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1. Introduction

In the 1930s I. M. Gelfand outlined a program of abstract harmonic analysis, which offered a
paradigm for the use of symmetry to study a very wide class of mathematical problems. A key
technical step in Gelfand’s program is

Problem 1.1. For every locally compact group G, determine the set Ĝu of irreducible unitary
representations G.

(Unitary representations, and the origins of this problem, will be explained in more detail in
section 2 below.) The groups G that appear are the symmetry groups of the original problem. In
problems of differential geometry, they are generally Lie groups. In problems of number theory,
they may be algebraic groups over local fields. Because of these examples (and because of the work
of [Ma] and [Du]) Gelfand’s general question may in many important cases be reduced to

Problem 1.2. For every reductive group G defined over a local field F , determine the set Ĝ(F )u

of irreducible unitary representations G(F ).

Examples of groups considered here are the general linear group GL(n, F ), the symplectic group
Sp(2n, F ), orthogonal groups SO(n, F ), or the exceptional groups of type E6, E7, E8, F4 or G2.

We propose to assemble a collection of mathematical and computational tools to address Prob-
lem 1.2. These tools may ultimately be able to solve Problem 1.2 completely for exceptional real
Lie groups; and to support and guide the mathematical work that will be required to solve the
problem for classical groups over any local field and exceptional groups over p-adic fields.

In Section 3 we will sketch a proof of:

Theorem 1.3. Suppose G is the group of real points of a connected reductive algebraic group

defined over R. Then there is a finite algorithm to compute Ĝu.

There is an enormous difference between the conclusion of Theorem 1.3 and a computer pro-
gram to implement it. In fact implementing such an algorithm will certainly require some new
mathematical ideas. Much of the computational portion of this proposal can be summed up in

Problem 1.4. Write a computer program to compute the unitary dual for the group of real points
of any connected reductive algebraic group defined over R.

2. History of the problem

In order to introduce the history of Problem 1.2, as well as to set the stage for the mathematical
questions to be addressed in the proposal, we begin with a little more detail about Gelfand’s
program for using symmetry to do mathematics. We take for the setting a locally compact group
G acting (as a symmetry group) on a measure space X, preserving the measure. In this setting
there is a Hilbert space H = L2(X) of (complex-valued) square-integrable functions on X. Each
element g ∈ G defines a linear transformation π(g) of H, by the rule

[π(g)f ](x) = f(g−1 · x).

These linear transformations have three fundamental properties:

π(gh) = π(g)π(h), π(e) = I (g, h ∈ G); (2.1)(a)
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for every g ∈ G, π(g) is a unitary operator on H; (2.1)(b)

G×H → H, (g, v) 7→ π(g)v is continuous. (2.1)(c)

(The last condition requires some mild assumptions about the “niceness” of the action of G on the
measure space X.)

The central idea of Gelfand’s program is to replace the (non-linear) problem of studying group
actions on sets by the (linear) problem of studying families of linear transformations satisfying
these three properties. The first step in the program is to express questions about X (related to
the symmetry group G) as questions about L2(X) (and the linear operators π(g)).

A unitary representation of G is a pair (π,H) consisting of a complex Hilbert space H and a
mapping π from G to linear transformations of H, subject to the three conditions (2.1). An invari-
ant subspace of π is a closed subspace V ⊂ H that is preserved by all of the linear transformations
π(g). In this case the the orthogonal complement V⊥ is also invariant, and

π = πV ⊕ πV⊥

in an obvious sense. Such a decomposition puts the operators π(g) simultaneously in block-diagonal
form, and so reduces many questions about π to questions about πV and πV⊥ separately. A unitary
representation (π,H) is called irreducible if it has precisely two invariant subspaces (which must
then be H and 0). The second step in Gelfand’s program is to decompose an arbitrary unitary
representation of G as (something like) a direct sum of irreducible unitary representations; and to
express the original questions about X as questions about each of the irreducible representations
appearing in the decomposition. This step is a general version of “harmonic analysis.” The exis-
tence of such a decomposition (as a “direct integral” rather than a direct sum) was established by
the 1950s in very great generality using the theory of rings of operators (see for example [Dix]).
Making the decomposition explicit in the case of interesting groups acting on interesting measure
spaces is a large and ongoing research area; we will not address it here. (There is a long history
of important influences of harmonic analysis on the classification of irreducible unitary represen-
tations. Harish-Chandra constructed the “discrete series” of irreducible unitary representations of
a reductive Lie group G in the course of his explicit decomposition of L2(G). Arthur’s conjectures
about “unipotent representations” for reductive groups over local fields arise from his analysis of
Langlands’ partially explicit decomposition of L2(G(A)/G(Q)).)

The third step in Gelfand’s program is description of all irreducible unitary representations of G.
Recall that in step two, questions about X were broken into questions about each of the irreducible
unitary representations appearing in L2(X). What “description” means should therefore be that
we can answer these questions; that is, there will be a different meaning depending on what
questions we were originally asking about X. The tools we want to build to describe irreducible
unitary representations should be able to answer some interesting questions about them; we will
give examples of such questions as we proceed.

The fourth and final step in Gelfand’s program is to assemble the answers to questions about
irreducible representations into answers to our original questions about X. Several examples of
how this program works are described in [VR]

Modulo small algebraic difficulties, one can reduce Problem 1.2 to the case of simple groups:

Problem 2.2. For every almost simple algebraic group G defined over a local field F , determine

the set Ĝ(F )u of irreducible unitary representations G(F ).

Here is a brief summary of what is known about Problem 2.2. For GLn(F ), it is solved com-
pletely: in [Ta] for p-adic fields, and in [VG] for the real and complex fields. (To be precisely in
the context of Problem 2.2 we should talk about SLn(F ). For those groups the answer is not quite
so perfectly understood, because of the algebraic problems attached to restricting representations
from GLn(F ) to SLn(F ).) For other classical groups (types B, C, and D) and the complex field, it
is solved in [BC]. The problem has been solved for a relatively small number of additional groups,
and there are various kinds of partial results especially in the case of the real and complex fields;
some of these will be described below.
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Even partial results can be powerful tools in Gelfand’s program. For example, it often happens
that the answer to some question about X is expressed as a sum over contributions from various
irreducible representations appearing in L2(X); and that the contribution of an irreducible rep-
resentation is zero unless the representation has some unusual property. Then one can hope to
analyze just the irreducible unitary representations having that unusual property, and this is often
easier than the general Problem 2.2. One example is the analysis of the cohomology of locally sym-
metric spaces given in [VZ]. A more recent example is Jian-shu Li’s work [Li] on the first eigenvalue
of the Laplacian on locally symmetric spaces. This latter example is particularly relevant to this
proposal, because the unitary representations that must be analyzed in Li’s case (the “spherical”
ones) are exactly those most susceptible to the methods we will describe.

3. Technical background

Suppose now that G is the group of F -points of a connected reductive algebraic group defined
over a local field F . Let K be a maximal compact subgroup of G (if F is R or C), or an open
compact subgroup (if F is non-archimedean). In this section we will describe results that make
the study of irreducible unitary representations of G accessible to finite calculations.

Any unitary representation (π,H) of G may be restricted to a unitary representation of K. Now
any irreducible unitary representation of K is finite-dimensional, and any unitary representation
of K is a Hilbert space direct sum of irreducible representations. We can therefore write

H = ⊕
µ∈ bKu

H(µ) (Hilbert space direct sum), (3.1)(a)

with H(µ) a sum of copies of the irreducible representation µ. One can therefore attach to (π,H)
in a canonical way the pre-Hilbert space

X(π) =
∑

µ∈ bKu

H(µ) (algebraic direct sum). (3.1)(b)

Harish-Chandra showed how π provides some additional algebraic structure on X(π). He ax-
iomatized this additional structure as a purely algebraic theory of admissible representations of G.
We refer to [BW] (pages 6 and 290) for the definitions. In particular,

If (π,H) ∈ Ĝu, then X(π) is an irreducible admissible representation of G. (3.2)

Theorem 3.3 (Harish-Chandra). Suppose G is the set of F -points of a connected reductive alge-

braic group defined over a local field F . There is a natural bijection between the set Ĝu of irreducible
unitary representations of G, and the set of irreducible admissible representations of G admitting
a positive definite invariant Hermitian form

Because of the bijection in Theorem 3.3, it is now reasonable to define

Ĝ := irreducible admissible representations of G (3.4)(a)

Ĝh := irreducible admissible Hermitian representations of G (3.4)(b)

Ĝu := irreducible admissible unitary representations of G, (3.4)(c)

in each case up to equivalence of admissible representations. The definitions provide obvious
inclusions

Ĝu ⊂ Ĝh ⊂ Ĝ. (3.4)(d)

By the early 1970s, Langlands in [La] gave a fairly explicit classification of Ĝ (which we will
recall in a moment) in the case of archimedean F . His ideas provided a somewhat less explicit
classification for non-archimedean F . Knapp and Zuckerman first understood that the Langlands
classification almost automatically provides at the same time a classification of the Hermitian

representations Ĝh. The problem that remains is to look at each Hermitian representation, and to
decide whether the invariant Hermitian form on it is definite. This is the strategy for classifying
unitary representations presented in [KZ], and it has been the framework for most subsequent
work on the problem. In order to explain what we propose to do, we need to state the Langlands
classification with some care. More details may be found in [BW].
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Definition 3.5. A rational Levi subgroup L of G is the centralizer in G of an F -split torus. (This
terminology is not standard and not perfect. The hypothesis means that L is the group of F -points
of a Levi factor of a parabolic subgroup defined over F , which is much stronger than that L is the
group of F -points of a Levi subgroup defined over F .) Write A for the largest F -split torus in the
center of L. This is a product of copies of F×, so its lattice of rational one-parameter subgroups
is a lattice aZ = aZ(L) of finite rank. The real vector space

a∗0 = HomZ(aZ, R)

can be naturally identified with the one-dimensional characters of L taking positive real values; if
ν ∈ a∗0, then we write

eν :L→ R+,×

for the corresponding character.

An irreducible admissible representation δ of L is said to be in the relative discrete series if it
is unitary, and the matrix coefficients (of the corresponding irreducible unitary representation of
L) are square-integrable modulo A.

Suppose δ is a relative discrete series for L and ν ∈ a∗0. Choose a parabolic subgroup P = LN
of G so that ν is weakly positive on the roots of A in N (see [BW] for details). The standard
representation (of quotient type) with parameters δ and ν is

Xq(δ, ν) := IndG
P (δ ⊗ eν ⊗ 1).

(The ambiguity in the choice of P does not affect this representation.) This is an admissible
representation of G having a finite composition series. The Langlands quotient is defined to be the
largest completely reducible quotient representation X(δ, ν) of Xq(δ, ν).

Write P op = LNop for the opposite parabolic subgroup to P . The standard representation (of
sub type) with parameters δ and ν is

Xs(δ, ν) := IndG
P op(δ ⊗ eν ⊗ 1).

This is an admissible representation of G having a finite composition series; the composition factors
and multiplicities are the same as for Xq(δ, ν). The Langlands subrepresentation is defined to be

the largest completely reducible subrepresentation X(δ, ν). The notation is justified because there
is a natural intertwining operator

A(δ, ν):Xq(δ, ν)→ Xs(δ, ν)

(defined for now up to a scalar multiple) that carries the Langlands quotient on the left onto the
Langlands subrepresentation on the right.

The proof of the next theorem is essentially due to Langlands, but this formulation reflects the
work of several other people, including Miličić.

Theorem 3.6 (Langlands). Every irreducible admissible representation of G is a summand of
some Langlands quotient representation X(δ, ν). The triple (L, δ, ν) is uniquely determined (by the
original irreducible) up to conjugation in G.

The Langlands classification provides a natural non-degenerate Hermitian pairing between
Xq(δ, ν) and Xs(δ,−ν): each may be regarded as induced from the same parabolic P (which
makes ν positive and −ν negative) and the pairing is an integration over the compact space G/P .
It follows that there is a non-degenerate Hermitian pairing between X(δ, ν) and X(δ,−ν). Classify-
ing Hermitian representations amounts (more or less) to understanding when these are equivalent,
so we turn next to that question.
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Definition 3.7. Suppose L is a rational Levi subgroup of G, with maximal F -split torus A. The
Weyl group of L is

W (G,L) := NG(L)/L = NG(A)/ZG(A).

It is sometimes convenient to write this group as W (G,A). It is a finite group, but not a Coxeter
group in general. Here is a way to study it. Extend A to a maximal F -split torus Amax ⊂ L. Then
Amax is also a maximal F -split torus in G. The Weyl group W (G,Amax) is equal to the Weyl
group of the “restricted roots,” the system of roots of Amax in G. Then

W (G,A) = {w ∈W (G,Amax)|w(A) ⊂ A}/W (L,Amax).

This allows one to compute W (G,A) = W (G,L) by working in the Coxeter group W (G,Amax).
(It is a simple matter to describe the possible subgroups A ⊂ Amax in terms of the restricted root
system.)

The finite group W (G,L) acts on irreducible admissible representations of L, preserving the
relative discrete series. It also acts on the real vector space a∗

0. Given a relative discrete series
representation δ of L, write W (G,L)δ for the stabilizer of δ in W (G,L).

Theorem 3.8 (Knapp-Zuckerman; see [KZ]). Suppose π is an irreducible admissible representa-
tion of G. Using Theorem 3.6, embed π in a Langlands quotient X(δ, ν), attached to the rational
Levi subgroup L of G. Let W (G,L)δ be the stabilizer of δ in the Weyl group of L (Definition 3.7).
Then π admits an invariant Hermitian form only if there is an element w ∈ W (G,L)δ such that
wν = −ν. If F is archimedean, this condition is also sufficient.

In the setting of Theorem 3.8, Knapp and Zuckerman explain how to write down a non-
degenerate Hermitian form on X(δ, ν) using the Weyl group element w and the intertwining op-
erator of Definition 3.5. The difficulty in the non-archimedean case is that this form may restrict
to zero on the subrepresentation π; that is why we cannot say that the condition of the theorem
is sufficient for π to be Hermitian.

To pass from Theorem 3.8 to an explicit description of the unitary dual of G, there are a host of
computational issues. We have indicated that describing the (finitely many) possible groups A and
L is not difficult. We need then an explicit parametrization of the relative discrete series of L. For
archimedean fields this is provided by the work of Harish-Chandra. For non-archimedean fields the
situation is far more complicated. There are good parametrizations of the relative discrete series
only for GL(n), some closely related groups, and a few small examples. This problem is not one
that we intend to address, but we can indicate briefly why it is not a reason to abandon all hope.

For this it is convenient to use a picture of Ĝ that differs slightly from the Langlands classification,
and that is available only in the non-archimedean case. The Langlands classification realizes
any representation as a special kind of subquotient of something induced from a discrete series
representation. One can instead realize any representation as a general subquotient of something
induced from a supercuspidal representation. The basic data are pairs (L, σ), with L a rational
Levi subgroup and σ a unitary relative supercuspidal representation of L. The main theorem says
that every irreducible admissible representation appears as a subquotient of some

IndG
P (σ ⊗ eν ⊗ 1),

with ν ∈ a∗0, and that the triple (L, σ, ν) is uniquely determined up to conjugation in G. (The
parameters are a proper subset of those in Theorem 3.6; the classification still works because we
allow all possible subquotients of the induced representations.) With this parametrization, each

pair (L, σ) defines a connected component of Ĝ; twisting σ by an unramified unitary character of
L does not change the connected component. The Bushnell-Kutzko theory of types ([BK]) seeks
to attach to such a component a particularly nice open compact subgroup K1 and irreducible

representation µ1 of K1. Questions about this connected component of Ĝ (like which represen-
tations are Hermitian or unitary) can be translated into questions about representations of the
Hecke algebra defined by G, K1, and µ1. One can then hope that this Hecke algebra is isomorphic
to one attached in a similar fashion to a smaller group G′, and a pair (L′, σ′); the group A′ will



6 COMPUTING THE UNITARY DUAL DAVID A. VOGAN, JR.

presumably be naturally isomorphic to A. (There are results of this kind due to Kim [KM] and
many others.) In the best of all possible worlds, L′ is a minimal rational Levi factor in G′, so it is
compact modulo its center. This is now getting close to the setting in which we will be able to say
something about unitary representations (see section 4).

To say more about computational issues, a little notation is helpful. Suppose X is an admissible
representation of G, and (µ,Eµ) is an irreducible unitary representation of K. Define

Xµ = HomK(Eµ, X), (3.9)(a)

a vector space of dimension equal to the multiplicity mX(µ) of µ in X. If X is Hermitian, then
Xµ inherits a natural Hermitian form 〈, 〉µ. This form has a signature given by three non-negative
integers pX(µ), qX(µ), and zX(µ), corresponding to the dimensions of a maximal positive definite
subspace, a maximal negative definite subspace, and the radical. We have

pX(µ) + qX(µ) + zX(µ) = mX(µ), (3.9)(b)

and the Hermitian form on X is positive semidefinite on the µ-isotypic part of X if and only if
qX(µ) = 0.

Suppose now that we are in the setting of Definition 3.5, and assume for simplicity that K acts
transitively on G/P . (This is automatic in the archimedean case, and such compact subgroups
exist in the non-archimedean case.) It follows that

[IndG
P (δ ⊗ eν ⊗ 1)]µ ' HomP∩K(Eµ, δ), (3.9)(c)

a finite-dimensional space which is independent of ν. The Hermitian forms implicit in Theorem 3.8
provide a family of Hermitian forms 〈, 〉µ(ν) on this vector space, with signatures pδ,ν(µ), qδ,ν(µ), zδ,ν(µ).

Determining when X(δ, ν) is unitary amounts to determining when all of the qδ,ν(µ) (as µ varies)
are equal to zero. The first computational issue is that there are infinitely many µ. In the p-adic
case this issue is more or less subsumed in the discussion above: if an appropriate (µ1,K1) can be
found, then one need only consider the finitely many µ whose restrictions to K1 contain µ1. (We
will see an example at (4.14) below.)

Here is a theorem for the real case.

Theorem 3.10. Suppose G is the group of real points of a connected reductive real algebraic
group. In the setting of Definition 3.5, suppose X is an irreducible Langlands quotient of Xq(δ, ν).
Write λ for the Harish-Chandra parameter of δ, which we can regard as a purely imaginary linear
functional on the Lie algebra of a maximal torus of K. Write ρ for the half sum of a set of positive
roots making λ dominant.

If X is not unitary, then there is a µ′ in K̂ such that

(1) µ′ is a lowest K-type of a standard representation Xq(δ
′, ν′);

(2) the Langlands parameter λ′ of δ′ satisfies |λ′| ≤ |λ + ρ|; and
(3) qX(µ′) > 0.

This theorem follows fairly easily from [VU] and [BW], Proposition V.2.2. Condition (2) de-
scribes a finite set of possible δ′, and therefore a finite set of possible representations µ′ of K. For a
fixed series of representations (corresponding to a pair (L, δ)) it says that unitarity can be decided
by computing a specified finite set of the integers qX(µ′).

The finite set provided by Theorem 3.10 is still much too large for our computational goals. For
spherical representations of the complex group of type E8, the largest µ′ appearing in Theorem
3.10 is the representation of highest weight 2ρ, which has dimension 3120. The multiplicity mX(µ′)
of this representation of K in a generic spherical representation X is (according to the software
package lie)

6508567580670893055947363315903329107522115068801

We do not anticipate being able to compute signatures of Hermitian matrices of this size. In section
5 we will give some indications of how we anticipate finding a much smaller set of µ′ (with much
smaller multiplicities) that still suffice for testing unitarity.



COMPUTING THE UNITARY DUAL DAVID A. VOGAN, JR. 7

Once we know which representations of K we wish to consider, the next computational issue
is writing down the Hermitian forms 〈, 〉µ(ν) on Xq(δ, ν)µ. We will give some examples of dealing
with this issue in sections 4 and 5. An important first step is simply writing down the vector space
(cf. (3.9)(c)). In the real case, this step can be broken into two problems.

Problem 3.11. Suppose G is the group of real points of a connected reductive real algebraic
group, L is a rational Levi subgroup stable under the Cartan involution, and (δ,Xδ) is a relative
discrete series representation of L. For every irreducible representation (γ, Fγ) of L ∩K, describe
the vector space

HomL∩K(Fγ , Xδ).

Problem 3.12. Suppose G is the group of real points of a connected reductive real algebraic
group, L is a rational Levi subgroup of G stable under the Cartan involution of G, and (µ,Eµ) is
an irreducible representation of K. For every irreducible representation (γ, Fγ) of L∩K, describe
the vector space

HomL∩K(Eµ, Fγ).

In both problems, we are being deliberately vague with the phrase “describe the vector space.”
At least what is required is an algorithm to calculate the dimension. What we want in the end
is an explicit description of certain Hermitian forms on these vector spaces, and that requirement
will control what constitutes a satisfactory solution of these two problems.

For Problem 3.11, at least the calculation of dimension is solved for connected L by the Blattner
formula, proved by Hecht and Schmid. For disconnected L, the main point is to get an appropriate

parametrization of L̂ ∩K, and to understand how to restrict representations of L∩K to (L∩K)0.
These are problems that we understand fairly well. However the Blattner formula involves a sum
over the Weyl group and a partition function; as such it becomes unwieldy, for example for E8.

Problem 3.12 is surprisingly poorly understood. For complex groups it asks for branching
laws for reductive Lie algebras sharing a common Cartan, and existing software such as lie can
compute these dimensions. For GL(n, C), for example, what is needed is branching laws from
U(p + q) to U(p)× U(q). The multiplicities are given by the Littlewood-Richardson rule, and are
well understood. For real groups the situation is much worse. Even for GL(n, R), Problem 3.12
amounts to having explicit branching laws from O(p + q) to O(p) × O(q) (with p + q = n). Such
branching laws are in some sense implicit in Weyl’s description of the representations of O(n) in
[W]; explicit versions appear in the work of R. C. King [K], but to our knowledge they have not
been implemented in publically available software. Ideas like King’s are probably sufficient to solve
Problem 3.12 for classical G. For exceptional real groups, the disconnectedness of L∩K means that
at least a little new mathematics will be required even to write algorithms to solve the problem.

We have now given a very rough outline of a finite computational procedure for deciding
whether a particular Langlands subquotient of a standard representation X(δ, ν) is unitary in
the archimedean case. Since there are infinitely many parameters δ and ν, this is a long way from
a finite procedure for determining the unitary dual (Theorem 1.3). Here is a sketch of what is
missing.

First we fix δ and consider the possibilities for ν. For a fixed δ, the various Hermitian repre-
sentations Xq(δ, ν) are realized on a common vector space, with Hermitian form defined using an
intertwining operator that depends nicely on ν. Zeros of the intertwining operator occur along cer-
tain rational hyperplanes in the parameter ν, which can be determined explicitly. The hyperplanes
partition the possible ν into a finite number of explicitly described cells, in such a way that signa-
tures of Hermitian forms are constant on each cell. We need only determine which cells correspond
to unitary representations, and for this it is enough to consider a single point ν in each of the cells.
See the discussion following (4.14) for more details in the case of spherical representations.

Problem 3.13. Understand the cell decompositions coming from studying reducibility of inter-
twining operators.

This problem has both theoretical and computational aspects.
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We have now seen that the unitary representations corresponding to a fixed (L, δ) may be found
by a finite computation. To deal simultaneously with families of δ, we need a slightly different
argument. We are still only in the archimedean case. It turns out that one can attach to the pair
(L, δ) various subgroups H of G (the centralizers of certain compact tori inside L). Then L ∩H
is a rational Levi subgroup of H. The Harish-Chandra parameter for δ provides also a relative
discrete series representation δH of L ∩H. The groups A for (G,L) and (H,L ∩H) are the same,
and we can arrange for the stabilizer of δ in W (G,A) to be contained in the subgroup W (H,A):

W (G,A)δ = W (H,A)δH
. (3.14)(a)

Then XG(δ, ν) is obtained in a well understood way (Zuckerman’s derived functors) from XH(δH , ν).
[Note to PI’s: I think little bit about derived functors here would be useful (jda)] So
far this is rather easy, and can be arranged with many choices of H. With more care, it is possible
to choose H in such a way that

XG(δ, ν) is unitary if and only if XH(δH , ν) is unitary. (3.14)(b)

Of course one way to achieve all of this is to take H = G. What follows from [VU] is essentially

for all but finitely many pairs (L, δ), we can choose
H of strictly smaller dimension than G.

(3.14)(c)

One way to summarize this is:

Theorem 3.15. There is a finite set of K-types S with the following property. Suppose X is
an irreducible representation with real infinitesimal character. If a minimal K–type of X is not
contained in S then there is a group H of strictly smaller dimension, and a representation XH of
H so that X is unitary if and only if XH is unitary.

According to [SV] we may conjecturally take S to be the set of K–types whose highest weights
are contained in the convex hull of Wρ. In the absence of this conjecture the set S may be much
larger, and computationally infeasible.

Therefore the computation of the unitary dual of G reduces to the computation of the unitary
representations corresponding to a finite set of (L, δ) for G and for the subgroups H of G.

For example if X is a spherical representation then H = G and there is no reduction. This case
will be discussed in more detail in Section 4. By the preceding discussion the full unitary dual will
follow from a finite number of calculations of this type. See Section 5 for more information about
the general case.

This completes our sketch of the proof of Theorem 1.3.
The general theme of identifying parts of the unitary dual of G with parts of the unitary duals

of smaller groups H appeared already in our discussion of the Bushnell-Kutzko theory of types,
and it plays a large role in the Barbasch-Moy theory discussed in section 4. Results of the form
(3.14)(b) are in some respects even more satisfactory than lists of unitary representations, because
they have explanatory content.

4. The spherical unitary dual for split groups: p-adic case

In this section we discuss the spherical unitary representations of split groups over p–adic and
real fields. We emphasize this case for two reasons. On the one hand it is in some sense the simplest;
for example the parametrization of spherical representations of a split group G(F ) spherical is
essentially independent of the field F . On the other hand it is in some sense the hardest case
serves as the prototype for much more general results. For example in the classification of the
unitary dual of GL(n), the spherical case is the most important one.

Let F be R or a p–adic field, and let G = G(F ) be the F–points of a split reductive algebraic
group defined over F . Let K be a maximal compact subgroup of G (see (4.2)(a) for precise
assumptions in the p–adic case). We say a representation π of G is spherical if it contains a
K–fixed vector.
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Problem 4.1. Classify the irreducible spherical unitary representations of G.

The answer is known for all classical groups over a real or p–adic field by recent work of Dan
Barbasch [B3], and for G2, F4, and E6 over the p–adics by work of Barbasch and Dan Ciuboataru.
This has also been confirmed by computer calculation; see the end of Section 4A. In all known
cases the answers are “the same”, providing a strong example of the Lefschetz princple.

4A p–adic case. Now let F be a p–adic field. Write

F ⊃ R ⊃ P = $R,

where R is the ring of integers in F and P its unique maximal ideal. Then R/P is the finite field
Fq with q elements. The group G may be regarded as defined over R. Choosing such a structure
provides a distinguished maximal compact subgroup

K := G(R), (4.2)(a)

which contains a normal subgroup

K1 := {g ∈ K | g ≡ e(mod P)}. (4.2)(b)

It turns out that
K/K1 ' G(Fq), (4.2)(c)

a split finite Chevalley group.
An admissible irreducible representation (π, V ) is called spherical if V K 6= (0). One reason that

such representations are of particular importance is that automorphic representations for split
groups are necessarily spherical at all but finitely many places.

The set of spherical admissible representations is not closed in the admissible dual of G. Just
as in the discussion after Theorem 3.8, it is convenient to consider the slightly larger class called
Iwahori spherical representations, which is closed. An Iwahori subgroup of G is by definition any
open compact subgroup which is conjugate to the inverse image in K of a Borel subgroup of G(Fq)
(cf. (4.2)(c)). Fix an Iwahori subgroup I. Let C(I) be the category of admissible representations
of G with the property that each subquotient is generated by its I-fixed vectors. Let

H(G//I) := {f ∈ Cc(G)| f(i1gi2) = f(g) (i1, i2 ∈ I)}. (4.3)

Then H(G//I) is an algebra under convolution, and V I is a representation of this algebra, for any
admissible representation V of G.

Theorem 4.4 (Borel-Casselman, [Bo]). Suppose G is a split reductive p-adic group, and I is an
Iwahori subgroup. The functor

V −→ V I

is an equivalence of categories between C(I) and the category of finite-dimensional representations
of H(G//I). In particular, irreducible representations of G with a non-zero I-fixed vector are in
one-to-one correspondence with simple modules for the Iwahori Hecke algebra H(G//I).

If V is unitary, then so is V I. The converse is less trivial.

Theorem 4.5 ([BM1]). The Iwahori-spherical admissible representation irreducible representation
V is unitary if and only if V I is unitary as well.

This result reduces the problem of unitarity for the infinite-dimensional representations V to
the problem of unitarity for the finite-dimensional modules for H(G//I).

The structure of H(G//I) is well understood in terms of generators and relations. We do not
give it here. Instead we describe the affine graded Hecke algebra H; by [BM2], the problem of
determining the unitary dual of H(G//I) can be reduced to the corresponding problem for H and
for similar algebras attached to various smaller split groups.
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Because G is split, a Levi component of a minimal parabolic subgroup of G is a split torus A.
We use notation as in Definition 3.5. Let R be the set of roots of A in G, R+ a set of positive roots,
and Π the corresponding set of simple roots. Let W = W (G,A) = W (R) be the Weyl group. The
affine graded Hecke algebra as a vector space is

H = C[W ]⊗ S(a), (4.6)(a)

with a = aZ ⊗Z C the complexification of the lattice of Definition 3.5. The algebra structures on
C[W ] and the symmetric algebra S(a) are the usual ones. In addition, if we denote by sα ∈W the
reflection corresponding to α ∈ Π and tα the corresponding element in C[W ], then

ωtα − tαsα(ω) = (ω, α̌), ω ∈ a. (4.6)(b)

There is a ∗ operation on H given by

w∗ = w−1, ω∗ = −ω +
∑

β∈R+

tβ(ω, β̌), ω ∈ a0. (4.6)(c)

Write A for S(a).
A module for H is at the same time a module for C[W ]—that is, a representation of W—

and a module for the symmetric algebra A. These two actions are related by the commutation
relations (4.6). In the correspondence established in [L3] and [BM2] between Iwahori-spherical
representations and H-modules, spherical representations of G correspond to H-modules containing
a non-zero W -fixed vector.

The one-dimensional modules for A correspond to elements ν ∈ a∗. It follows easily that any
H-module must appear as a subquotient of some induced module

X(ν) = H⊗A Cν , (4.7)(a)

which we call a principal series module. There is a canonical isomorphism of W -modules

X(ν) ' C[W ]. (4.7)(b)

In particular, X(ν) has a unique W -fixed vector, and therefore a unique irreducible spherical
subquotient X(ν).

Here is a version of Theorem 3.6 for H-modules.

Theorem 4.8. Any irreducible H-module is a subquotient of a principal series X(ν).

(1) If Re ν is dominant with respect to R+, then X(ν) has a unique irreducible quotient, and
this quotient is equal to X(ν).

(2) If Re ν is antidominant, then X(ν) has a unique irreducible submodule, and this submodule
is equal to X(ν).

(3) The modules X(ν) and X(ν ′) are equivalent if and only if there is w ∈W such that wν = ν ′.
If that is the case, then the full principal series modules X(ν) and X(ν ′) have exactly the
same composition factors and multiplicities.

For the study of spherical unitary modules, the reduction arguments from [L3] and [BM2]
allow us to consider only ν ∈ a∗0, and we assume this from now on. There is an analogue of the
intertwining operator A(δ, ν) (introduced before Theorem 3.6), constructed as follows. Let

rα := (tαα− 1)(α− 1)−1. (4.9)(a)

This is an element in the algebra analogous to H where A is replaced by its field of fractions F .
The rα (for α simple) satisfy the braid relations as well as

ωrα = rαsα(ω) (ω ∈ a). (4.9)(b)
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Thus if w ∈ W and w = s1 . . . sk is a reduced decomposition, then rw = r1 . . . rk is well-defined.
Write rw(ν) ∈ C[W ] for the expression where rw has been expanded into a sum

∑
twfw with

fw ∈ F , and the fw have been evaluated at ν. Then

Aw(ν):X(ν) −→ X(wν), x⊗ 11ν 7→ xrw(wν)⊗ 11wν (4.9)(c)

is an intertwining operator. Since rw(wν) has poles, Aw(ν) is not defined for all values of ν. The
poles turn out to lie on hyperplanes 〈ν, α̌〉 = −1, with α a positive root. In particular, Aw(ν) is
defined whenever ν ∈ a∗0 is dominant. Assume this is the case, and let w0 be the long element of
W . Then Xq := X(ν) and Xs = X(w0ν) are analogous to the standard representations of quotient
and submodule type, and

Aw0
(ν):Xq → Xs (4.9)(d)

is analogous to the operator A(δ, ν).
Theorem 3.8 takes the following sharper form. Let

ε: C[W ] −→ C, ε(
∑

awtw) = a1, (4.10)

be the augmentation map.

Theorem 4.11. Suppose ν ∈ a∗0 is dominant. Then the spherical representation X(ν) is Hermitian
if and only w0ν = −ν. In this case, the Hermitian form (pulled back to the principal series X(ν)
of which X(ν) is a quotient) is given by

〈x⊗ 11ν , y ⊗ 11ν〉 = ε(y∗rw0
(w0ν)∗x).

A more explicit form is given by the following. Because of (4.7)(b),

X(ν) =
∑

τ∈cW

Vτ ⊗ V ∗
τ , (4.12)(a)

with the action of W on the first factor only. Fix a positive definite W -invariant form on each Vτ .
Then the intertwining operator rw0

(ν) induces a Hermitian operator

aw0
(τ, ν):V ∗

τ −→ V ∗
τ (4.12)(b)

on the Weyl group representation V ∗
τ . If we are given a model for the representation τ ∗ on Cn

(with explicit matrices for the generating simple reflections in W ), then the formulas in (4.9) make
it possible to compute the n×n matrix aw0

(τ, ν) as a rational function of ν. A little more explicitly,
aw0

(τ, ν) is a product of operators like

asα
(τ, ν) =

{
1 on the 1 eigenspace of τ(tα),
1−〈ν,α̌〉
1+〈ν,α̌〉 on the − 1 eigenspace of τ(tα).

(4.12)(c)

Problem 4.13. Suppose R ⊃ R+ is a root system and a set of positive roots in a real vector space
a∗0. Write W for the Weyl group of R, and w0 for the long element of W . For each dominant ν ∈ a∗0
such that w0ν = −ν, and each irreducible representation τ, Vτ of W , let aw0

(τ, ν) be the Hermitian
operator of (4.12)(b). Determine for which ν all of these operators are positive semidefinite.

Theorem 4.11 implies that the elements ν in Problem 4.13 are exactly those for which the
spherical H-module X(ν) is unitary. By Theorem 4.5 knowledge of these sets (also for certain
smaller root systems, using [BM2]) gives a solution to Problem 4.1.

It is worthwhile to see how this description fits into the general framework described at (3.9).
The spherical principal series for G is induced from a Borel subgroup B = AN . The representation
δ can be any unramified unitary character of A, and our standard representation is

X(δ, ν) = IndG
B(δ ⊗ eν ⊗ 1). (4.14)a)
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We can choose I = (B ∩ K)K1 as our Iwahori subgroup. The condition that δ is unramified
means that δ is trivial on B ∩K, so the K-types of X(δ, ν) are exactly the representations of K
containing the trivial representaion of B∩K (cf. (3.9)(c)). Theorem 4.5 allows us to study unitarity
by considering only the finite set of representations of K containing the trivial representation of
I = (B∩K)K1. Because of (4.2), these may be identified with representations of G(Fq) containing
the trivial representation of B(Fq). It is a classical fact that such representations are in one-to-one
correspondence with representations of W :

{
irreducible representations of G(Fq) contain-
ing the trivial representation of B(Fq)

}
←→ Ŵ (4.14)(b)

If µ(τ) ∈ Ĝ(Fq) corresponds to τ ∈ Ŵ , then

X(δ, ν)µ(τ) ' HomB(Fq)(Eµ(τ), C) ' V ∗
τ ; (4.14)(c)

the first isomorphism is (3.9)(c), and the second comes from the proof of (4.14)(b). In case δ is
trivial, the Hermitian form 〈, 〉µ(τ)(ν) on this space (described in general after (3.9)) is the one
given by aw0

(τ, ν). (Non-trivial δ are dealt with in [BM2] by reduction to smaller groups, in a step
we have skipped several times already.)

We can explain now why (for a fixed G) Problem 4.13 can be solved by a finite calculation. The
matrices aw0

(τ, ν) can change signature only along hyperplanes 〈ν, α̌〉 = 1 or 0, with α a positive
root. These hyperplanes partition the −1 eigenspace of w0 in the positive Weyl chamber into a
finite number of cells, and the signature of aw0

(τ, ν) is constant on each cell. Each cell contains a
rational point νj (meaning that all 〈νj , α̌〉 are rational numbers). If our model of τ is by matrices
with rational entries (as can always be arranged), then the matrix aw0

(τ, νj) has rational entries.
Its signature may therefore be computed by a finite process. Since there are only finitely many νj

to consider, this is an algorithm to determine the unitary spherical dual of a split p-adic group; we
call it the direct method.

The direct method has the advantage that it is easy to determine a set of sample points to test for
unitarity. signatures change is contained in the intersection of the hyperplanes a. This arrangement
of hyperplanes has many special features that one can try to exploit. The disadvantage is that
one has to consider all representations of W (in E8 the largest dimension is 7168). In addition
it is difficult to interpret the answer in terms of the Kazhdan-Lusztig classification. J. Adams, J.
Stembridge, and J-K. Yu have written computer programs that have carried out such calculations
for some classical groups, G2, F4 and E6. They are in the process of obtaining the answer for E7,
and obtaining some partial results for E8.

Performing this computation has given us insight into the computational issues which arise. In
particular it was necessary to construct models of all irreducible of Weyl groups, to compute the
signature of a large symmetric integral matrix, and to parametrize and run efficiently over the cells
discussed above. See the guide to the Atlas web site after the references.

As noted after Problem 4.1, it has been solved for classical groups and for G2, F4 and E6,
by somewhat different methods. Because of the form of the answer when does this way is quite
different from the one provided by the direct method, it is not entirely elementary to compare
them. This has been done, and the answers agree exactly.

Barbasch’s solution for classical groups has been implemented in the spherical unitary explorer.
See the guide to the Atlas web site.

4B. Real case.
Now we take F = R. Since G is split it contains a Borel subgroup B = AN . We may assume

that A is preserved by the Cartan involution. (This notation may be misleading for experts. For
us the group A is a split real torus, or a product of copies of the multiplicative group of R. It is
therefore a product of its identity component A0 (which is isomorphic to Rl) and

A ∩K ' (Z/2Z)l.
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Traditional real groups notation would write A for A0 and M for A∩K, so that the Borel subgroup
would be MAN .) Spherical representations of G are precisely the Langlands subquotients of

XB(δ, ν) = IndG
B(δ ⊗ eν ⊗ 1), (4.15)(a)

with δ a unitary character of A trivial on A ∩K and ν ∈ a∗0. Just as for spherical representations
in the p-adic case, the study of unitarity can be reduced to the case when δ is trivial [Is this
really true? (jda)] , so we assume that from now on . We are therefore studying the standard
representations of quotient type

Xq(ν) = IndG
B(triv ⊗ eν ⊗ 1), (ν ∈ a∗0 dominant) (4.15)(b)

The corresponding standard representations of submodule type are

Xs(ν) = IndG
Bop(triv ⊗ eν ⊗ 1), (ν ∈ a∗0 dominant) (4.15)(c)

The Langlands subquotient X(ν) is irreducible; it is the unique irreducible subquotient having a
non-zero K-fixed vector. Just as in the p-adic case, X(ν) is Hermitian if and only if w0ν = −ν.
(This is not just a formal similarity: if the real and p-adic groups have the same root data, then
the parameter sets are exactly the same.)

The study of Hermitian forms requires the intertwining operator from Definition 3.5. Here is
an explicit description. The integral operator

A(ν):Xq(ν) −→ Xs(ν), A(ν)f(g) = n(ν)

∫

Nop

f(gn) dn (4.16)(a)

is well defined for ν dominant and regular. We choose the normalizing function n(ν) so that A(ν)
is the identity on the K-fixed vector. (More precisely, there is a function fq in Xq which is equal
to 1 on K, and a function fs in Xs which is 1 on K. We require A(ν)fq = fs.) The operator
A(ν) has a meromorphic continuation which is analytic for all ν dominant. This is the operator of
Definition 3.5.

If (µ,Eµ) is any irreducible representation of K, then

Xq(ν)µ = HomK(Eµ, Xq(ν) ' HomA∩K(Eµ, C) ' Xs(ν)µ (4.16)(b)

(cf. (3.9)(c)). The intertwining operator A(ν) therefore induces an operator

a(µ, ν) ∈ End(HomA∩K(Eµ, C)), (4.16)(c)

which is Hermitian whenever w0ν = −ν.
Now the space in (4.16)(b) is

HomA∩K(Eµ, C) ' (EA∩K
µ )∗, (4.16)(d)

Because every element of the Weyl group has a representative in K, it follows that

W ' NK(A)/ZK(A) = NK(A)/(A ∩K)

must act on EA∩K
µ . Write τ(µ) for the representation of W on this space. In this way we can

associate to every representation µ of K a (possibly reducible) representation τ(µ) of W , with the
property that

dim τ(µ) = multiplicity of µ in Xq(ν). (4.16)(e)

The general machinery described in (3.9) says that

for ν ∈ a∗0 dominant, the spherical representation X(ν) is unitary if
and only if w0ν = −ν, and each of the Hermitian operators a(µ, ν)
(as µ varies) is positive semidefinite.

(4.16)(f)
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Theorem 3.10 allows us to restrict attention to a finite set of µ. We will show in this section how
to compute the operators a(µ, ν); how the nature of this computation points to a finite collection
of special K-types (smaller than the set in Theorem 3.10); how the computation on those special
K-types is related to Problem 4.13; and what conclusions we can draw about the spherical unitary
dual.

The operator A(ν) has a factorization corresponding to a reduced decomposition of w0. We
will not recall that factorization, but instead will pass directly to writing down the corresponding
factors of the operators a(µ, ν) of (4.16)(c). Let α ∈ Π be a simple root of A, and Lα ⊃ A the
corresponding Levi subgroup. There is a homomorphism

φα:SL(2, R)→ Lα, (4.17)(a)

and Lα is locally isomorphic to the product of im φα and the central torus Aα. A little more
precisely,

Lα ∩K = φα(SO(2)) · (A ∩K), (4.17)(b)

with the first factor a normal subgroup. The intersection of the two factors is

φα(SO(2)) ∩A = φα(±I) = {e,mα}. (4.17)(c)

An element m ∈ A ∩K acts on φα(SO(2)) by

mxm−1 = xα(m) = x±1 (x ∈ φα(SO(2))). (4.17)(d)

Now the irreducible representations of SO(2) are naturally parametrized by integers:

χj(x) = eijθ, x =

(
cos θ sin θ
− sin θ cos θ

)
. (4.18)(a)

Any representation (µ,Eµ) of K has a corresponding orthogonal decomposition

Eµ =
∑

j∈Z

Eµ(j), Eµ(j) = {v ∈ Eµ|µ(φα(x))v = χj(x)v} (4.18)(b)

The commutation relations (4.17)(d) show that A ∩ K preserves Eµ(j) + Eµ(−j), and (4.17)(c)
shows that it can have fixed vectors there only if j is even. We therefore have an orthogonal
decomposition

EA∩K
µ =

∑

m∈N

EA∩K
µ (m), EA∩K

µ (m) := (Eµ(2m) + Eµ(−2m))
A∩K

(4.18)(c)

We emphasize that this decomposition depends on the choice of simple root α. The simple reflection

sα ∈ W has a representative σα = φα

(
0 1
−1 0

)
. In the Weyl group action τ(µ), it follows easily

that
τ(µ)(sα) = (−1)m on (EA∩K

µ (m))∗ (4.18)(d)

Using this same decomposition, one can compute that asα
(µ, ν) is the endomorphism of (EA∩K

µ )∗

which respects the decomposition (4.18)(c), and acts on (EA∩K
µ (m))∗ by the scalar

∏

0<j≤|m|

j − 〈ν, α̌〉

j + 〈ν, α̌〉
(4.18)(e)

The computation amounts to some formal use of Frobenius reciprocity and induction by stages,
and finally a serious calculation in SL(2, R).

In the p-adic case, the operators asα
(τ, ν) were defined directly in terms of the action of τ(sα)

(cf. (4.12)(c)). In the real case, we use a more subtle structure to compute both the action of
τ(µ)(sα) and the operator asα

(µ, ν). In general it is impossible to recover the intertwining operator
(which sees all of the different values of the non-negative integer m) from the Weyl group action
(which sees only the parity of m). But if m is only allowed to take the values 0 and 1, then we can
get the intertwining operator from the Weyl group action.
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Definition 4.19. An irreducible representation (µ, Vµ) of K is called petite if for every simple
root α, the representation µ ◦ φα of SO(2) does not contain the character χ2j for |j| ≥ 2.

Theorem 4.20. Suppose G is a split real groups, and (µ, Vµ) is a petite irreducible representation
of K. For each simple root α, the intertwining factor of (4.18)(e) is

asα
(µ, ν) =

{
1 on the 1 eigenspace of τ(µ)(sα),
1−〈ν,α̌〉
1+〈ν,α̌〉 on the − 1 eigenspace of τ(µ)(sα).

The full intertwining operator a(µ, ν) is therefore given by the p-adic operator

a(µ, ν) = aw0
(τ(µ), ν).

The first formula is just (4.18)(d) and (4.18)(e), together with the constraint m = 0 or 1 coming
from Definition 4.19. The second follows from the factorization of the intertwining operator (written
in (4.9) in the p-adic case, and left unwritten in the real case).

Theorem 4.20 shows that the signature of the invariant Hermitian form on a petite K-type µ of
a spherical representation X(ν) is equal to the signature on a certain K-type of the corresponding
spherical representation of the split p-adic group with the same root system. (A little more precisely,
we need to take a sum of K-types in the p-adic case, because the Weyl group representation τ(µ)
may be reducible.)

Here is an example. Let µr be the adjoint action of K on g/k. (The subscript r stands for
“reflection.”) If G is simple of adjoint type, then µr is irreducible, and

(g/k)A∩K ' a;

the corresponding representation τ(µr) is the reflection representation of W on a. The represen-
tation µr is always petite, so Theorem 4.20 calculates the intertwining operator a(µr, ν).

In [B1], Barbasch shows that for G a split real classical group, a spherical principal series
representation X(ν) is unitary if and only the Hermitian form is positive on each petite K-type;
that is, if and only if the operators a(µ, ν) are positive semidefinite for each petite µ. The proof
does not really explain why this should be so: what he does is make an explicit list of all ν
satisfying these (obviously necessary) conditions for unitarity, and then proves by other means
that the representations on this list are all unitary. In fact Barbasch uses a subset of the petite
K-types that he calls “relevant”; the problems below could be complicated a bit to include the
goal of finding a general definition of “relevant.”

Problem 4.21. For every simple split real group G, find all petite representations µ of K, and
calculate the corresponding Weyl group representations τ(µ) (cf. (4.16)). Find an a priori charac-
terization of this set of Weyl group representations.

The first part of this problem (listing petite K-types) is fairly easy to do by hand, and the
second part is not too difficult. The last asks for some mathematical insight, and it is difficult to
predict how easy or hard it might be. At least it is clear that these Weyl group representations

constitute a rather small part of Ŵ . For p-adic classical groups as well, unitarity of spherical
representations is characterized by the semidefiniteness of aw0

(τ, ν) for this small collection of
Weyl group representations. This suggests some additional problems.

Problem 4.22. In the setting of Problem 4.14, find a minimal set of Weyl group representa-
tions {τi} so that positive semidefiniteness of aw0

(τi, ν) for all i guarantees semidefiniteness of
aw0

(τ, ν) for all τ . Find some general reason for semidefiniteness of certain aw0
(τj , ν) to imply

semidefiniteness of another aw0
(τ, ν).

This problem should be related to the last part of Problem 4.21: once we know which τ really
matter, we would like to know a priori that they are of the form τ(µ) for petite µ. For the
symmetric group Sn, one minimal set corresponds to the [n/2] partitions of n into exactly two
parts.

For unitary representations we are interested only in semidefiniteness; but once one starts com-
puting signatures, it is tempting to continue as far as possible. In light of the example after
Theorem 4.20, one natural place to begin is
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Problem 4.23. Find a closed form description of the signature of the Hermitian operator aw0
(reflection, ν),

for any dominant ν such that w0ν = −ν.

This matrix has size equal to the rank of G, and is relatively easy to compute; so experimental
data are easy to get. The rank of the matrix has been computed by Jesper Bang-Jensen about
fifteen years ago.

5. General unitary representations for real groups

As discussed at the end of Section 4 the spherical case is typical of a finite number of cases
necessary to compute the unitary dual of a real group G. Here we will discuss the new issues which
arise in the more general case.

Fix a rational Levi subgroup L of G, and consider an irreducible representation X(L, ν). One
should think of this being a case for which there is no reduction to a smaller group as in Theorem
3.14, although this isn’t necessary.

The main issue is the problem of computing the Hermitian form on a finite set of K–types of
X. Such a Hermitian form is computed via intertwining operators, as in the spherical case, but
which are computationally much more difficult to understand. What is needed is a computational
technique to write this operators, at least for rational values of ν, as an explicit Hermitian matrix
with rational entries.

One possible approach is the step algebra of Jouko Mickelsson, as developed by van den
Hombergh and Zhelobenko (see [Z]). What one can hope for from this machinery is something
like this. Fix a series of standard representations Xq(δ, ν), with lowest K-type µ0, and any other
fixed representation µ of K. The step algebra should provide (an algorithm to write down) a finite
collection of elements Z1, . . . , Zm in the enveloping algebra, each of which carries highest weight
vectors for µ0 to highest weight vectors for µ. If v0 is a non-zero highest weight vector for the µ0

K-type of Xq(δ, ν), then the m vectors Ziv0 should span the highest weight space of the µ K-type
(for all ν). Computing the Hermitian form on the µ K-type amounts to computing the m × m
matrix 〈Ziv0, Zjv0〉, and this we know something about. If the elements Zi are in some sense ra-
tional, then the matrix should have entries that are rational polynomials in ν. (The denominators
that appeared in formulas like (4.18)(e) disappear because we are using a different basis for the
K-types.)
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