
Advanced Studies in Pure Mathematics 26, 1998

Analysis on Homogeneous Spaces and Representations of Lie Groups

pp. 1–26

A Langlands classification

for unitary representations

David A. Vogan, Jr.

Abstract.

The Langlands classification theorem describes all admissible
representations of a reductive group G in terms of the tempered
representations of Levi subgroups of G. I will describe work with
Susana Salamanca-Riba that provides (conjecturally) a similar de-
scription of the unitary representations of G in terms of certain very
special unitary representations of Levi subgroups.

§1. Introduction

Suppose G is a real reductive Lie group in Harish-Chandra’s class
(see [HC], section 3). There are two powerful general techniques for con-
structing irreducible unitary representations of G. Parabolic induction
is based on real analysis and geometry on certain compact homogeneous
spaces G/P . Cohomological induction is based on complex analysis on
certain indefinite Kähler homogeneous spaces G/L. When G is SL(2, R),
parabolic induction gives rise to Bargmann’s unitary principal series rep-
resentations, and cohomological induction to Bargmann’s discrete series.
We are concerned here not with the details of these constructions, but
rather with the question of classification: which unitary representations
can be found (and which cannot be found) by these methods. In the
case of SL(2, R), what is missing are the complementary series repre-
sentations, the two “limits of discrete series representations,” and the
trivial representation.

In general a precise answer is difficult to obtain, and from some
perspectives even undesirable. By deformation arguments, one can push
either construction to yield larger sets of unitary representations. Thus
for example the complementary series representations of SL(2, R) may
be regarded as parabolically induced, and the limits of discrete series as
cohomologically induced. The trivial representation emerges from either
construction as a kind of very singular limiting case.
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In this paper we will avoid such arguments entirely, using only the
simplest versions of parabolic and cohomological induction. We seek
especially a simple understanding of the unitary representations not ob-
tained from a smaller group by either kind of induction. For cohomo-
logical induction such a result (partly conjectural) appears in [SV]. For
parabolic induction there is a result in [Knp], Theorem 16.10. Combin-
ing them, we will find

Theorem 1.1. Suppose G is a semisimple Lie group in Harish-
Chandra’s class. Define Πu,small(G) to be the set of equivalence classes
of irreducible unitary representations (π,Hπ) of G with the property that
the infinitesimal character of π (in the Harish-Chandra parametrization)
belongs to the convex hull of the Weyl group orbit of the half-sum of
positive roots. The representations in Πu,small(G) are called unitarily
small.

Fix a Cartan decomposition G = K exp(s0) of G, and a maximal
torus T ⊂ K. Let R(∧s) denote the convex hull of the weights of T in
the exterior algebra of s. An irreducible representation of K is called
small if its weights all belong to R(∧s).

(1) Assume that Conjecture 0.6 of [SV] holds for G. Then any irre-
ducible unitary representation of G not belonging to Πu,small(G)
may be constructed by parabolic or cohomological induction from
an irreducible unitary representation of a reductive subgroup of
G of lower dimension.

(2) The set Πu,small(G) is compact in the Fell topology.
(3) The “extremal points” of Πu,small(G), the unitary representa-

tions of infinitesimal character equal to the half-sum of positive
roots, are those with non-vanishing continuous cohomology de-
scribed in [VZ].

(4) Any unitarily small representation of G must contain a small
representation of K. Conversely, assume that Conjecture 0.6 of
[SV] holds for G. Then any unitary representation of G con-
taining a small representation of K and having real infinitesimal
character must be unitarily small.

The notion of “real infinitesimal character” is taken for example
from [Grn], Definition 5.4.11; we will recall it in section 2 below.

Theorem 1.1 says that the unitarily small representations provide
building blocks from which other unitary representations may be con-
structed by (parabolic or cohomological) induction. When G is SL(2, R),
the unitarily small representations are the spherical complementary se-
ries (parametrized by a half-open interval [0, 1)), the first two discrete
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series representations π±

±1, the trivial representation ρ, and the two limits

of discrete series π±

0 . The Fell topology on this set makes the comple-

mentary series converge to the three points π±

±1 and ρ as the parameter
approaches 1; it is not a Hausdorff topology, but the pathology is not
very serious. Essentially we have a closed interval with one of the end-
points tripled, and two isolated points.

There are some conjectural descriptions of large families of unitary
representations of reductive groups, and it is interesting to see how
these descriptions relate to Theorem 1.1. One of the most famous is
the method of coadjoint orbits, which suggests that unitary representa-
tions of G should be related to orbits of G on g∗0. There are constructions
of orbits parallel to parabolic induction and to cohomological induction;
these are described in some detail in [Vorb]. There is also an analogue of
Theorem 1.1, describing precisely a family of orbits from which all others
may constructed. (This is just the Jordan decomposition, Proposition
4 of [Vorb]). They are the nilpotent coadjoint orbits, of which there are
finitely many for each reductive group. This suggests

Conjecture 1.2. Suppose G is a semisimple Lie group in Harish-
Chandra’s class. Then the unitary representations associated to nilpo-
tent coadjoint orbits should be unitarily small in the sense of Theorem
1.1.

In the absence of a definition of the phrase “unitary representations
associated to nilpotent coadjoint orbits,” this should really not be called
a conjecture; it might be thought of as a desideratum for the missing
definition. Nevertheless, we can offer a little evidence for it.

Example 1.3. One-dimensional representations. Suppose G is a
semisimple Lie group in Harish-Chandra’s class. One nilpotent coad-
joint orbit is the point {0}. The corresponding unitary representations
are precisely the irreducible representations of the group of connected
components G/G0. (This is a well-established desideratum for any corre-
spondence from orbits to representations.) Any such representation has
infinitesimal character equal to the half-sum of a set of positive roots in
Harish-Chandra’s parametrization, and so is unitarily small.

Example 1.4. Infinitesimal character zero. Suppose G is a semisim-
ple Lie group in Harish-Chandra’s class. Let us consider the collection
Π0(G) of all irreducible admissible representations of G of infinitesimal
character 0 in Harish-Chandra’s parametrization. This is a finite set
(as it would be with 0 replaced by any fixed infinitesimal character).
It follows from Harish-Chandra’s work on asymptotics of matrix coef-
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ficients that the representations in Π0(G) are automatically tempered,
and therefore unitarizable. We therefore have Π0(G) ⊂ Πu,small(G).

It turns out (again from Harish-Chandra’s work on tempered rep-
resentations) that Π0(G) is non-empty if and only if G is quasisplit;
that is, if and only if the minimal parabolic subgroup P = MAN of
G has M0 abelian. We assume this for the rest of the example. Then
the representations in Π0(G) are precisely the irreducible constituents

of IndG
P0

(1).

The assumption that G is quasisplit is equivalent to the existence
of nilpotent coadjoint orbits of dimension equal to the number of roots.
(This is the largest possible dimension for any coadjoint orbit.) Such
nilpotent orbits are called principal. According to some standard desid-
erata for an orbit correspondence, the unitary representations attached
to principal nilpotent orbits should include all of those in Π0(G) (see
[Orng], Definitions 12.1 and 12.4). Because these are unitarily small,
this is at least consistent with Conjecture 1.2.

It is a fairly simple matter to extend the discussion in Examples
1.3 and 1.4 to cover all special unipotent representations (see [Orng],
Definition 12.4).

Our goal in this paper is to explain carefully the statement of Theo-
rem 1.1. Section 2 recalls Harish-Chandra’s theory of infinitesimal char-
acters, the notion of “real infinitesimal character,” and some related
structure theory in the Lie algebra. Section 3 uses those ideas to formu-
late the part of Theorem 1.1 concerning parabolic induction. Section 4
reviews briefly the notion of cohomological induction. Section 5 outlines
the part of Theorem 1.1 concerning cohomological induction. Section 6
gives a more precise version of the statement in Theorem 1.1(1).

Here are some references for the rest of Theorem 1.1. The asser-
tion (2) is elementary, although the necessary basic facts about the Fell
topology (many of which are due to Miličić) are a little difficult to find
in the literature. Some of them are discussed in the last section of [SV].
The result in (3) is a special case of the main theorem of [Sal]. Assertion
(4) is contained in [SV], mostly in Theorem 6.7 there.

§2. Infinitesimal character

We continue to work with a reductive group G in Harish-Chandra’s
class. In general Lie groups will be denoted by upper case Roman letters,
Lie algebras by the corresponding lower case German letters with a
subscript 0, and complexifications by dropping the subscript 0. For
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example,
g0 = Lie(G), g = g0 ⊗R C. (2.1)(a)

We will often make use of a Cartan decomposition

G = K exp s0, (2.1)(b)

with corresponding Cartan involution θ. Occasionally we will make use
of a non-degenerate Ad(G)-invariant symmetric bilinear form 〈, 〉 on g0.
We may arrange for this form to be preserved also by the Cartan invo-
lution, and to be positive definite on s0 and negative definite on k0.

Recall that a Cartan subgroup of G is by definition the centralizer
in G of a Cartan subalgebra of g0. Any such subgroup is conjugate by
G to one preserved by θ. If H is a θ-stable Cartan subgroup, then the
Cartan decomposition becomes a direct product

H = TA, T = H ∩ K, A = exp(h0 ∩ p0). (2.1)(c)

Here the first factor is compact and the second is a vector group. A
similar argument applies to the center Z(G) of the group G: there is a
direct product decomposition

Z(G) = T z(G)Az(G), T z(G) = Z(G) ∩ K, Az(G) = exp(z(g0) ∩ s0).
(2.1)(d)

Definition 2.2. The center (as an abstract algebra) of the universal
enveloping algebra U(g) is written Z(g). Because U(g) is generated by
g, this is

Z(g) = {u ∈ U(g) | Xu − uX = 0 (X ∈ g)}.

By definition of the adjoint action of g on U(g), this is

Z(g) = {u ∈ U(g) | ad(X)(u) = 0 (X ∈ g)}.

Because the adjoint action of g0 is the differential of the adjoint action
of the group G, this is equivalent to

Z(g) = {u ∈ U(g) | Ad(g)(u) = u (g ∈ G)}.

This last equivalence uses in an essential way the assumption that G is
in Harish-Chandra’s class; without it, we would have to replace G by its
identity component G0.

Theorem 2.3. Suppose h is a Cartan subalgebra of the reductive
Lie algebra g, and W = W (g, h) is the corresponding Weyl group. Then
there is an algebra isomorphism (the Harish-Chandra homomorphism)

ξh:Z(g) → S(h)W .
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For any λ ∈ h∗, evaluation at λ is an algebra homomorphism from
S(h) to C. Composition of this homomorphism with the Harish-Chandra
homomorphism gives an algebra homomorphism

ξh(λ):Z(g) → C.

(1) Two such homomorphisms ξh(λ) and ξh(λ′) are equal if and only
if λ′ = wλ for some w ∈ W (g, h).

(2) Every homomorphism from Z(g) to C is of the form ξh(λ) for
some λ ∈ h∗.

A proof of this result of Harish-Chandra may be found for example
in [Hmp], section 23.

Definition 2.4. Suppose G is a reductive group in Harish-Chandra’s
class. The admissible dual of G is the set Π(G) of equivalence classes
of irreducible (g,K)-modules. It is the same thing to consider infini-
tesimal equivalence classes of irreducible admissible representations of
G. The unitary dual of G is the subset Πu(G) of irreducible (g,K)-
modules admitting a positive definite invariant Hermitian form. These
may be identified with unitary equivalence classes of irreducible unitary
representations of G.

Suppose h is a Cartan subalgebra of g, and λ ∈ h∗. A representation
of g is said to have infinitesimal character λ if Z(g) acts through the
homomorphism ξh(λ) (Definitition 2.2). Any irreducible representation
of g, or any irreducible (g,K)-module, has some infinitesimal character.

We now come to the central notions of real and imaginary infinites-
imal character.

Definition 2.5. Suppose H ⊂ G is a θ-stable Cartan subgroup;
write H = TA as in (2.1)(c). This gives a decomposition of the Lie
algebra

h0 = t0 + a0. (2.5)(a)

The canonical real form of h is the subspace

RE h = it0 + a0. (2.5)(b)

Obviously this subspace is in fact a real form of h. It is clear from the
discussion at (2.1)(b) that the bilinear form 〈, 〉 is positive definite on
RE h. Now h has a decomposition into semisimple and central parts

h0 = ([g0, g0] ∩ h0) + z(g0) = hs
0(g) + hz

0(g). (2.5)(c)



Langlands classification 7

This decomposition is compatible with that of (2.5)(a), so we may write

hs
0(g) = ts0(g) + as

0(g), hz
0(g) = tz0(g) + az

0(g). (2.5)(d)

(The last two summands are the Lie algebras of the groups T z(G) and
Az(G) of (2.1)(d).) It follows that

RE h = RE hs(g) + RE hz(g) (2.5)(e)

Any linear functional λ ∈ h∗ has a unique decomposition

λ = REλ + i IM λ, (2.5)(f)

with REλ and IMλ taking real values on RE h. We call these the canon-
ical real and imaginary parts of λ.

Lemma 2.6. Suppose H and H ′ are θ-stable Cartan subgroups of
a real reductive group G. Use the notation of Definition 2.5.

(1) The canonical real part RE hs(g) of the semisimple part of h may
be characterized as the subspace on which all the roots of h in g

take real values.
(2) Suppose g ∈ Ad(g) is an inner automorphism of the complex

Lie algebra carrying h to h′. Then g carries RE h to RE h′.
(3) The action of the Weyl group W (g, h) preserves RE h.

Sketch of proof. Part (1) is standard. (The roots are differentials
of characters of H, and so must take imaginary values on t0. That they
take real values on a0 can be deduced for example from the existence
of a compact form of g with Lie algebra k0 + is0.) For (2), part (1)
guarantees that g carries RE hs to (RE h′)s, and g acts trivially on z(g).
Part (3) is a special case of (2). Q.E.D.

Corollary 2.7. Suppose G is a real reductive group, and ξ:Z(g) →
C is an infinitesimal character. Choose a θ-stable Cartan subgroup H
of G and a weight λ ∈ h∗ so that ξ = ξh(λ) (Definition 2.4). Then the
infinitesimal characters ξh(RE λ) and ξh(IM λ) depend only on ξ, and
not on the choices of H and λ. In particular, the statement that ξ is
real (meaning λ = REλ) is independent of choices.

We will see in section 3 that the imaginary part of the infinitesimal
character of a unitary representation reveals how the representation is
parabolically induced. A similar but weaker statement for the real part
appears in section 5: the real part of the infinitesimal character of a
unitary representation reveals how the representation is cohomologically
induced.
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§3. Parabolic induction and reduction to real infinitesimal

character

We continue to work with a real reductive group G in Harish-
Chandra’s class, using especially the notation of (2.1). Suppose now
that P is a real parabolic subgroup of G (see for example [Knp], section
V.5). Let NP be the unipotent radical of P , a connected normal nilpo-
tent subgroup. The intersection LP = P ∩ θP is a reductive group in
Harish-Chandra’s class, having the restriction of θ as a Cartan involu-
tion. There is a Levi decomposition

P = LP NP , (3.1)(a)

a semidirect product with NP normal. The Levi subgroup has a direct
product decomposition

LP = MP AP (3.1)(b)

respected by θ. The subgroup AP is just Az(LP ), the split factor of the
center of LP . Any irreducible admissible representation of LP is of the
form δ ⊗ ν, with δ ∈ Π(MP ) and ν ∈ Π(AP ) ≃ a∗P .

Lemma 3.2. In the setting (3.1), the functor IndG
P of normalized

parabolic induction carries irreducible admissible representations of LP

to finite length admissible representations of G, preserving unitarity and
infinitesimal character. More precisely, fix a θ-stable Cartan subgroup
H of LP ; necessarily H is a product

H = (H ∩ MP )AP = H1AP .

Suppose that δ ⊗ ν is an irreducible representation of LP , and that δ
has infinitesimal character λ ∈ h∗

1 (Definition 2.4), so that δ ⊗ ν has
infinitesimal character (λ, ν) ∈ h∗.

(1) If δ is unitary and ν is purely imaginary (so that it defines a

unitary character of AP ) then IndG
P (δ ⊗ ν) is a unitary repre-

sentation of G.

(2) The induced representation IndG
P (δ ⊗ ν) has infinitesimal char-

acter (λ, ν) ∈ h∗.
(3) The canonical real and imaginary parts of the infinitesimal char-

acter (Corollary 2.7) are given by (REλ,RE ν) and (IMλ, IM ν)
respectively.

(4) Suppose that δ has real infinitesimal character and ν is purely
imaginary. Then the canonical real and imaginary parts of the
infinitesimal character are given by λ and ν respectively.
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(5) Suppose that δ has real infinitesimal character and ν is purely
imaginary. Assume in addition that for every non-zero weight
α ∈ a∗P of the adjoint representation, the inner product 〈ν, α〉

is non-zero. Then the induced representation IndG
P (δ ⊗ ν) is

irreducible.

Proof. Part (1) may be found for example in [Knp], section VII.2,
and part (2) in [Knp], Proposition 8.22. Part (3) is immediate from (2)
and Definition 2.5, and part (4) is a special case of (3). Part (5) is a
fairly easy consequence of the results of [SpV], although it is not stated
explicitly there. (The bilinear form appearing in (5) is the one described
after (2.1)(b).) Q.E.D.

The setting of part (4) is in some sense the general explanation
for the canonical real and imaginary parts of an infinitesimal character.
Here is a statement.

Theorem 3.3 [Knp], Theorem 16.10. Suppose π is an irreducible
unitary representation of G. Then there is a parabolic subgroup P =
MP AP NP of G, a unitary representation δ of MP of real infinitesimal
character, and a unitary character ν of AP , so that π is equivalent to

IndG
P (δ ⊗ ν). This may be done so that the non-degeneracy condition of

Lemma 3.2(4) on ν is satisified.

There is a similar statement for Hermitian representations, but we
will not need it.

Theorem 3.3 evidently reduces the study of unitary representations
to the case of real infinitesimal character. We conclude this section with
some remarks on the organization of that reduction.

Lemma 3.4. Suppose amin,0 is a maximal abelian subalgebra of s0

(the −1 eigenspace of θ). Define Mmin to be the centralizer of Amin =
exp(amin,0) in K, M ′

min to be the normalizer, and Wres = M ′
min/Mmin

the restricted Weyl group of Amin in G. Write R(g, amin) ⊂ a∗min,0 for

the system of restricted roots.

(1) The restricted Weyl group Wres is isomorphic to the Weyl group
of the restricted root system R(g, amin).

(2) Any group A as in (2.1)(c) or AP as in (3.1) is conjugate by K
to a subgroup of Amin.

(3) Two elements of amin,0 are conjugate by Ad g if and only if they
are conjugate by Wres.
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(4) Suppose ν ∈ a∗min. Regard a∗min as a subspace of g∗ by using
mmin and the root spaces as a complement to a. Define

Lν = {g ∈ G | Ad∗(g)(ν) = ν} ⊃ MminAmin,

the stabilizer of ν in the coadjoint action. Then Lν is the θ-stable
Levi factor of a real parabolic subgroup of G; write Lν = MνAν

for its Langlands decomposition. This subgroup is characterized
by its restricted root system

R(lν , amin) = {α ∈ R(g, amin) | 〈ν, α〉 = 0}.

The subscript min on Amin may be a bit confusing, since Amin is
maximal as a subalgebra of s0. It refers to a minimal parabolic sub-
group of G, which may be taken to have Langlands decomposition with
split component Amin. Alternatively, one can think of it as meaning
“minimally compact.”

Proof. Parts (1) and (3) can be reformulated in a compact form of
the symmetric space G/K; the references we give are for these reformu-
lations. Part (1) is [Hel], Corollary VII.2.13. Part (2) is [Hel], Lemma
V.6.3. Part (3) is [Hel], Corollary VII.8.9. Part (4) is standard and
straightforward. (That Lν contains MminAmin is obvious. It follows
easily that the Lie algebra lν is spanned by mmin + amin and the indi-
cated restricted root spaces. The characterization of Lν as a real Levi
subgroup can be deduced for example from the Bruhat decomposition
of [Hel], Corollary IX.1.8. Q.E.D.

Corollary 3.5. Suppose as in Lemma 3.4 that amin,0 is a maximal
abelian subalgebra of s0; use the other notation defined there. Fix a
maximal torus Tmin ⊂ Mmin, so that

hmin,0 = tmin,0 + amin,0

is a Cartan subalgebra of g0.

(1) The imaginary part of the infinitesimal character of any uni-
tary representation of G is represented by a weight ν ∈ ia∗min,0,

unique up to the action of the restricted Weyl group Wres. From
now on we fix such a weight, and Lν = MνAν as in Lemma
3.4(4).

(2) Fix a parabolic subgroup P ν = LνNν with Levi factor Lν . Then
unitary induction from P ν provides a bijection from irreducible
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unitary representations of Mν with real infinitesimal character
onto irreducible unitary representations of G whose infinitesi-
mal character has canonical imaginary part ν. Explicitly, this

bijection carries δ to IndG
P ν (δ ⊗ ν).

This result is more or less immediate from Theorem 3.3 and Lemma
3.4. It is possible to avoid the restricted Weyl group ambiguity in the
choice of ν by first choosing a positive system R+(g, amin) of restricted
roots; equivalently, a minimal parabolic subgroup

Pmin = MminAminNmin.

We can then make ν unique by requiring it to be dominant for R+. The
parabolic subgroup P ν may then be taken to be one of the 2ℓ standard
parabolics containing Pmin; here ℓ is the rank of the restricted root
system. The possible ν attached to each such parabolic constitute the
corresponding face of the closed positive Weyl chamber in ia∗min.

§4. Cohomological induction

The central idea of section 3 was that canonical imaginary parts of
infinitesimal characters of unitary representations arise from parabolic
induction. More precisely, one can begin with any unitary character
of the split part of a Cartan subgroup (the weight ν in Theorem 3.3
or Corollary 3.5) and use it construct a parabolic; then unitary repre-
sentations with imaginary part ν arise nicely by induction from that
parabolic.

In this section we will lay the foundations for a similar analysis of
the canonical real part of an infinitesimal character. By analogy with
Corollary 3.5, one might hope that such real parts arise from a character
of the compact part of a Cartan subgroup (compare Definition 2.5). It
is therefore natural to begin by choosing a maximal torus

Tmax,0 ⊂ K (4.1)(a)

This torus will play a rôle analogous to that of Amin in section 3. Al-
though we will be concerned mostly with questions on the Lie algebra,
we may as well record the definition

Tmax = ZK(Tmax,0). (4.1)(b)

The centralizer of Tmax,0 in G is a Cartan subgroup

Hmax = TmaxAmax ⊂ G, (4.1)(c)
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a fundamental Cartan subgroup of G. We will need the Weyl groups

W (K,Tmax) = NK(Tmax)/Tmax, (4.1)(d)

W (G,Hmax) = NG(Hmax)/Hmax. (4.1)(e)

We call these the Weyl group of Tmax in K and the Weyl group of Hmax

in G. Here is the analogue of Lemma 3.4.

Lemma 4.2. Write R(g, tmax) ⊂ t∗max for the set of non-zero
weights of tmax on g.

(1) The set R(g, tmax) is a root system. The corresponding Weyl
group W (g, tmax) may be identified with the restrictions to tmax

of elements of W (g, hmax) commuting with the Cartan involu-
tion θ. That is,

W (g, tmax) ≃ W (g, hmax)θ,

with the isomorphism arising by restriction of linear transfor-
mations from hmax to tmax.

(2) The Weyl groups W (G,Hmax) and W (K,Tmax) are isomorphic,
the isomorphism arising by restriction of group automorphisms
from Hmax to Tmax.

(3) Regard W (K,Tmax) as acting on tmax by differentiation. Then
we have inclusions

W (k, tmax) ⊂ W (K,Tmax) ⊂ W (g, tmax).

If G (or equivalently K) is connected, then the first inclusion is
an equality.

(4) Suppose T is one of the groups in (2.1)(c). Then T0 is conjugate
by K to a subgroup of Tmax,0.

(5) Two elements of tmax are conjugate by Ad g if and only if they
are conjugate by W (g, tmax).

Notice that the statement here is significantly weaker than in Lemma
3.4, because of the failure of the second inclusion in (3) to be an equality.
The weights in it∗max are going to represent real parts of infinitesimal
characters (at least approximately); but each such infinitesimal character
will correspond to several different W (K,Tmax) orbits of weights.

Proof. These facts are all fairly standard; here are some references.
Part (1) may be found in [IC4], Proposition 3.12 (particularly the last
isomorphism of part (c) there). For part (2), the main point is to show
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that every element x of NG(Hmax) has a representative (modulo Amax)
belonging to K. To see this, consider the Cartan decomposition (2.1)(b)
x = k exp(Z), with Z ∈ s0. The fact that x normalizes Tmax,0 implies
that for every t ∈ Tmax,0 there is a t′ ∈ Tmax,0 so that

k exp(Z)t = t′k exp(Z).

That is,
kt exp(Ad(t−1Z) = t′k exp(Z).

Now the uniqueness of the Cartan decomposition implies that Ad(t) fixes
Z; that is, that Z ∈ amax,0, as we wished to show. For part (3), the
inclusions are clear. That the first is an equality when K is connected
is standard (see for example [Hel], pages 256–7). Part (4) is just the
conjugacy of maximal tori in a compact Lie group. Part (5) is analogous
to Lemma 3.4(3), and can in fact be reduced to it. (For this one needs
to construct an involutive automorphism of g whose restriction to hmax

is −θ.) We omit the details. Q.E.D.

Definition 4.3. Fix a maximal torus Tmax,0 in K as in (4.1), and
a weight λ ∈ it∗max,0. Identify t∗max with a subspace of g∗ by using amax

and the restricted weight spaces as a complement for tmax. The θ-stable
Levi subgroup associated to λ is then the stabilizer of λ in the coadjoint
action:

Lλ = {g ∈ G | Ad∗(g)(λ) = λ} ⊃ Hmax. (4.3)(a)

This is a θ-stable reductive subgroup of G in Harish-Chandra’s class. It
will play the same rôle for cohomological induction as the Levi subgroup
LP did for parabolic induction. In place of the split component AP , we
will use

T z(Lλ) = Z(Lλ) ∩ K, (4.3)(b)

(cf. (2.1)(d)), a subgroup of Tmax. For generic λ, Lλ = Hmax, and

T z
0 (Lλ) = Tmax,0.

The restricted root system for Lλ is

R(lλ, tmax) = {α ∈ R(g, tmax) | 〈α, λ〉 = 0}. (4.3)(c)

As usual, the bilinear form is the one introduced after (2.1)(b). If we use
this form to identify λ with an element Xλ ∈ itmax,0, then these roots
are just the ones vanishing on Xλ.

We will also need a θ-stable nilpotent subalgebra uλ, characterized
by

R(uλ, tmax) = {α ∈ R(g, tmax) | 〈α, λ〉 > 0}. (4.3)(d)
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In terms of a corresponding Lie algebra element Xλ as above, uλ is
the sum of the positive eigenspaces of ad(Xλ). The θ-stable parabolic
subalgebra associated to λ is by definition

qλ = lλ + uλ; (4.3)(e)

this is a parabolic subalgebra of g. Because the weights of tmax,0 take
purely imaginary values, complex conjugation with respect to the real
form g0 carries qλ to an opposite parabolic subalgebra; we have a trian-
gular decomposition

g = uλ + lλ + uλ. (4.3)(f)

The next result establishes for cohomological induction some of what
was done in Lemma 3.2 for parabolic induction.

Lemma 4.4. Suppose we are in the setting of Definition 4.3; use
the notation there.

(1) The group Lλ is precisely the normalizer in G of qλ. In partic-

ular, Ad(Lλ) preserves uλ.

(2) There is a G-invariant complex structure on G/Lλ, having qλ/lλ

as holomorphic tangent space at the identity coset. We may
identify G/Lλ as an open G-orbit on the projective variety of

parabolic subalgebras of g conjugate to qλ. This identification
sends gLλ to the parabolic Ad(g)(qλ).

(3) Write 2ρ(uλ) for the one-dimensional character of Lλ on the

top exterior power of uλ. Suppose H ⊂ Lλ is a θ-stable Cartan
subgroup; write

h = tz(lλ) +
(

az(lλ) + hs(lλ)
)

(4.4)(a)

as in Definition 2.5. Then the differential of 2ρ(u) vanishes on

az(lλ) + hs(lλ). It is therefore natural to write also 2ρ(uλ) for

the restriction to tz(lλ) of the differential of this character.

(4) Suppose Z is any irreducible (lλ, Lλ ∩ K)-module. Then the

compact center T z(Lλ) acts on Z by a unitary character Λ′,

having differential λ′ ∈ i(tz0(l
λ))∗. For H as in (3), suppose that

the infinitesimal character of Z is given by a weight γ′ ∈ h∗.
Then with respect to the decomposition (4.4)(a) of h, we have

γ′ = (λ′, ν′), ν′ ∈
(

az(lλ) + hs(lλ)
)∗

(4.4)(b)

(5) With notation as in (4), write Z# for the tensor product of Z

with the top exterior power of uλ. Then Z# has infinitesimal
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character γ′ + 2ρ(uλ). The induced (g, Lλ ∩ K)-module

W = indg

qλ(Z#) = U(g) ⊗qλ Z# (4.4)(c)

has infinitesimal character

γ′ + ρ(uλ) = (λ′ + ρ(uλ), ν′) ∈ h∗. (4.4)(d)

The same is true of the produced module

W ′ = prog

qλ(Z#).

The real and imaginary parts of this infinitesimal character are

RE(γ′ + ρ(uλ)) = (λ′ + ρ(uλ),RE ν′), IM(γ′ + ρ(uλ)) = (0, IM ν′).
(4.4)(e)

A definition of the induced and produced modules may be found in
[Grn], Chapter 6, or in [KV], page 105.

Proof. For (1), that Lλ normalizes qλ follows easily from Defini-

tion 4.3. Write Nλ ⊃ Lλ for the full normalizer. Since a parabolic
subalgebra of a reductive Lie algebra is self-normalizing, we must have

nλ ⊂ qλ ∩ qλ = lλ. From this it follows that Nλ is generated by Lλ and
representatives for the normalizer of qλ in the Weyl group W (K,Tmax)
of (4.1)(d). It is a straightforward exercise to show that this normalizer

is precisely W (Lλ, Tmax).
For (2), the existence of the complex structure follows from (1) and

general principles (see for example [Orng], Proposition 1.19). The indi-

cated map evidently embeds G/Lλ in the variety of parabolics; that the
image is open follows from the triangular decomposition (4.3)(f).

Parts (3) and (4) are elementary, as is the first formula in (5). The
infinitesimal characters of the induced and produced modules may be
found in [KV], Theorem 5.24. The assertion about real and imaginary
parts is then elementary. Q.E.D.

We do not propose to attempt here a detailed explanation of co-
homological induction. For this we refer to the introduction of [KV].

The idea is that a representation Z of Lλ gives rise to an (infinite-

dimensional) holomorphic vector bundle V(Z) on G/Lλ, having Z# as
its fiber over the identity coset. The produced module W ′ of Lemma
4.4(5) may be identified with certain formal power series sections of
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V(Z) at the identity coset. Cohomological induction provides a fam-
ily of representations of G (more precisely, a family of (g,K)-modules)

that are formally analogous to the Dolbeault cohomology of G/Lλ with
coefficients in V(Z). Explicitly,

(

Lg,K

qλ,Lλ∩K

)

j
(Z) =

(

Πg,K

g,Lλ∩K

)

j

(

indg

qλ(Z#)
)

. (4.5)

Here the functors Lj on the left carry (lλ, Lλ ∩ K) modules of finite
length to (g,K)-modules of finite length. They are defined by first twist-

ing Z by the one-dimensional character 2ρ(uλ); extending to qλ (by 0

on uλ); inducing to g; and finally applying a Bernstein-Zuckerman de-
rived functor to get a K-finite representation. This last step does not
affect infinitesimal character, so (with notation as in Lemma 4.4) we see

that the cohomological induction functors add ρ(uλ) to the infinitesimal
character.

This “ρ-shift” is annoying after the simple situation for parabolic
induction recorded in Lemma 3.2(2). The reason for the difference is
that parabolic induction involves a shift by a square root of the character
2ρ(nP ) (of LP on the top exterior power of nP . (More precisely, one uses
a positive character of LP that provides a square root of 2ρ(nP ) on the

identity component of LP .) In the case of the θ-stable parabolic qλ, the

character 2ρ(uλ) need not admit a square root; we used a shift by the
character itself rather than a square root, leading inevitably to the shift
in the infinitesimal character formula. It is possible to avoid this shift
at the expense of introducing a double cover of Lλ. For a description of
this we refer to [Orng], chapter 6.

The following theorem complements Lemma 4.4, providing a fairly
complete analogue of Lemma 3.2 for cohomological induction.

Theorem 4.6. Suppose we are in the setting of Definition 4.3,
so that qλ = lλ + uλ is a θ-stable parabolic subalgebra of G. Then the
functors Lj of cohomological induction (see (4.5)) carry (lλ, Lλ ∩ K)
modules of finite length to (g,K)-modules of finite length. They are zero

unless 0 ≤ j ≤ S = dim(uλ ∩ k).

Suppose now that Z is an irreducible (lλ, Lλ ∩ K)-module of infini-
tesimal character γ′ = (λ′, ν′) (notation as in Lemma 4.4(4)).

(1) The cohomologically induced representations Lj(Z) have infini-

tesimal character γ′ + ρ(uλ).
(2) Assume that the infinitesimal character satisfies the positivity

condition

Re〈γ′ + ρ(uλ), α〉 ≥ 0, (α ∈ ∆(uλ, h)). (4.6)
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Then Lj(Z) = 0 for j < S. The module LS(Z) is irreducible or
zero; it is unitary if Z is.

(3) Assume that the inequalities in (4.6) are all strict. Then LS(Z)
is non-zero (and irreducible). It is unitary if and only Z is
unitary.

Proof. The assertions through (1) are fairly easy consequences of
the definitions. The vanishing of Lj for j > S is [KV], Theorem 5.35.
The calculation of infinitesimal character, already mentioned after (4.5),
follows from Lemma 4.4 and [KV], Theorem 5.21. The irreducibility in
(2) and (3) is [KV], Corollary 8.28. The unitarity for LS(Z) is [KV],
Theorem 9.1. The converse assertion in (3) (deducing unitarity for Z
from LS(Z) is [VUn], Theorem 1.3(b). Q.E.D.

Cohomological induction in certain respects requires more care than
parabolic induction, as a tool for constructing unitary representations.
Lemma 3.2 allowed us to begin with any unitary representation of LP ;
Theorem 4.6 requires a rather restrictive positivity hypothesis on the
representation Z of Lλ. We will conclude this section with a discussion
of a simple but important way that this positivity condition can be
fulfilled. We will also take the opportunity to recast the notation without
the weight λ, which we used for the original construction of a θ-stable
parabolic but not subsequently.

Suppose therefore that

q = l + u (4.7)(a)

is a Levi decomposition of a θ-stable parabolic subalgebra of g. Write

L = normalizer in G of q (4.7)(b)

for the corresponding Levi subgroup, and H ⊂ L for a θ-stable Cartan
subgroup. Recall from (2.1)(d) the compact and split components T z(L)
and Az(L) of the center of L, and then from Definition 2.5 the direct
sum decomposition

h = tz(l) + (az(l) + hs(l)) . (4.7)(c)

Now let Z be an irreducible (l, L∩K)-module of infinitesimal character

γ = (λ, ν) = (λ, νz, νs) ∈ h∗; (4.7)(d)

here we use the decomposition (4.7)(c) of h. According to Lemma 4.4(4),

λ ∈ itz0(l)
∗ (4.7)(e)
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is the differential of the (necessarily unitary) character by which T z(L)
acts on Z. In the same way, we see that νz ∈ (az(l))∗ is the differential
of the character by which Az(L) acts on Z. In particular,

νz ∈ iaz
0(l)

∗ (Z unitary). (4.7)(f)

Finally, νs is just the infinitesimal character of Z restricted to the semi-
simple derived group of L. Just as in Lemma 4.4, we can decompose
the infinitesimal character γ +ρ(u) into its canonical real and imaginary
parts; these are

RE(γ + ρ(u)) = (λ + ρ(u), 0,RE νs), IM(γ + ρ(u)) = (0,−iνz, IM νs)
(4.7)(g)

(still assuming that Z is unitary).
Here is the special setting for the positivity condition in Theorem

4.6.

Proposition 4.8. Suppose q = l + u is a θ-stable parabolic subal-
gebra with Levi subgroup L. Let Z be an irreducible unitary (l, L ∩ K)-
module of infinitesimal character γ = (λ, ν) (notation as in (4.7)). As-
sume that

(a) every weight α of tz(l) in u is non-negative on λ: 〈λ, α〉 ≥ 0;
and

(b) the weight RE ν belongs to the convex hull of the W (l, h) orbit
of ρ(l), half the sum of a set of positive roots for h in l.

Then the strict positivity hypothesis (4.6) is satisfied:

Re〈γ + ρ(u), β〉 > 0, (β ∈ ∆(u, h)).

Consequently LS(Z) is an irreducible unitary (g,K)-module.

Proof. The real part of an inner product with a root is the same
as the inner product of the canonical real part with the root; so what
we are trying to prove is that

〈(λ + ρ(u),RE ν), β〉 > 0, (β ∈ ∆(u, h)). (4.9)(a)

By hypothesis RE ν belongs to the convex hull of various half sums of
positive roots; so it suffices to prove the inequality with RE ν replaced
by one of these half sums. That is, it suffices to fix a set of positive roots
∆+(l, h), to write ρ(l) for half the sum of these roots, and prove

〈(λ + ρ(u), ρ(l)), β〉 > 0, (β ∈ ∆(u, h)). (4.9)(b)
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Because q is a parabolic subalgebra, the roots

∆+(g, h) = ∆(u, h) ∪ ∆+(l, h) (4.9)(c)

constitute a positive system for h in g. The corresponding half sum of
positive roots is

ρ = (ρ(u), ρ(l)). (4.9)(d)

Combining (4.9)(b) and (4.9)(c), we see that we need to prove

〈λ + ρ, β〉 > 0, (β ∈ ∆(u, h)). (4.9)(e)

In this last inner product, the term 〈λ, β〉 is non-negative by hypothesis
(1) on Z. The term 〈ρ, β〉 is strictly positive since β is a positive root by
the construction of ∆+. So the sum of these two terms is strictly positive,
as we wished to show. That LS(Z) is irreducible unitary follows from
Theorem 4.6. Q.E.D.

§5. Reduction to unitarily small representations

Proposition 4.8 allows us to construct unitary representations of G
having certain kinds of real infinitesimal character from unitary repre-
sentations of θ-stable Levi subgroups. This is more or less parallel to
the construction of representations with partly imaginary infinitesimal
character in Lemma 3.2. In the earlier setting we had a converse as
well: Theorem 3.3 guaranteed that any unitary representation could be
constructed. The point of [SV] is to try to prove a parallel result for
cohomological induction. To formulate what is expected, we need a little
preliminary geometry.

Definition 5.1. Suppose H is a θ-stable Cartan subgroup of the
reductive group G, and V = RE h∗ is the dual of the canonical real part.
Write ∆ = ∆(g, h) ⊂ V for the roots of g, and W = W (g, h) ⊂ AutV
for the Weyl group. To each system of positive roots ∆+ ⊂ ∆ we attach
the closed positive Weyl chamber

C = C(∆+) = {v ∈ V | 〈v, α〉 ≥ 0 (α ∈ ∆+)}. (5.1)(a)

Define PC to be the projection from V onto C: PC(w) is by definition
the element of C closest to w.

Suppose γ ∈ V is an arbitrary element. We define a “truncation
operator” Tγ :V → V as follows. Given v ∈ V , choose a positive root

system ∆+ making v dominant; that is, so that v ∈ C(∆+). Next,
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let γ′ be the unique dominant weight conjugate to γ: that is, γ′ ∈
W · γ ∩ C(∆+). Finally, define

Tγ(v) = PC(v − γ′). (5.1)(b)

Because the positive root system ∆+ is not uniquely specified by
v, the first issue is to show that Tγ(v) does not depend on its choice.
This fact and some other basic properties of Tγ are recorded in the next
proposition.

Proposition 5.2. In the setting of Definition 5.1, the truncation
operator Tγ is well-defined. It depends only on the Weyl group orbit
W · γ, and has the following additional properties.

(1) The operator Tγ is continuous and in fact a contraction: if
v, w ∈ V , then

| Tγ(v) − Tγ(w) | ≤ | v − w | .

(2) The operator Tγ commutes with the action of W : Tγ(w · v) =
w · Tγ(v).

(3) The inverse image of 0 under Tγ is the convex hull of the Weyl
group orbit of γ. More generally, suppose v0 ∈ V , and let W0 be
the stabilizer of v0 in W . Fix γ0 ∈ W ·γ belonging to a common
positive Weyl chamber with v0. Then

T−1
γ (v0) = v0 + (convex hull of W0 · γ0).

Proof. These facts are more or less elementary; proofs of most of
them may be found in section 1 of [SV]. The idea of applying them to
representation theory is taken from [Car]. Q.E.D.

Corollary 5.3. Suppose G is a real reductive group, H is a θ-
stable Cartan subgroup of G, and ξ:Z(g) → C is an infinitesimal char-
acter. Choose a weight φ ∈ h∗ defining the infinitesimal character (Def-
inition 2.4), and use the notation of Definition 5.1, so that REλ ∈ V .
Write ρ ∈ V for half the sum of a set of positive roots. Then the Weyl
group orbit of Tρ(REφ) depends only on the infinitesimal character ξ.

Corollary 5.4. Suppose we are in the setting of Proposition 4.8,
so that LS(Z) has infinitesimal character γ + ρ(u). Then Tρ(RE(γ +
ρ(u)) = λ, the weight by which the compact center tz(l) acts on Z.

Proof. Choose a positive root system ∆+(g, h) as in (4.9)(c). By
hypothesis (1) of Proposition 4.8, λ is non-negative on the roots of u.
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Because tz(l) is central in l, λ is perpendicular to the roots of l. Therefore
λ is dominant for ∆+, and fixed by the Weyl group W (l, h). According
to Proposition 5.2(3), the preimage under Tρ of λ includes

λ + (convex hull of W (l, h) · ρ).

Using the decomposition (4.9)(d), we can rewrite this as

λ + ρ(u) + (convex hull of W (l, h) · ρ(l)).

According to hypothesis (2) of Proposition 4.8, this convex hull contains
RE ν; so the real part RE((λ, ν) + ρ(u)) of the infinitesimal character
belongs to T−1

ρ (λ), as we wished to show. Q.E.D.

Recall that we are seeking an analogue of Theorem 3.3 for coho-
mological induction. Roughly speaking, it should say that any unitary
representation for which the real part of the infinitesimal character trun-
cates (by Tρ) to a weight λ, ought to be cohomologically induced from a
Levi subgroup defined by λ. In order to make sense of such a statement,
we need to get the real part of the infinitesimal character (at least after
truncation) into it∗max,0. This at least is possible.

Lemma 5.5. Suppose Hmax is a maximally compact Cartan sub-
group of G as in (4.1); use the notation there. Then the canonical real
part of the infinitesimal character of any unitary representation of G is
represented by a weight in it∗max,0, unique up to the action of W (g, tmax)

(Lemma 4.2). Consequently the same is true of its truncation by Tρ.

Sketch of proof. That the representative (if it exists) has the desired
uniqueness property follows from Lemma 4.2(5). That truncation by ρ
preserves it∗max,0 follows fairly easily from the definition of Tρ. The

main point is therefore the existence of a representative. This we can
prove not just for unitary representations, but for arbitrary Hermitian
representations. The advantage of the generalization is that Hermitian
representations behave very simply in the classification by lowest K-
types described in [Grn] (see for example [SV], Theorem 2.9). Using
this reduction, Lemma 5.5 may be reduced to the following fact.

Lemma 5.6. Suppose G is a quasisplit real reductive group in
Harish-Chandra’s class, and Hmax and Hmin are maximally and mini-
mally compact Cartan subgroups; use the notation of Corollary 3.5 and
(4.1) accordingly. Suppose ν ∈ a∗max,0, w ∈ Wres, and wν = −ν. Then

ν is conjugate by Ad g to an element of it∗max,0.
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For this fact we omit the elementary (although not trivial) proof.
Here is a suggestive special case. Suppose G is complex. In this case we
can choose Hmax = Hmin = H = TA, and the real Cartan subalgebra h0

is actually complex. Its complexification h is isomorphic to a sum of two
copies of h0 (corresponding to the +i and −i eigenspaces of the complex
structure from G). The canonical real part respects this decomposition;
it is the product of two copies of a0.

h = hL
0 + hR

0 , RE h = aL
0 + aR

0 . (5.7)(a)

On the other hand, we have H = TA, so h = t + a. The identifications
in (5.7)(a) may be arranged so that

a = {(X,X) | X ∈ h0}, t = {(X,−X) | X ∈ h0} (5.7)(b)

. Finally, the Weyl group W (g, h) is just a product of two copies of the
Weyl group W0 of h0 in g0, and Wres ≃ W0 is the diagonal subgroup.
The weights ν as in Lemma 5.6 are precisely

{ν = (ν0, ν0) | ν0 ∈ a0, wν0 = −ν0 (some w ∈ W0)}. (5.7)(c)

Such a weight ν is obviously conjugate (by (1, w)) to the weight (ν0,−ν0)
in it∗0. This proves Lemma 5.6 for complex groups.

We omit the remaining details in the proof of Lemma 5.5. Q.E.D.

Here at last is a (partly conjectural) converse to Proposition 4.8.

Theorem 5.8 [SV], Theorem 5.8. Suppose G is a real reductive
group in Harish-Chandra’s class, and that Conjecture 0.6 of [SV] is true.
Suppose X is an irreducible unitary (g,K)-module. Then there is a θ-
stable parabolic subalgebra q = l+u of g, with Levi subgroup L (Definition
4.3), and an irreducible unitary (l, L ∩ K)-module Z of infinitesimal
character γ = (λ, ν) (cf. (4.7)), with the following properties.

(1) Every weight α of tz(l) in u is positive on λ: 〈λ, α〉 > 0.
(2) The weight RE ν belongs to the convex hull of the W (l, h) orbit

of ρ(l), half the sum of a set of positive roots for h in l.
(3) The (g,K)-module X is isomorphic to LS(Z).

Just as we unwound Theorem 3.3 into Corollary 3.5, we can unwind
Theorem 5.8 into the following statement.

Corollary 5.9. Suppose Hmax is a maximally compact Cartan
subgroup of G as in (4.1); use the notation there. Fix a weight λ ∈
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it∗max,0, and representatives λ1, . . . , λr for the orbits of W (K,Tmax) on

W (g, tmax) · λ. To each λi associate a θ-stable parabolic subalgebra

qi = qλi

as in Definition 4.3, with Levi subgroup

Li = Lλi .

For each i, define Πλi

u (Li) to be the set of irreducible unitary (li, Li∩K)-
modules Z having the following two properties.

(a) The compact center tz(li) acts on Z by the weight λi.
(b) Write the infinitesimal character of Z as (λi, ν) in accordance

with (4.7). Then RE ν belongs to the convex hull of W (li, h) ·
ρ(li).

Then

(1) The cohomological induction functor LSi
is a bijection from

Πλi

u (Li) to a set Πλi

u (G) of irreducible unitary representations
of G.

(2) As i varies, the sets Πλi

u (G) are disjoint.
(3) Suppose X is an irreducible unitary representation of G of in-

finitesimal character φ. Then X belongs one of the sets Πλi

u (G)
if and only if Tρ(REφ) is conjugate by Ad g to λ.

Actually conclusions (1) and (2) do not depend on the conjecture
of [SV]. Part (3) shows how to recover the W (g, tmax) orbit of λi from

(the infinitesimal character of) any representation X in Πλi

u (G). The
formulation of (2) suggests that we should actually be able to recover λi

(or at least its W (K,Tmax) orbit) from X. This is indeed possible, and
is one of the main points of [SV] (see Definition 0.2 there).

§6. Reduction to general Levi subgroups

By combining Corollary 3.5 and Corollary 5.9, we can get a de-
scription of all unitary representations of G in terms of unitarily small
representations of Levi subgroups. In this section we will make such a
reduction explicit.

Definition 6.1. A Levi subgroup of G is one of the form

L = centralizer in G of c0,
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with c0 a subspace of a θ-stable Cartan subalgebra h of g. (We do not
require c0 to be θ-stable.) This is a reductive group in Harish-Chandra’s
class, with Cartan involution θ. Decompose the Cartan subalgebra h0

as
h0 = hs

0(l) + tz0(l) + az
0(l)

as in Definition 2.5. Suppose Z is an irreducible unitary representation
of L, of infinitesimal character

φ = (φs, φz) = (φs, φz,c, φz,n) ∈ hs(l)∗ + tz(l)∗ + az(l)∗

(Here the additional superscripts on φz stand for “compact” and “non-
compact.”) Necessarily

φz,c ∈ itz0(l)
∗ ⊂ RE h∗,

and
φz,n ∈ iaz

0(l)
∗ ⊂ IM h∗.

We say that Z is unitarily small if

φs ∈ convex hull of W (l, h) · ρ ⊂ RE h.

This is consistent with the definition made in Theorem 1.1 in the semi-
simple case. We write Πφz

u,small(L) for the set of unitarily small repre-

sentations of L with the indicated action of the center of l.
Finally, we say that φz is maximally regular if it is orthogonal only

to the roots of h in l. That is, we require

〈φz, α〉 6= 0

for every non-zero weight of hz(l) in g. Suppose φz is maximally regular.
Then the centralizer L(φz,n) is a Levi factor of a real parabolic subgroup
P (φz,n) in G. The weight φz,c defines a θ-stable parabolic subalgebra

q(φz,c, φz,n) = l(φz,c, φz,n) + u(φz,c, φz,n)

for L(φz,n) as in Definition 4.3; its Levi subgroup L(φz,c, φz,n) is just
the original L.

Theorem 6.2. Suppose L is a Levi subgroup of G, and φz ∈ hz(l)∗

is a maximally regular weight (Definition 6.1). Define P (φz,n) and
q(φz,c, φz,n) as in Definition 6.1.

(1) Cohomological induction from L to L(φz,n), followed by para-
bolic induction from L(φz,n) to G, carries the unitarily small
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representations in Πφz

u,small(L) bijectively onto a set Πφz

u (G) of

irreducible unitary representations of G.
(2) Two such sets of unitary representations of G can overlap if

and only if the corresponding pairs (L, φz) are conjugate by K,
in which case they coincide.

(3) Suppose that Conjecture 0.6 of [SV] holds for G. Then any

unitary representation of G belongs to one of the sets Πφz

u (G).

This is a combination of Corollary 3.5 and Corollary 5.9. It provides
a rather precise form of the claim in Theorem 1.1(1).
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