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1 Introduction
{sec:intro}

These notes are concerned with the general problem of understanding and clas-
sifying disconnected reductive algebraic groups. The issue of passage to covering
groups is closely related, so we’ll talk about that as well. I’ll concentrate first
on complex groups, but ultimately we’re interested in real groups. {se:rootdata}

We begin with a complex connected reductive algebraic group equipped with
a pinning (see for example [1, Definition 1.9]). The reason we use [1] as a {AV}{AV}
reference rather than something older and closer to original sources is that this
reference is concerned, as we will be, with representation theory of disconnected
groups. Write

G ⊃ B ⊃H

R(G,H) ⊂X∗
(H), R∨

(G,H) ⊂X∗(G,H)

R+
(G,H) ⊃ Π(B,H), Π∨

(B,H) ⊂ (R∨
)
+
(G,H) (1.1a)

{Xα ∣ α ∈ Π(B,H)}

for the fixed Borel subgroup and maximal torus, roots and coroots, positive and
simple roots and coroots defined by B, and the basis vectors for simple root
spaces that constitute the pinning. all these choices are determined by H and
the Xα. The root datum of G is the quadruple

R(G) = (X∗
(H),R(G,H),X∗(H),R∨

(G,H)) (1.1b) {eq:rootdata2}{eq:rootdata2}

and the based root datum is

B(G) = (X∗
(H),Π(B,H),X∗(H),Π∨

(B,H)) (1.1c) {eq:basedrootdata}{eq:basedrootdata}
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Each α ∈ R(G,H) defines a simple reflection

sα ∈ Aut(X∗
(H)), sα(λ) = λ − ⟨α∨, λ⟩α (λ ∈X∗

(H)). (1.1d) {eq:salpha}{eq:salpha}

The transpose automorphism of X∗ is

sα∨ ∈ Aut(X∗(H)), sα∨(`) = ` − ⟨`,α⟩α∨ (` ∈X∗(H)). (1.1e) {eq:salphavee}{eq:salphavee}

The Weyl group of H in G is

group generated by {sα ∣ α ∈ R(G,H)} ⊂ Aut(X∗(H)). (1.1f) {eq:W}{eq:W}

The inverse transpose isomorphism

Aut(X∗
(H)) ≃ Aut(X∗(H)), T ↦ tT −1

identifies W (G,H) with the group of automorphisms of X∗(H) generated by
the various sα∨ . The set of Coxeter generators or simple reflections for W is

S = {sα ∣ α ∈ Π(B,H)} ≃ {sα∨ ∣ α∨ ∈ Π∨
(B,H)}. (1.1g) {eq:S}{eq:S}

{prop:pinned}
Proposition 1.2. Suppose we are in the setting (1.1). If {H,Xα} and {H ′,X ′

α′}

are two pinnings for G, then there is a unique coset gZ(G) so that

Ad(g)(H) =H ′, Ad(g)(Xα) =X
′

α′ (α ∈ Π).

The bijection of simple roots Π↔ Π′ is uniquely fixed by the existence of g.
An automorphism of G preserving the pinning is precisely the same thing as

an automorphism of the based root datum (1.1c):

Aut(B(G)) = {T ∈ Aut(X∗) ∣
T (Π(B,H)) = Π(B,H)

tT (Π∨(B,H)) = Π∨(B,H)
} .

{se:disc1}
Our goal is to understand disconnected complex reductive algebraic groups.

If E is such a group, and E0 = G its identity component, then

Γ =defE/E0 = E/G

{1}Ð→ GÐ→E
pE
Ð→ ΓÐ→ {1}

(1.3a) {eq:disc1}{eq:disc1}

with Γ a finite group. We will begin with G and Γ, and seek to understand how
to describe the possibilities for E. Write

Aut(G) = {algebraic automorphisms of G}

Aut(G,{H,Xα}) = {τ ∈ Aut(G) ∣ τ({Xα}) = {H,Xα}

= {distinguished automorphisms of G}

Int(G) = {Ad(g) ∣ g ∈ G} = {inner automorphisms of G}

Out(G) = Aut(G)/ Int(G).

(1.3b) {eq:intout0}{eq:intout0}

As for any group, there are natural short exact sequences

{1}Ð→ Int(G)Ð→ Aut(G)
pAut
Ð→ Out(G)Ð→ {1}

{1}Ð→ Z(G)Ð→ G
pG
Ð→ Int(G)Ð→ {1}.

(1.3c) {eq:intout}{eq:intout}

What follows from Proposition 1.2 for reductive algebraic groups is this.
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Corollary 1.4. In the setting (1.1), the group of algebraic automorphisms of
G is the semidirect product of the inner automorphisms and the distinguished
automorphisms:

Aut(G) = Int(G) ⋊Aut(G,{H,Xα}).

Consequently
Aut(B(G)) ≃ Out(G) ≃ Aut(G,{H,Xα}).

Aut(G) = Int(G) ⋊Aut(B(G)).
{se:disc2}

We can now describe the possible disconnected groups E as in (1.3a). We will
take as given the connected complex reductive algebraic G as in (1.1), specified
by the based root datum B(G). We fix also a finite group Γ, which may be
specified in any convenient fashion. If we are to have a short exact sequence as
in (1.3a), we will get automatically a group homomorphism

Ad∶Γ→ Out(G) ≃ Aut(B(G)). (1.5a) {eq:outer}{eq:outer}

We will therefore take the specification of such a homomorphism Ad as part of
the data (along with G and Γ) which we are given.

We pause briefly to recall what sort of group is Aut(B(G)). Recall that the
set of simple roots Π(B,H) is the set of vertices of a graph Dynkin(G) with
some directed multiple edges, the Dynkin diagram of G: an edge joins distinct
vertices α and β if and only if ⟨β∨, α⟩ ≠ 0. We will not make further use of the
Dynkin diagram, so we do not recall the details. If Z(G) has dimension m, then

Aut(B(G)) ⊂ Aut(Dynkin(G)) ×Aut(Zm). (1.5b) {eq:out}{eq:out}

Here the first factor is a finite group (“diagram automorphisms”) and the second
is the discrete group of m×m integer matrices of determinant ±1. The inclusion
is a subgroup of finite index.

The automorphism group of a connected Dynkin diagram is small (order
one or two except in the case of D4, where the automorphism group is S3).
So for semisimple G the possibilities for the homomorphism Ad are generally
quite limited, and can be described concretely and explicitly. Understanding
possible maps to Aut(Zm) means understanding m-dimensional representations
of Γ over Z. This is a more subtle and complicated subject; but we will not
concern ourselves with it, merely taking Ad as given somehow.

For any group G, the inner automorphisms act trivially on the center Z(G),
so there is a natural homomorphism

Ad∶Out(G)→ Aut(Z(G)). (1.5c)

In our setting, (1.5a) therefore gives

Ad∶Γ→ Aut(Z(G)). (1.5d)

With this information in hand, the quotient group E/Z(G) can now be
completely described. Define (using pAut from (1.3c) and Ad from (1.5a))

AutΓ(G) = p−1
Aut(Ad(Γ)). (1.5e)
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We immediately get from (1.3c) a short exact sequence

1Ð→ Int(G)Ð→ AutΓ(G)Ð→ Ad(Γ)Ð→ 1. (1.5f)

Necessarily E/Z(G) is the pushout

1 Ð→ Int(G) Ð→ E/Z(G) 999K Γ Ð→ 1Ð
→

99K

Ð
→

1 Ð→ Int(G) Ð→ AutΓ(G) Ð→ Ad(Γ) Ð→ 1.

(1.5g)

Explicitly, this means

E/Z(G) = {(τ, γ) ∈ AutΓ(G) ⋊ Γ ∣ pAut(τ) = Ad(γ)}

≃ [G/Z(G)] ⋊ Γ
(1.5h)

(notation (1.3c) and (1.5a)). What is required is therefore to construct the
extension E

1Ð→ Z(G)Ð→ E Ð→ E/Z(G)Ð→ 1. (1.5i)

Here is how to do that.
{thm:listE}

Theorem 1.6. Suppose we are in the setting (1.5).

1. Define

E({H,Xα}) = {e ∈ E ∣ Ad(e)({H,Xα}) = {H,Xα}} ,

the subgroup of E defining distinguished automorphisms of G (see (1.3b)).
Then

1Ð→ Z(G)Ð→ E({H,Xα})Ð→ ΓÐ→ 1,

so E({H,Xα}) is an extension of Γ by the abelian group Z(G).

2. The group E({H,Xα}) meets G in Z(G), and meets every coset of G in
E. Consequently there is natural surjective homomorphism

G ⋊E({H,Xα})→ E

with kernel the diagonal copy Z(G)∆.

3. There is a natural bijection between algebraic extensions E of Γ by G
and algebraic extensions E({H,Xα}) of Γ by Z(G). These latter are
parametrized by the group cohomology

H2
(Γ, Z(G))

(see for example [2, pages 299–303]). The bijection is given by {CE}

E = [G ⋊E({H,Xα})] /Z(G)∆.
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4. Define
Z(G)fin = elements of finite order in Z(G),

the torsion subgroup. Then the natural map

Hp
(Γ, Z(G)fin)→Hp

(Γ, Z(G)) (p ≥ 2)

is an isomorphism.
{se:grpcoh}

Here are some details about the description of E({H,Xα}) explained in
Theorem 1.6(3). The group cohomology H2(Γ, Z(G)) can be described as

Z2
(Γ, Z(G))/B2

(Γ, Z(G)) (1.7a)

of cocycles modulo coboundaries. The set Z2(Γ, Z(G)) of cocycles consists of
maps

c ∶Γ × Γ→ Z(G),

γ1 ⋅ c(γ2, γ3) − c(γ1γ2, γ3) + c(γ1, γ2γ3) − c(γ1, γ2) = 0 (γi ∈ Γ).
(1.7b)

A coboundary begins with an arbitrary map b ∶Γ → Z(G). The corresponding
coboundary is

db(γ1, γ2) = b(γ1) + γ1 ⋅ b(γ2) − b(γ1γ2); (1.7c)

it is standard and easy to check that db is a cocycle. Given a cocycle c, the
extension E({H,Xα}) is generated by Z(G) and additional elements

{γ̃ ∣ γ ∈ Γ} (1.7d)

which are subject to the relations

γ̃1γ̃2 = c(γ1, γ2)γ̃1γ2

γ̃zγ̃−1
= γ ⋅ z (γ ∈ Γ, z ∈ Z(G)).

(1.7e) {eq:discrel}{eq:discrel}

Another way to say this is that the extension E({H,Xα}) as a set is Z(G)×Γ,
with multiplication defined by

(z1, γ1)(z2, γ2) = (z1 ⋅Ad(γ1)(z2) ⋅ c(γ1, γ2), γ1γ2). (1.7f) {eq:discrel2}{eq:discrel2}

In this picture, the distinguished coset representatives γ̃ of (1.7e) are the ele-
ments (1, γ).

Conversely, if we are given an extension E({H,Xα}) as in Theorem 1.6(1),
and we choose for each γ ∈ Γ a preimage γ̃ ∈ E({H,Xα}), then these choices
must satisfy relations of the form (1.7e), with c a cocycle. Replacing the repre-
sentatives γ̃ with alternate representatives

γ̃′ = b(γ)γ̃ (b(γ) ∈ Z(G))

(which are the only possibilities) replaces c by c′ = c + db.
One reason that Theorem 1.6(4) is interesting is for keeping calculations

accessible to a computer. We would like the cocycle defining our disconnected
group to take values in Z(G)fin, because such elements are easily described in
a computer. Here is a way to prove part (4).
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{prop:transfer}
Proposition 1.8 (Eckmann [3, Theorem 5]). Suppose that Γ is a finite group {transfer}
of order n, and that A is an abelian group on which Γ acts. Then multiplication
by n acts by zero on Hp(Γ,A). If multiplication by n is an automorphism of A,
then Hp(Γ,A) = 0 for all p > 0.

Sketch of Proof. It is easy to calculate (with no hypotheses on A) that
Hp({1},A) = 0 for all p > 0. Therefore the obvious restriction map

Q∶Hp
(Γ,A)→Hp

({1},A) (p > 0)

must be zero. Eckmann in [3] defines a natural transfer homomorphism {transfer}

T ∶Hp
({1},A)→Hp

(Γ,A),

and proves (this is his Theorem 5) that T ○Q is multiplication by n. Since Q = 0,
it follows that multiplication by n must be zero for all p > 0. The last assertion
is immediate.

To prove Theorem 1.6(4), consider the short exact sequence of Γ modules

1→ Z(G)fin → Z(G)→D → 1. (1.9) {eq:ses}{eq:ses}

Because Z(G) is a reductive abelian group, it is a direct sum of copies of C×

and a finite abelian group; so D is a direct sum of copies of C×/(roots of unity).
It follows easily that multiplication by n is an automorphism of D for every
positive n. By Proposition 1.8,

Hp
(Γ,D) = 0 (p > 0).

Examining the long exact sequence in Γ-cohomology attached to (1.9), we de-
duce Theorem 1.6(4). (In fact we can arrange for all values of a representative
cocycle to have order dividing some power of ∣Γ∣.)

This argument works equally well over any algebraically closed field of char-
acteristic zero (and shows that the extensions described by Theorem 1.6 are
independent of the field). In finite characteristic the same is true as long as the
characteristic does not divide the order of Γ.

If the characteristic does divide the order of Γ, then the extension E is no
longer a reductive group, and matters are more complicated.

2 Center and fundamental group
{sec:zpi1}

In this section we record some standard information about the centers and cover-
ings of a reductive algebraic group. As always in the theory of algebraic groups,
it is a useful and enlightening exercise to work sometimes over an algebraically
closed field

k = k (2.1)

not necessarily of characteristic zero. I don’t know how to phrase the next
definition properly.
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{def:redabelian}
Definition 2.2. Suppose A is a reductive abelian algebraic group scheme
over k, not necessarily reduced. Define the character group of A to be

X∗
(A) = Homalg(A,Gm);

here Gm is the group scheme with closed points k×, and the Hom is in the
category of algebraic group schemes. Then X∗(A) is a finitely generated
abelian group. The functor X∗ is an anti-equivalence of categories, with
inverse

A(Y ) = Hom(Y,Gm);

here Hom is in the category of abelian groups. A bit more explicitly, suppose
that Y is given by p generators and q relations:

Y = Zp/RZq,

with R a p×q matrix of integers (whose q columns are the relations). Then

A(Y ) = {g ∈ Gpm ∣ gR = 1 ∈ Gqm},

a subscheme (not necessarily closed) of Gpm.
{prop:ZG}

Proposition 2.3. Suppose G is a connected reductive algebraic group scheme
over the algebraically closed field k, and that

B(G) = (X∗
(H),Π(B,H),X∗(H),Π∨

(B,H))

is the based root datum of G. Then the center Z(G) is a (not necessarily reduced)
subscheme of H. Its character group is therefore a quotient of X∗(H): precisely,

X∗
(Z(G)) =X∗

(H)/ [ZΠ(B,H)] ,

the character lattice of H modulo the root lattice of G. Explicitly, it follows that

Z(G) ≃ {h ∈ Hom(X∗
(H),Gm) ∣ α(h) = 1 (α ∈ Π(B,H))}.

Still more explicitly: an element of H is specified by specifying the values in Gm
of every character of H. The elements of Z(G) are those on which all (positive
simple) roots take the value 1.

I don’t know a good formulation of the next result over arbitrary fields, and
that is a serious gap in understanding.

{prop:pi1}
Proposition 2.4. Suppose G is a connected reductive algebraic group over C,
and that

B(G) = (X∗
(H),Π(B,H),X∗(H),Π∨

(B,H))

is the based root datum of G. Then the inclusion of H in G defines a surjection
on fundamental groups; so π1(G) is naturally a quotient of

π1(H) = π1 (C×
⊗ZX∗(H)) =X∗(H).

Precisely,
π1(G) =X∗(H)/ [ZΠ∨

(B,H)] ,

the cocharacter lattice of H modulo the coroot lattice of G.
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