite.

b) If v is a minimal compatible parabolic subalgebra and M is a (g, ¥)-module of finite type which is in addition
Zy(g)-finite, then H (n, M) is finite dimensional.

4. RECONSTRUCTION OF (g, f)-MODULES

Suppose M is simple. Let V(u) be a minimal -type of M (a priori V(u) is not unique). Suppose u +2p
is (g, f)-regular and p = p42p.
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Definition 4.1. The pair (M, ) as above is strongly reconstructible if H'(n, M)~ is a simple m-module and
there is an isomorphism of g-modules

©) M = SocF(p, H' (n, M)+~27),

The isomorphism (B) implies via Theorem 2 of [PZ3] that V(u) is the unique minimal f-type of
M. Moreover, dim Hom¢(V(u), M) < dimE. Therefore, if the pair (M, u) is strongly reconstructible, u is
determined by M as the highest weight of the unique minimal f-type of M. This allows us to simply speak
of strongly reconstructible simple (g, f)-modules rather than of strongly reconstructible pairs.

The first reconstruction theorem of [PZ2] now implies the following.

Theorem 4.1. If M is a simple (g, ¥)-module of finite type with a generic minimal t-type V(u), then M is strongly
reconstructible.

Below we will see (in particular in Subsection 8.2) that the converse to the above theorem is false. We
will also see (in Subsection 8.7) examples of simple finite-dimensional m-modules E such that F°(p, E) has a
reducible socle.

Definition 4.2. A simple (g, t)-module M of finite type over t is weakly reconstructible if for some minimal ¥-compatible
parabolic subalgebra v, there exists an injective homomorphism of g-modules

M = F°(p, TopH' (n, M)).

Theorem 4.2. Let My, My € C; be simple with central characters 0, and 0, respectively. Assume Ay and A, are
dominant regular with respect to a Borel subalgebra b C o; assume further that Ay — Ay is dominant integral . Finally
assume that @ is a translation functor such that ®(My) = My. Then, My is weakly reconstructible if and only if M,
is weakly reconstructible.

Proof Assume that M; is weakly reconstructible. Then for some simple quotient E; of H" (11, M), we
have an injection of g-modules a7 : My — F°(p,E1). By assumption, @ is an equivalence of categories.
Hence we have an injection a; : My — ®(F*(p, E1)). By [Z], we have an isomorphism ®(F*(p, E1)) = F¥(p, Ez)
for a simple m-module E;. Moreover, we have a translation functor ®" such that ®"(E;) = E,. Thus, we
have an injection a; : My — F*(p, ®"(E1)).

Now let 0} be the central character of E; for i = 1, 2. Let P} and P}, be the respective projec-
tion functors. By assumption we have a surjection of m-modules ; : P}, (H'(n,My)) — E;. Apply the
translation functor @™ to f; to obtain a surjection f, : ®"PY, (H'(n, M1)) — ®™(E;) = E,. By [KV, Ch. 7],
O"PY (H'(n,M1)) = Py (H (n,My)). Thus, E; is a quotient of H'(n, M). Finally, the injection a; yields an
injection M, — F°(p, TopH'(n, M2)). Hence M, is weakly reconstructible. O

5. PRELIMINARY RESULTS ON (g, sI(2))-MODULES

From now on we assume that f is isomorphic to sl(2,C). We fix a standard basis {e, i, f} for f; the
eigenvalues of ad /1 in g will be integers. Let t = Ch be the Cartan subalgebra of f generated by #, and
let p = py- where " € t*, h*(h) = 1. The subalgebra p is automatically a minimal t-compatible parabolic
subalgebra.

For t =~ sl(2), our Lemma [3.2] simplifies to the following.

Lemma 5.1. Fixx €t'and j, 0 < j <r+ 1. Write
El = HO(y, M) ® A(n N E4)" @ H! (n, M) ® A (N )",
Suppose that (E{_l)“ = (E{H)“ = 0. Then there is an isomorphism of t-modules

Hi(n, My* = (E]y* = (H(n, M) ® Al(n N £4)" @ H' (g, M) ® A/ (n 0 E-))%.
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In particular, let j = r and assume %’ = % + 2p;; is dominant integral for f. Then (E;‘l)" = 0 implies

(4) HY (o, MY = H (e, M) @ (H' (e, M) & (n 1 £5)) .

More generally, x” dominant integral implies
K,

(5) dim H'(n, M)* < dim H(ng, M) + dim (H' (n, M) ® (n N £))

From now on we identify integral weights » of t with the corresponding integers, »#(h). Let A; and
A2 be the maximum and submaximum weights of t in n N - (we consider A; and A; as integers); if A; has
multiplicity at least two in n N+, then A, = A5.

Proposition 5.2. Let u be a nonnegative integer and let M be a (g, ¥)-module with the property that 6 < u implies
M[é8] = 0.
a) [If]y > $A1, then dim H"(n, M)® < dim HO(ny, M)*.
b) If u > (A1 + Ap), then
dim H'(n, M)® = dim H°(n;, M)

Proof a) Our hypothesis on M implies that if M[5] # 0, then 6 > u > 3A;. Since H'(n;, M) has weights
—0 — 2 with 6 as above, we see that
(H g, M)® (nN fJ'))y = (0. Hence (2) implies the inequality in a).
b) It suffices to show that (EQ‘l)“’ = 0. Then the statement from (), taking into account the vanishing of
(H' (i, M) ® (n N ¥))¥, implies (b).

We now check that (Eq‘l)‘” = 0. We have

(B = (H(, M) @ A" (n N 1)) @ (H' (g, M) ® A 2((n N T4)7)“.

Furthermore,
ATH (N E)) =2 Nt @ AT(nn ),
A2 (N DY) = AN )@ A'(nN )
implies
(6) (ErNe = (H (g, M) ® (n N E9)H @ (H (ny, M) @ A*(n N EH))H

as the weight of A"(n N ) equals 2p;-. The first term of (@) vanishes as the t-weights of m N+ are
strictly positive and the smallest t-weight of H’(n;, M) is pi. The maximal t-weight of the second term is
—u =2+ Ay + Ay, hence the inequality p > @ implies the vanishing of the second term of (6). O

Our next task is to state and prove a vanishing theorem for F%(p,E), where E is a simple finite

dimensional m-module. Let w € t* be the weight of t in E.
Proposition 5.3. Suppose yt = w + 2pi+ and p > 0. Then FO(p, E) = 0.

Proof By definition
F(p, E) = Tiy(No(E)).
We have N(E); = ind}(E*® AY™®W (1)) and the b-highest weight of indj(E*® AY™ (1)) equals —v—2p, € b".

On the other hand, v'(h) > 0 for any b-dominant weight. This follows from the fact that any b-
dominant weight is a non-negative linear combination of roots of b (see for instance [Kn], p. 686).

The g-module Ny,(E) has a finite-dimensional submodule if and only if N(E); has a finite-dimensional
quotient. Note that I't (N, (E)) is an integrable g-module as N(E) is p-locally finite and f and p generate g.
Therefore, I't (N, (E)) = 0 whenever N,(E) has no finite-dimensional submodule, i.e. whenever —y —2p,, is
not b-dominant. The fact that (—y — 2p,)(h) = —w — 2pn = u — 2p < 0, allows us to conclude that v — 2p,, is
not b-dominant, i.e. that I't;(Ny(E)) = 0. O
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Proposition 5.4. PZ(p, E)=0.

Proof The statement is a direct corollary of Proposition 3 a) in [PZ2]. Note that this proof does not use
genericity. O

Proposition 5.5. (cohomological Frobenius reciprocity) Let u > 0. If M is a (g, ¥)-module such that H (n, M) is finite
dimensional, then we have a natural isomorphism

Homg (M, F'(p, E)) = Hom,,(H' (n, M)®, E).

Proof This follows from the existence of a (not necessarily first quadrant) spectral sequence with E,-
term E;’b = Extf‘n,t(H"b(n, M), E) converging to Ext‘é;b(M, Fl(p, E)), see Proposition 6 of [PZ2]. By assumption
H'(n, M) is finite dimensional. Choose by to be the least possible integer with Ext;n,t(Hr‘bO(n, M), E) # 0.

By the same argument as in the proof of Theorem 2, b) in [PZ2], we conclude that
Hom,,(H"~t(n, M), E) # 0. Thus, Eg’bo # 0 and Eg’b = 0 for b < by. Consequently, Eg’bo =~ Eg;,bo and we
deduce that Extsz(M, Fl(p,E)) # 0. Hence, by > 0 and the spectral sequence is a first quadrant spectral
sequence, with corner isomorphism Homgy(M, F!(p, E)) = Hom,,(H"(n, M), E). O

Corollary 5.6. Suppose 1 € Zx.

a) Let X be any g-submodule of F'(p,E). Then E is a quotient of H'(n, X)®. In particular, if X is simple, then
X is weakly reconstructible.

b) Let M be a simple (g, t)-module such that H (n, M) is finite dimensional and E is isomorphic to a quotient of
H'(n, M)®. Then M is isomorphic to a submodule of SocF'(p, E). In particular M is weakly reconstructible and M
has finite type over t.

Corollary 5.7. Fix a central character 6. The set of isomorphism classes of simple (g, t)-modules M with central
character O such that dim H"(n, M) < oo and H"(n, M)* # 0 for some x € Z>_, is finite.

Proof A g-module M as in the corollary is isomorphic by Corollary5.6l(b) to a g-submodule of F L(p,E),
where E’ runs over finitely many simple finite-dimensional p-modules. Since F!(p, E’) has finite length for
each E’ by Theorem[2.5] the statement follows. O

Theorem 5.8. Suppose t is reqular in g. Let M be a simple (g, ¥)-module, not necessarily of finite type over t, with
lowest t-type V(u) for u > 0.

a) If H"(n, M)® # O, there exists a 1-dimensional simple quotient E of H (n, M)®. For any such E we have an
injective homomorphism M — F'(p, E). Hence M is weakly reconstructible and M is of finite type over t.

b) If M is of infinite type over t, then H'(n, M)® = 0[]

Proof a) Since M is simple, Proposition3.5b) implies that H (1, M) is finite dimensional. Note that the
regularity of f in g implies that m is a Cartan subalgebra of g. Hence there exists a 1-dimensional simple
m-quotient E of H"(n, M)®. Proposition5.5implies now that any such E induces an injective homomorphism
of M into F!(p, TopH'(n, M)). In particular, M is weakly reconstructible and is of finite type over t.

b) Follows from a). O

6. STRONG RECONSTRUCTION OF (g, 5/(2))-MODULES

In the rest of the paper E, p, m, t, u, w are as in Section 1. We start with the following result on the of
(g, ¥)-modules.

Theorem 6.1. Let u > 1A,  Then SocFl(p,E) = FYp,E) and F'(p,E) is simple. In particular,
dim Hom¢(V (1), SocF!(p, E)) = dim E.

1gee Theorem 9 of [PZ1].



ON THE STRUCTURE OF THE FUNDAMENTAL SERIES OF GENERALIZED HARISH-CHANDRA MODULES 13

Proof Let X be a non-zero submodule of F!(p,E). Since F'(p,E) is a (g, f)-module of finite type and
is Zy4-finite, Proposition 8.5 b) and Proposition 5.5 apply to X, yielding a surjective homomorphism of
m-modules H"(n, X)® — E. Hence dim E < dim H'(n, X)“. Next, by [PZ3],

dim Ho(n;, Fl(p, E))® = dimE,
therefore dim H(n;, X)* < dimE by the left exactness of H(ny,-). Finally, by Proposition a),
dim H' (1, X)® < dim H%(ny, X)¥. Combining these inequalities we see that
dim H" (n, X)® = dim H(n, X)* = dim E.

Hence X[u] =F L(p, E)[ (], or equivalently X 2 F (p, E). Since in this way F 1(p, E) is contained in any non-zero
submodule of F!(p, E), F'(p, E) is simple and F'(p, E) = SocF(p, E). O

Corollary 6.2. Under the assumptions of Theorem [6.1] let X # 0 be a g-submodule of FY(p,E). Then the minimal
t-type of X is V(u), dim Homy(V (i), X) = dim E, and there is an isomorphism of m-modules H"(n, X)* = E.

Proof The statement was established in the proof of Theorem[6.1] O

Corollary 6.3. Let M be a simple (g, t)-module whose minimal t-type V(u) satisfies yu > $A1. Then, if H'(n, M) is
finite-dimensional and H"(n, M)* # 0, M is strongly reconstructible.

Proof Let E’ be a simple quotient of the m-module H"(n, M)*. By Proposition M is a simple
submodule of F!(p, E’), hence by Theorem [6.1]

M = SocFl(p, E').
O

Corollary 6.4. Let M be a simple (g, t)-module of finite type such that its minimal t-type V(i) satisfies i > (A1 +A2).
Then H'(n, M) is finite-dimensional, and H"(n, M)® # 0, hence M is strongly reconstructible by Corollary[6.3]

Proof The statement follows from Corollary [6.4 via Proposition5.2]b). O

Corollary 6.5. The correspondences

M ~s H'(n, M)*

E ~> SocF'(p, E)
induce mutually inverse bijections between the set of isomorphism classes of simple (g, f)-modules of finite type M
whose minimal t-type V () satisfies 11 > 3(A1 +A2) and the set of isomorphism classes of finite dimensional m-modules
on which t acts via w = p — 2py, where Zso 3 u > 3(A1 + Az).

Corollary 6.6. Suppose t is reqular in g (i.e. let t contain an element reqular in g). Suppose M is a simple (g, T)-
module (not necessarily of finite type over ¥) with lowest t-type V(u). If u > (A1 + Ay), then E = H'(n, M)® is a
1-dimensional m-module and M = F'(p, E). Thus M is strongly reconstructible. In particular, M has finite type over
L.

Proof We apply Theorem[5.8a) and Proposition[5.2]b) to conclude that, for any 1-dimensional quotient
E of H'(n, M)®, we have an injection M — F!(p, E). Since u > $(A1 +A,), there are isomorphisms M = Fl(p, E)
and H"(n, M) = E (the latter is an isomorphism of m-modules). O

Example. Let g be a classical simple Lie algebra of rank n and f = sl(2) be a principal subalgebra. Then
the claim of Corollary[6.5lis proved in [PZ2] under the assumption that u +1 > 2(}.; ;), where p = % Y.itia,
a; being the simple roots of b. It is well-known that 2(}_; 7;) grows cubically with the growth of n, while
the value 1(1; + 1) has linear growth in n. Therefore, for large 7, the result of Corollary [6.5 strengthens
considerably Theorem 3 of [PZ2] for t being a principal sI(2)-subalgebra . On the other hand, we will see in
Section 8 that for n = 2, there are cases where the bound 2(};7;) — 1 is lower that %(/\1 + Aj).
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Set now f := f® C(f) and note that f is a reductive in g subalgebra. Recall that C(f)ss C mgs. Moreover,
g C C(F) & mgs = C(D)ss-

Proposition 6.7. If mg; = C(Y)ss, then for any simple (g,%)-module M of finite type over ¥, H'(n, M) is finite
dimensional.

Proof By PropositionB.5la), H (1, M) is an (m, m N ¥)-module of finite type as p is f-compatible (see also
[V2, Corollary 5.2.4]). But mn f= (ZnnH @ mg. Hence H (1, M) is an integrable m-module. Finally, [PZ2,
Corollary 3 a)] implies now that H'(n, M) is finite dimensional. O

We conclude this section with some applications to the case when  is a symmetric subalgebra.

Proposition 6.8. Assume that g is simple and ¥ is symmetric.

a) If g is classical with rank > 4, the only case of a symmetric pair of the form (g, ¥) for which ms is not equal
to C(¥)ss is the series (so(2n),s0(3) & so(2n — 3)), where ¥ = so(3).

b) I g is exceptional, then mgs = C(¥)ss. In fact, ¥is symmetric if and only if t is conjugate to the sl(2)-subalgebra
of a highest root of g.

Proof Follows from the classification of symmetric pairs. O
Corollary 6.9. Ifrk T = rk g and ¥ is symmetric, then mgs = C(})ss.

Proof Follows from Proposition[6.8] but a more elegant proof is based on Borel - De Siebenthal [BdS].
O

Corollary 6.10. Assume that tis symmetric and mg; = C(¥)ss. Let M be a simple (g, f)-module.

a) If H'(n, M)® # 0, then M is strongly reconstructible as a (g, ¥)-module; in particular M has finite type over
t.

b) If u > 3(A1 + A2), then M is strongly reconstructible as a (g, t)-module; in particular M has finite type over
t.

7. T-CHARACTERS AND COMPOSITION MULTIPLICITIES OF THE FUNDAMENTAL SERIES OF (g, S/(2))-MODULES

Assume u € Z. Set L,(E) = SocNy(E) and recall that Ly(E) is simple. Also note that Ny(E) and
Ly(E) are objects of Ct. Denote by D a variable simple finite-dimensional p-module on which t acts via
up — 2py. Non-negative integers m(E, D) are determined from the equality [N,(E)] = Y m(E, D)[L,(D)] in
the Grothendieck group Ko(Cyt). We arrange the integers m(E, D) into a matrix (m(E, D)) with rows indexed
by all possible E and columns indexed by all possible D; the rows and columns of (m(E, D)) are finitary, i.e.

each row and each column have finitely many non-zero entries. The algorithm for computing the integers
m(E, D) is discussed in [CC].

Lemma 7.1. Suppose D is not isomorphic to E. Then m(E, D) > 0 implies pp > p.

Proof We claim that the minimum t-weight of N,(E) is u + 2. To see this it suffices to note that
Ny(E); = ind%(E ® AMM () = U(R) ® (E ® AY™(n))*, as the maximum weight of Ny(E); is —w — 2py =
—w — 205 +2py — 2pn = — — 2p = — — 2 (note that p = 1). Thus, if L,(D) is a composition factor of Ny(E)
and D ¢ E, we have up +2 > u + 2, or equivalently, up > u. O

Proposition 7.2. Let u > 0. Then [FX(p, E)] = Y.p m(E, D)[R'T;+(L,(D))].
Proof Taking into account that © is a homomorphism, it suffices to prove:
a) F/(p,E) = RT4(Ny(E)) =0 fori# 1and u > 0;

b) RTi4(Ly(D)) = 0 fori# 1, m(E,D) >0, u>0.
Part a) follows from Proposition[5.3and Proposition[5.4l
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To prove part b), note that m(E,D) > 0 implies up > p > 0 by Lemma [Z1 Then F(p,D) = 0
implies RT+(Ly(D)) = 0 as R°T:+(Ly(D)) € FO(p, D). To see that R’T;+(L,(D)) = 0, note that, by the Duality
Theorem in [EW], (RZFflt(Lp(D)))§ = T't4(Lp(D);). The g-module Ly(D); is p-locally finite, simple and infinite
dimensional. As p and t generate g, I't+(Lp(D);) # 0 would imply dim L,(D); < oo. As the latter is false,
[et(Ly(D);) = 0. Part b) is proved. O

Proposition 7.3. Suppose 1 > 0.
a) Then R'T(Ly(E)) # 0, and the lowest t-type of R'Ty(Ly(E)) is V(1) of multiplicity dim E.
b) We have the following inclusions of (g, ¥)-modules:

Fl(p, E) € R'Ti(Lo(E)) € F'(p, E).

¢) If N(E) is reducible then the submodule R'T4(Ly(E)) of F'(p, E) is proper and non-zero, and hence F(p, E)
is reducible.

Proof a) By Proposition[Z.2] we have under our hypothesis
7) Fi(o, )l = ) R'Ty(Ly(D)Iel.
D

By Theorem 2 from [PZ3], Fl(», E)[u] = (dim E)V(u).

Next, apply Proposition to D. We see that [R!Tt4(Ly(D))] is a summand of [F!(p,D)]. Thus,
dim(R'Ty4(Ly(D))[u]) < dim(R'Ty(No(D)[u)).

Assume now that m(E,D) > 0 and E ¢ D. Then up > u by Lemmal[Z1l Applying Theorem 2 from
[PZ3] a second time, we have F'(p, D)[u] = 0.

We conclude that if m(E,D) > 0 and D ¢ E, RlI"f,t(Lp(D))[y] = 0. So, from formula (7) above, we
deduce that

8) F'(p, E)[p] = R'Ti(Ly(E))[ul.
This proves part a).

b) By the vanishing theorems a) and b) in the proof of Proposition[7.2] the inclusion of L,(E) into N(E)
yields an injection of R'Ty(Ly(E)) into F!(p, E); part b) follows immediately from (8) and the definition of
Fl(p, E).

¢) If Ny(E) is reducible then for some D with up > u > 0, m(E,D) # 0. So, part c) follows from
Proposition[Z.2land Proposition[7.3]a). O

Conjecture 7.4. If i > 0, then R'Ty4(Ly(E)) is a semisimple g-module.

If true, this conjecture would imply that all simple constituents of R'T;(L,(E)) are weakly recon-
structible for u > 0. This would follow from Corollary[5.6]a). See Subsection 8.7, Examples 1 and 2 for cases
when R!T;(Ly(E)) is reducible.

Theorem 7.5. Assume u > % Then R'T+4(Ly(E)) is a simple (in particular, non-zero) submodule of F'(p, E) and
R'Ty4(Ly(E)) = F'(v, E) = SocF' (», E).

Proof By Proposition[Z.3] we have F'(p, E) C R'Tt+(Ly(E)). By the Duality Theorem, (R'T tt(Lp(E))); =
Rll”f,t(Lp(E)z).

Let F'(p,E)* be the submodule of Rll},t(Lp(E)I) consisting of vectors which are orthogonal to
RIT;¢(Ly(E)) via the above duality. By Proposition[7.3] F'(p, BE)u]l = erf’t(Lp(E))[[u]. Hence, F1(p, E)t[-ul =
0.

By construction, F I(p, E)* is a submodule of F'(p, E*). It follows from the proof of Corollary [6.2] that
Fl(p,E)* = 0 and hence F!(p, E) = R'T;+(Ly(E)).

The statement of Theorem [6.T]implies the remainder of the proof of Theorem[Z.5 O
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Corollary 7.6. If u > %, then:

a) [F'(», E)] = X m(E, D)[F'(p, D)].

b) If Ny(E) is irreducible, then F'(p, E) = R'Tt+(Ly(E)) = F'(p, E), and F}(p, E) is irreducible. &

c) F'(p, E)[u] = F'(p, B)[ul(= CI™EV ().

d) [F}(p,E)] = Y. p(E, D)[F}(p, D)], where (p(E,D)) is the matrix inverse to (m(E, D)).

e) chiFl(p,E) = Y p(E, D)chiF}(p, D). (See [PZ1] for a formula for chiF'(p, D).)

H H (0, R'Ty+(Lo(E)))® = E; in particular, the g-module R'T;(Ly(E)) determines E up to isomorphism.

Proof a) Apply Proposition[7.2land Theorem[7.5

b) If Ny (E) is irreducible, then m(E, D) = 0 for D # E and m(E, E) = 1. Now apply Corollary[7.6]a).

¢) Combine formula (8)) with Theorem 7.5

d) Follows from a) and the definition of the matrix (p(E, D)).

e) Follows from c).

f) Apply Corollary[6.2]land Theorem[Z.5 O

Let n € Z and let Cy4,, be the full subcategory of C;+ consisting of (g, t)-modules N whose weight
spaces N“ satisfy a € Z and a > n + 2. Let Cy,, be the full subcategory of C consisting of (g, f)-modules M
with minimal f-type V(u) for u > n.

Assume N is a non-zero object in Cy 1 2.

Lemma 7.7. R’Fft (N) =0fori=0and?2; RIT¢(N) # 0.

~ Proof N has a finite composition series with simple subquotients Ly(D) in Cpt2. We know that
RT¢¢(Ly(D)) = 0 for i = 0 and 2. Therefore our claim follows from the long exact sequence for right derived
functors. O

Proposition 7.8. The restriction of R'Ty(-) to the full subcategory Cs+2 is a faithful exact functor.

Proof The exactness follows from Lemma Every map in Cys2 factors into a composition of
surjection followed by an injection. Lemma[Z7Zlimplies that R!T}(-) maps a nonzero surjection to a nonzero
surjection and a nonzero injection to a nonzero injection. O

Proposition 7.9. Suppose M is a (g, t)-module. Then Extg,f(M, RIT;4(N)) = Ext“rl (M,N) fori > 0.

Proof Apply the Frobenius Reciprocity Spectral Sequence in Ch. 6 of [V2], then quote Lemmal[Z.7l O
Corollary 7.10. a) If M is a finite dimensional g-module, then Extglf(M, RT;¢(N)) = Extl”(M N).

b) Suppose Ny and Ny are objects in Cpa. Then, Homgi(R'Ty¢(N1), R'T11(N2)) = Ext, (R'T14(N1), Np) as
finite-dimensional vector spaces.Thus, dim Homg(N1, N») < dim Exté’t(erf,t(N 1), No).

Assume again that fis symmetric. Let E be a simple finite dimensional m-module. Then R'T {(Ny,(E)) is

a (g, f)-module of finite type, and hence a (g, f)-module of finite type over i, i. e. a Harish-Chandra module.
By the Comparison Principle [PZ4,Proposition 2.6], we have a g-module isomorphism erf’t(Np(E)) =
R'T o0 (No(E))-

The (g, f)-module Rllﬁit@c(f) (Ny(E)), denoted by A(p, E), has been studied extensively in the Harish-
Chandra module literature. (See for example [KV].)

Corollary 7.11. If u > %)\1, the Harish-Chandra module A(p, E) has a simple socle, and SocA(p, E) = R'T(Ly(E)).

8. SIX EXAMPLES

In this section we consider six different pairs (g, f) such that rk g = 2 and t = sI(2).

2Corollary[Z@b) is a strengthening of Theorem ZTlunder the assumption that t 2 si(2).
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8.1. Background on the principal series of Harish-Chandra modules. We start by recalling the construc-
tion of the algebraic principal series of (g, s)-modules for a symmetric subalgebra s C g, [D]. We use this
construction in subsections 8.3 - 8.6 below. Let s C g be a symmetric subalgebra of g. Denote by a; a
maximal toral subalgebra of s*. If s is proper, a; is non-zero. Let h; be a Cartan subalgebra of g such that
b = (hrNs)@ar. Choose an elementa € aj such that the eigenvalues of 4 on g are real and C(a) = (C(a)Ns)®ay.
Let Pra = @a(a)ZO ga = myany.

The following results are proved in [D].
Proposition 8.1. a) g = s+ pr4 s N pre = my = C(ay).

b) If by is a Borel subalgebra of m; such that by C by, then bydny is a Borel subalgebra of 5. Hence, py, is a
parabolic subalgebra of g.

c) If ' € ay such that C(a") = C(a), then pr» is conjugate to pr, under the connected algebraic subgroup
S C Autg whose Lie algebra is s.

We define an element a € s* to be nondegenerate if C(a) N s* is a toral subalgebra of s*. Moreover,
an Iwasawa parabolic subalgebra for the pair (g, s) is any subalgebra of the form p;, for some nondegenerate
element a € s*, such that ada has real eigenvalues in g.

Fix an Iwasawa parabolic subalgebra p; C g. Let L be a finite-dimensional simple module over my.
Endow L with a p;-module structure by setting ny - L = 0.

Definition 8.1. a) The Iwasawa principal series module corresponding to the pair (pr, L) is the (g, 5)-module
X(pr, L) = Ts(Homy)(U(g), L))
b) A degenerate principal series module corresponding to the pair (pr, L) is the (g, s)-module
Y(q,L) = I's(Homyq)(U(g), L)),
where q is a subalgebra containing p; and the pr-module structure of L extends to a g-module structure.

Lemma 8.2. There is an isomorphism of s-modules
X(pb L) = FS(HOmu(mmS)(U(S), L))

In particular, X(pr,L) is a (g,s)-module of finite type; if V is a simple finite-dimensional s-module, then
Homy(V, X(pr, L)) = Homuys(V, L), hence

dim Hom¢(V, X(p;, L)) < dim V.
A similar statement holds for Y(q, L).

Theorem 8.3. (Harish-Chandra’s subquotient theorem) Let M be a simple (g, s)-module. Then there exists a simple
finite-dimensional m-module L such that M is a subquotient of X(py, L).

Corollary 8.4. For any simple (g, s)-module M and for any s-type V,
dim Homg(V, M) < dim V.

8.2. g =sl(2)®sl(2), tis adiagonal s/(2)-subalgebra. Let g = sl(2)®sl(2) and tbe the diagonal sI(2)-subalgebra
of g. The subalgebra f is regular in g. The pair (g, f) is symmetric and its Harish-Chandra modules have
been studied for over half century, see [GN], [B] and [HC].

The parabolic subalgebra p is a Borel subalgebra, and A1 = A; = 2. We have p, = 2, hence a minimal
f-type V(u) is generic if p > p, — 1 = 1 and there is a bijection between the 1-dimensional complex family
{v e b | v(h) = u — 2} and the set of isomorphism classes of (g, f)-modules with minimal f-type V(u). Hence
any simple (g, f)-module M with minimal f-type p > 1 is strongly reconstructible by Theorem 4 in [PZ2].
On the other hand, Corollary [6.5]above, implies this fact under the stronger assumption u > 2. Note that
for each p, there exists a 1-dimensional complex family of simple (g, )-modules with minimal -type V(u).
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These modules are multiplicity-free; a self-contained purely algebraic description of these modules in given
in [P
We now consider the case u = 0.

Proposition 8.5. For any infinite-dimensional simple (g, t)-module M with minimal ¥-type C = V(0) (i. e. spherical
simple (g, ¥)-module), there exists an h-module E such that

M = F'(p, E).

Proof As a f-module, M is isomorphic to @jez>o V(2j), and there is no finite-dimensional simple
g-module with the same central character as M (see for instance [P9]).

Now choose a 1-dimensional )-module E (in the case we consider, m = b) such that v = -2 and
F'(p,E) has the same central character as M. Then F°(p, E) = 0, since otherwise F°(p, E) would be a finite-
dimensional (g, f)-module with the same central character as M. By an application of the Euler characteristic
principle [PZ1, Theorem 11], F(p, E) is isomorphic as a f-module to @jez>0 V(2j). Therefore, F!(p,E) has

the same central character and the same f-character as M, i.e. M = F'(p,E). O

Note that modules M as in Proposition [8.5] are not strongly reconstructible. Indeed, if the central
character of M is regular, it is not difficult to show that there are precisely two 1-dimensional modules
E, and E; such that M ~ Pl(p, E;) for i = 1,2. In addition, in this case Hl(n,M)“):‘2 = F1 ® E;. In the
case of a singular central character H'(n, M)®="2 is a non-trivial self-extension of the unique 1-dimensional
m-module E such that M ~ Pl(p, E).

Finally, it is true that any simple (g, f)-module for the pair considered is weakly reconstructible. We
also remark that for any p > 0, F 1(p, E) can be either irreducible or reducible.

8.3. g = sl(3), T is a root sl(2)-subalgebra. Let g = s/(3) and f be the sl(2)-subalgebra of g generated by
the root spaces g*(¢17¢2). The subalgebra t is regular in g and T = ¥® C(f) is a symmetric subalgebra of g
isomorphic to gI(2).

The parabolic subalgebra p is a Borel subalgebra with roots ¢; — €3, €3 — €2 and ¢ — €. Hence
Pn = €1 — €2, pn = 2, and any simple (g, f)-module M of finite type over { is strongly reconstructible for
t = pn—12>1by Theorem 4 in [PZ2].

On the other hand, A; = 2, A; = 1, hence Corollary [6.3] above implies the strong reconstructibility
under the stronger assumption p > % For completeness we note that for a ¥-type V(fi) of f, a necessary, but
not sufficient condition for V(fi) to be generic is that fi(h) > 1.

Next, py = %((61 —¢&3)+ (g3 — €2))(h) = %(81 — &2)(h), and hence 2p;; = 2.

Fix u € Zs1. As tis regular in g, by Theorem 4 of [PZ2] there exists a bijection between isomorphism
classes of simple (g, f)-modules with lowest -type p and h-weights v such that v(h) = u—2. If kis a generator
of C(¥), observe that v(k) is a free continuous parameter of v.

An Iwasawa parabolic subalgebra p; C g relative to f c g is a Borel subalgebra of g. Hence a
finite-dimensional simple p;-module L is 1-dimensional. Write p; = hyan;, and L = L, for xy € b;.

Proposition 8.6. The principal series module X(p;, Ly) has finite type over t and has lowest -type C = V(0).

Proof By Frobenius reciprocity for the principal series,
©9) Homy(V(f), X(p, L)) = Homy, (V(@), Ly)-

The right hand side can be computed explicitly. Write t = t + Z(f), t being a Cartan subalgebra of
with basis hand k. Let { e t* satisfy C(h) = 0, C(k) = 1. Then {p, C} is the basis of t* dual to the basis {h, k} of
LIf V(i) is a %—type we can now write fi = ap + b, witha € Zpand b € C.

Next, N p; is a toral subalgebra of t and is spanned over C by h; := 3h + k. The eigenvalues of ki in
V(i) are 3a + b — 6] for j € Z59, 0 < j < g, all of multiplicity one.
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The single eigenvalue of i in L, is x(h;). Hence, Homgy, (V(fi), L) # 0 precisely when there exists
j € Nwith 0 < j<asuchthat3a+b-6j= x(h) € C. Thus, by Frobenius reciprocity, V(ji) is a I-type of
X(p1, Ly) iff there exists j € Zsg with 0 < j < a such that b = x(h;) — 3a + 6. As a consequence, if V(fi) is a
t-type of X(py, Ly), then x(hy) — 3a < b < x(hy) + 3a.

If we restrict the action on X(pj,L,) from ¥ to t we see that the multiplicity of V(a) in X(pj, L) is
a+1 = dim V(a). In Figure 1 we indicate the convex hull of the ¥-support of X(p, L,). In general, x(hj) € C,
but in the figure we take x(hr) > 0.

slope=1/3

slope=-1/3

Ty

Ay

Figure 1

O

Proposition 8.7. There exists an open dense subset U C by such that X(py, Ly) is simple and not weakly recon-
structible for every x € U.

Proof The existence of an open dense subset U’ C b} such that X(pr, Ly) is simple for xy € U’ is
established in [Kra]. Moreover, this implies the claim as the set of weakly reconstructible modules depends
on one complex and one integer parameters, while the set of irreducible principal series modules depends
on two complex parameters. O

Corollary 8.8. The bound u > 1 is sharp relative to weak (and also strong) reconstruction for (g, ¥)-modules of finite
type over 1.

For a classification of simple (g, f)-modules, see [Kral.

8.4. g =sl(3), tis a principal s/(2)-subalgebra. Let g = sl/(3) and t = 50(3), the principal s/(2)-subalgebra of g.
The subalgebra f is regular in g and it is a symmetric subalgebra of g. The parabolic subalgebra p is a Borel
subalgebra and has positive roots €1 — €3, €2 — €3 and €1 — €3. Hence, pn = €1 — €3. Moreover, it is easy to
check that p, = 4, which shows that p € Z.( is genericif 4 > p, —1 = 3. On the other hand, 11 =4, A, =2,
so the condition p > 1(1; + 1) is equivalent to the same inequality: u > 3(4 +2) = 3. Furthermore, we have
20y = 4.

Fix p € Zs3. By Theorem 4 of [PZ2], there exists a bijection between isomorphism classes of simple
(9, f)-modules with lowest f-type u and h-weights v such that v(h) = u — 4. If k is a generator of ¥+ N,
observe that v(k) is a free continuous parameter of v.

Let p; C g be an Iwasawa parabolic subalgebra relative to . The principal series X(p;, L,) has two free
complex parameters. Let I, be the sum in X(p;, L,) of the f-types V(0), V(2), V(4), .... Since g = 1@ V(4), it is
easy to see that I, is a g-submodule of X(p;, L) (see for instance [V2, Ch. 4]). A much deeper fact is that I,
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splits as a direct summand of two submodules |, and K, where the lowest f-type of ] is 0 and the lowest
f-type of K, is 2. Furthermore, we have the following.

Proposition 8.9. There exists an open dense subset U C b such that Ky, for x € U, is simple and not weakly
reconstructible.

Proof The existence of an open dense subset U’ C Ij;, such that the modules ], and K, are simple for
X € U, is established in [V2, Ch. 8]. This implies the claim as (similarly to the proof of Proposition[8.7) the
set of weakly reconstructible modules depends on one complex and one integer parameters, while the set
of irreducible principal series modules depends on two complex parameters. O

Corollary 8.10. The bound u > 3 is sharp relative to weak (and also strong) reconstruction for (g, ¥)-modules of finite
type over 1.

8.5. g =sp(4), tis alongrootsl(2)-subalgebra. Letg = sp(4). The h-roots of g are +2¢1, +2¢5, £(e1—€2), £(e1+
€2) € b*. Let  be the sl(2)-subalgebra generated by g¥2¢1. The nilradical of p has roots €1 — €3, &1 + €2, 2¢1.
Hence, pn = 2¢1, pn = 2, and a weight p > 0 is genericif y > p, =1 = 1. On the other hand, A1 =2,A; =1,
so the condition y > 3(2 + 1) > 3 is stronger than the genericity condition. Note that 2p; = 2. Finally,
m =t ® C(f), where C(}) is the sl(2)-subalgebra generated by g*2¢2.

Fix u € Z5;. By Theorem 3 of [PZ2], we have a bijection between the following sets:

a) isomorphism classes of simple (g, f)-modules M having finite type over f and lowest -type y;

b) isomorphism classes of simple, finite-dimensional m-modules E such that the highest weight v of
E satisfies v(h) = u — 2.

Moreover, if k is a generator of hNC(f), v(k) is a free but discrete parameter of v; in this the fundamental
series of (g, f)-modules depends on two discrete parameters.

Let p; C g be an Iwasawa parabolic subalgebra relative to the symmetric subalgebra f = f® C(f). We
can choose a Levi decomposition p; = my»n; such that my N fis the diagonal s/(2)-subalgebra in f Let L, be
a simple finite-dimensional m;-module with highest weight x € b}, where b; is a Cartan subalgebra of my.
The weight x has one discrete and one continuous parameter.

Proposition 8.11. The principal series module X(pr, L)) has finite type over t and has lowest t-type 0.
Proof 1t is completely analogous to the proof of Proposition[8.6] and Figure 2 is the analogue of Figure

O

Corollary 8.12. Every simple (g, T)-module has finite type over .

Proposition 8.13. If x is nonintegral as a weight of g, then X(py, L) is simple and not weakly reconstructible.
Proof See [Co], Theorem 2.3.1. O

Corollary 8.14. The bound u > 1 is sharp relative to weak (and also strong) reconstruction for (g, f)-modules of finite
type over 1.

Proof The set of simple modules of the form X(py, L,) is not countable while the set of simple weakly
reconstructible (g, f)-modules is countable. This implies the claim. O

8.6. g = sp(4), t is a short root sl(2)-subalgebra. Let g = sp(4) and f be generated by g*@1722)  Then
€1(h) = 1, e2(h) = —1. The nilradical of the parabolic subalgebra p has roots ¢; — ¢3,2¢1 and —2¢,. Hence,
Pn = %(81 — &), pn =3, and p € Zy is generic if y > py(h) — 1 = 2. On the other hand, A; = 2,1, =2, so the
condition y > 1(A1 + Ap) > 2 is equivalent to being generic. Note that 2p; = 4. Finally, m = t & C(f), where
C(¥) is the sl(2)-subalgebra generated by g*(€1+¢2),
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Figure 2

Fix y € Zs>. Theorem 3 of [PZ2], or equivalently Corollary [6.5] implies that we have a bijection
between the following sets:

a) isomorphism classes of simple (g, f)-modules M having finite type over f and lowest -type y;

b) isomorphism classes of simple finite-dimensional m-modules E such that the highest weight v of E
satisfies v(h) = u — 4.

If i’ is a generator of [g°1"%2, g~“17¢2], observe that v(l’) is a free but discrete parameter for v.

We will exhibit a simple (g, f)-module M of finite type over f such that M has lowest f-type 1 but M is
not weakly reconstructible. Let = t® C(f) = gl(2). Let p; be an Iwasawa parabolic subalgebra of g relative
to f. This is a Borel subalgebra. Let q be a maximal parabolic subalgebra of g such that g > pr, g # pr. (There
are two choices for q.) Write q = [2u1, where [is a reductive part of q and u is the nilradical of q. Note that
we can choose [ so that [N =0 and [N Tis a 1-dimensional toral subalgebra of L.

Next, let L, be a simple finite-dimensional [-module with b-highest weight x. Write Y(q, L) for the
degenerate principal series module I'y(Homy()(U(g), Ly)). Since g = ¥ @ 2V(2) as a f-module, Y(q,L,) is a
direct sum of two submodules, Y(q,L,)o and Y(q, L;); corresponding to even highest weights of f and odd
highest weights of f, respectively.

Lemma 8.15. a) Y(q, L) is a (g, )-module of finite type over t.

b) The lowest t-type of Y(q,L)o is C = V(0), the lowest t-type of Y(q,L,)1 is V(1).

c) We can choose ) so that the central character of Y(q, L) is not equal to the central character of a fundamental
series module for (g, ).

Proof Straightforward calculation. O
Proposition 8.16. The bound p > 2 is sharp relative to weak reconstruction for (g, t)-modules of finite type over 1.

Proof We take M to be a simple quotient of U(g) - (Y(q,Ly)o[1]) and we chose x so that M does not have
the central character of a fundamental series module. O

8.7. g = sp(4), tis a principal sl(2)-subalgebra. Let g = sp(4) and let f be a principal sl(2)-subalgebra. Here
m = b. It is easy to check that p, = 7, and the results of [PZ2] (see formula (16) in [PZ2]) imply that any
simple (g, f)-module with minimal f-type V(u) for u > 6 is strongly reconstructible (and in particular is of
finite type). The same follows from Corollary [6.6|under the weaker assumption that u > 5.
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Since pi = 6,11 = 6, A, = 4, Corollary [6.6limplies that, for any u € Zs5, we have a bijection between
the set {v € b* | v(h) = u — 12} and the set of isomorphism classes of (g, f)-modules with minimal t-type V(u).

Proposition 8.17. The bound u > 5 is sharp relative to the theorem on strong reconstruction for (g, )-modules of
finite type over 1.

Proof In [PS] a simple multiplicity-free (g, f)-module M, with f-character V(4) ® V(10) ® V(16) @ ...

and central character Oy, = 9% atler is exhibited: see equation 6.2 in [PS]. On the other hand, there are 8

fundamental series modules of the form F'(b, E) such that Orp) = 0 Yertes A non-difficult computation
shows that their respective minimal f-types are V(10), V(9), V(8), V(5), V(5), V(2), V(1) and V(0). This shows
that My is not strongly reconstructible. O

We do not know whether the bound u > 5 is sharp relative to weak reconstruction. The following
examples demonstrate that Theorem[7.5 does not extend to the case 0 < u < %

Example 1. There is a unique 1-dimensional b-module Eg such that Op, ) = 9% , and such that

the minimal f-type of F!(b, Eo) is V(0). By direct computation, Xo = R'T}(Ls(Eo)) is multiplicity free over t.
By comparison with the simple multiplicity free modules discussed in [PS], we conclude that ch¢Xj is the
sum of two simple characters. By the Duality Theorem and the fact that X is multiplicity free, we conclude
that X is the direct sum of two simple submodules with lowest f-types V(0) and V(4) respectively.

This decomposition is consistent with Conjecture [Z.4l Moreover, the proper inclusions of (g, f)-
modules F!(b, Eg) € R'Tt+(Ly(Eg)) € F1(b, Eg) demonstrate that the inclusions discussed in Proposition [7.3]
b) are generally proper.

Example 2. There is a unique 1-dimensional b-module E; such that Op, g,y = 6% ¢1+¢, and the minimal
t-type of F'(b,E;) is V(1). As in Example 1, we find that R'T;(Ly(E;)) is a direct sum of two simple
multiplicity free (g, f)-modules with lowest f-types V(1) and V(3) respectively.

e1+e

9. TOWARDS AN EQUIVALENCE OF CATEGORIES

Recall the categories Cp 1, and Cy,, introduced in Section 7. Proposition[Z.2land Proposition[Z.8imply
that erf,t is a well-defined faithful and exact functor between Cy+ ;42 and Cs,, for n > 0.

Conjecture 9.1. Let n > 3(Ay + A2). Then RITyy is an equivalence between the categories Cp 1 n+2 and Cyp.

Theorem [7.5implies that if n > %, the simple objects L(E) of the category Cy 1 42 are being mapped
by erf’t into simple objects of C;,, and Corollary ensures that, under the stronger condition n > @,
R'T}; induces a bijection on the isomorphism classes of simple objects of Cy t 42 and Cy .

Conjecture[9.Jlimplies the existence of an isomorphism
Exth(L(E1), L(E2)) = Ext}(RTyy(L(Er)), R'Try(L(E2)

for any simple objects L(E1), L(E2) of Cpt n+2 Where n > %()\1 + Az). We have checked the existence of such
an isomorphism by direct computations in the cases of subsections 8.2 and 8.4.

In conclusion we note that it is easy to check that Conjecture[0.1holds for the case when f = g = sI(2).
In this case %()\1 +A)=0and R'T ¢+ is an equivalence of the categories Cy 1 ,+2 and Cy,, for any n > 0.
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