
Some notes on parametrizing representations

December 13, 2005

These notes are an attempt to clarify some confusing issues about parametriz-
ing representations. This includes the basepoint issue. At least at the mo-
ment this is only of interest to the experts.

1 The crux of the biscuit

These notes have gotten rambling and disorganized, so here is the long and
the short of it. For details see the relevant sections.

We want to go between Fokko’s data and some other parametrization of
representations of G. The most direct route is to the modules I(Ψ+,Λ) of
[6].

The nice thing is that in the setting of [4] we fix almost everything,
including H,B and even λ, the differential of Λ. The only thing which takes
some work is specifying Λ off of the identity component of H(R).

The data (y, λ) parametrize maps of WR into an E-group for a torus, but
an additional choice is necessary (the distinguished element of this E-group)
to actually get a representation of (a cover of) a torus. This is the basepoint
question.

Many choices of basepoints will give a bijection between Fokko’s data
and representations of strong real forms of G. These choices are pinned
down by requiring that cross actions and Cayley transforms of representations
correspond to the natural cross action and Cayley transform defined in [4].

Note that compatibility with cross action includes the fact that the grad-
ings/cogradings of imaginary and compact roots behave correctly.

Compatibility with cross action primarily says that the basepoints we
choose, i.e. certain elements y0 on the dual side, should be large. Furthermore
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compatibility with Cayley transforms says they should be obtained from a
fixed δ∨ by a particular series of Cayley transforms. We spell the choices
out in Section 5. There is a conjecture there, verified by Fokko by computer,
about this issue (Conjecture 5.19). The work to show these choices are correct
is in Section 6.

The bottom line is this: always use our fixed B and its corresponding set
Ψ+ of positive roots. For a positive system of real roots use Ψ+

R,x, the roots in
Ψ+ which are real with respect to θx. Finally use the basepoints provided by
Fokko’s algorithm. (These last two choices are related, you can modify them
both simultaneously by Wim). Then you’ll get the correct parametrization.

1.1 Some Objects

It might be useful to collect some objects here which are defined later.
Our group is G, and we have fixed H and B. The parameter set is Z,

and (x, y) is a typical element of Z.
An element x defines a real form Hx(R) of H. A typical character of a

cover of Hx(R) is written Λ. We parametrize characters Λ as

Λ(x, λ, ν)

(cf. Lemma 2.1).
We define the cross action

w × Λ = Λ ⊗ µ

with µ = wλ− λ (Definition 2.14). This may also be written

w × Λ(x, λ, ν) = Λ(x, λ+ µ, ν + µ).

The Cayley transform is

cαΛ(x, λ, ν) = {Λ(σαx, λ, ν),Λ(σαx, λ, ν + α)}

(Definition 2.19).
We parametrize characters Λ in terms of maps of WR into the dual group

as
Λ[x, y, λ, y0]

(3.4)

2



We then compute the cross and Cayley transforms in these coordinates:

w × Λ(x, y, λ, y0) = Λ(x, y, wλ, y0)

(Lemma 3.7) and

cαΛ(x, y, λ, y0) = Λ(σαx, σ
αy, λ, σαy0)

(Lemma 3.12).
A standard module is I(x,Ψ+

R,Λ) (Definition 6.2). Here x specifies the
(strong) real form, Ψ+

R is a set of positive real roots with respect to θx, and
Λ is a genuine character of a cover of Hx(R). We may write Ψ+

R,x to indicate
that the real roots are defined by x. The differential of Λ is λ, which is fixed,
and is the infinitesimal character. Usually we can take Ψ+

R = Ψ+
R, and the

standard module is
I(x,Ψ+

R,Λ)

and (Ψ+
R,Λ) are in good position (Definition 6.1).

The cross action is given by (cf. Remark 1.1)

w × I(x,Ψ+
R,Λ) = I(x,Ψ+

R, w
−1 × Λ)

(Lemma 6.13) and Cayley transforms by

cαI(x,Ψ+
R,x,Λ) = I(σαx,Ψ

+
R,σαx, c

αΛ)

(Proposition 6.21).
Finally we get to the parametrization of [4], so a standard module is

I(x, y, λ)

(Definition 6.7), and the actions are

w × I(x, y, λ) = I(w · x,w · y, λ)

and
cαI(x, y, λ) = I(σαx, σ

αy, λ).

Remark 1.1 The cross action is defined on parameters, not representations.
The only action canonically defined on representations is coherent continua-
tion. Hence, as David points out, the notation w× I(x,Ψ+

R,Λ) is misleading
(even though it appears in [5].) I don’t want to fix this now.

One point is we could define w × I(x, ψ+
R ,Λ) to be ± the coherent con-

tinuation action of w on this representation, modulo representations coming
from less compact Cartan subgroups.
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2 Covers of Tori

Suppose H is a complex algebraic torus and γ ∈ 1
2
X∗(H). Then the two-fold

cover Hγ is defined. Suppose θ is a holomorphic involution of H. Then Hθγ

is defined. We assume θγ−γ ∈ X∗(H), so that Hθγ is canonically isomorphic
to Hγ. (In our applications we will have γ = ρ.) Then θ acts on Hγ and
we can talk about (h, Hθ

γ)-modules. These correspond to representations of
a real form of a two-fold cover Hγ(R) of H. See [6, Proposition 5.8] and [7].

Lemma 2.1 Fix γ ∈ X∗(H) ⊗ C and θ satisfying θγ − γ ∈ X∗(H). Write
Hγ(R) for the corresponding real form of Hγ. Suppose (λ, ν) satisfy λ ∈
X∗(H) ⊗ C, ν ∈ γ +X∗(H) and

(2.2)(a) λ+ θλ = ν + θν.

Then we obtain a genuine Hγ(R)-module Λ(λ, ν) with differential λ.
Furthermore Λ(λ, ν) = Λ(λ′, ν ′) if and only if λ = λ′ and

(2.2)(b) ν ′ − ν ∈ (1 − θ)X∗(H).

If γ ∈ X∗(H) we recover representations of H(R) as in [6, Proposition
3.26].

Remark 2.3 The dual Cartan involution is θ∨ = −θ, and we can write the
Lemma in terms of θ∨ instead: Λ(x, λ, ν) is defined if

(2.4)(a) λ− θ∨λ = ν − θ∨ν

and two are equal if

(2.4)(b) ν ′ − ν ∈ (1 + θ∨)X∗(H).

The group Hγ(R) comes equipped with a genuine character γ. The char-
acter 2γ factors to Hγ(R). Its absolute value has a unique positive square
root, which we denote |γ|. Then γ/|γ| is naturally a genuine representation
of Hγ(R). [Check: it doesn’t matter, as in [6, Example 8.13], that 2γ is not
real valued?]

Lemma 2.5 1. γ = Λ(γ, γ).
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2. |γ| = Λ(1
2
(γ + γ), 0).

3. γ/|γ| = Λ(1
2
(γ − γ), γ)

Remark 2.6 In most applications we will have γ = −θγ (since 2γ is in the
root lattice) so these become:

1. γ = Λ(γ, γ).

2. |γ| = Λ(1
2
(γ − θγ), 0).

3. γ/|γ| = Λ(1
2
(γ + θγ), γ)

In fact we’ll often have γ = γ, i.e. θγ = −θγ, in which case these become

1. γ = Λ(γ, γ).

2. |γ| = Λ(γ, 0).

3. γ/|γ| = Λ(0, γ)

Remark 2.7 Check these assertions.

For later use we do a few calculations in these coordinates. We suppose
H is a θ-stable Cartan subgroup of G.

First of all if α is a root then

α = Λ(α, α)

and if α is real then sgn(α) = α/|α| and so

sgn(α) = Λ(0, α).

Write Ψ for the roots of H in G, and ΨR for the real roots. Suppose Ψ+
R

is a set of positive real roots and let ρR = 1
2

∑

α∈Ψ+

R

α.

Note that θ(ρR) = −ρR, and 2ρR is real valued. Take γ = ρR so we have

ρR/|ρR| = Λ(0, ρR)

Now take w ∈WR, the Weyl group of ΨR. Recall [6, (8.26)(a)] τ(Ψ+
R, w):

(2.8) τ(Ψ+
R, w) = (ρR/|ρR|)/(wρR/|wρR|)

5



That is
τ(Ψ+

R, w) = Λ(0, ρR − wρR)

In particular if α is a simple root of Ψ+
R we have

(2.9) τ(Ψ+
R, sα) = Λ(0, α) = sgn(α).

We may drop Ψ+
R from the notation.

2.1 Cross action on Λ

Now suppose H is a Cartan subgroup of G. A critical role is played by the
action of W (G,H). Suppose x is a strong real form of G, let θ = θx and
assumem H is θ stable. Also assume θγ−γ ∈ X∗(H). We talk about (h, Hθ

γ)
modules, but we should also keep the strong real form x of H in mind. So
we write Λ(x, λ, ν) to indicate this is a representation of the strong real form
x of H.

Suppose w ∈ W = W (G,H). Then w acts on everything in sight, and

Definition 2.10 Suppose Λ = Λ(x, λ, ν). Then

(2.11) wΛ = Λ(wx,wλ,wν)

This is only a representation of the same group if wx = x, i.e. w ∈ W θ.
In this case we have:

Lemma 2.12 Suppose w ∈ W θ, i.e. wx = x. Then w acts on Hγ(R),
therefore on genuine characters of this group, and the action just described
agrees with this action.

Remark 2.13 Check this - it must be true. . .

We also define the cross action of W . Suppose Λ is a character of Hγ(R)
and w ∈W (dΛ), i.e. w(dΛ) = dΛ + µ for µ ∈ X∗(H).

Definition 2.14 Let
w × Λ = Λ ⊗ µ

See [5, page 44] and [8, Definition 8.3.1]. This definition is simpler than the
of [8], because it is in terms of Λ rather then Γ.
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Lemma 2.15 Write wλ = λ+ µ with µ ∈ X∗(H).

w × Λ(x, λ, ν) = Λ(x, λ+ µ, ν + µ)

= Λ(x,wλ, ν + µ)

= Λ(x,wλ, ν + (wλ− λ))

In particular
w × Λ(x, λ, λ) = Λ(x,wλ,wλ)

We emphasize the difference between wΛ and w × Λ:

wΛ(x, λ, ν) = Λ(wx,wλ,wν)

w × Λ(x, λ, ν) = Λ(x,wλ, ν + (wλ− λ).

In particular

w−1(w × Λ(x, λ, ν)) = Λ(w−1x, λ, w−1(ν + µ))

= Λ(w−1x, λ, w−1ν + (λ− w−1λ))

= Λ(w−1x, λ, ν + (λ− ν) − w−1(λ− ν))

This latter operation is relevant since it gives us a character with the same
differential, albeit possibly for a different group.

Finally suppose α is a root and set m = 〈λ, α∨〉, n = 〈ν, α∨〉. Then

(2.16)

sαΛ(x, λ, ν) = Λ(sαx, λ−mα, ν − nα)

sα × Λ(x, λ, ν) = Λ(x, λ−mα, ν −mα)

sα(sα × Λ(x, λ, ν)) = Λ(sαx, λ, ν + (m− n)α)

An important special case is w = sα for α a real root:

(2.17) sα(sα × Λ(x, λ, ν)) = Λ(x, λ, ν + (λ− ν) − sα(λ− ν))

Recall τ(sα) = Λ(0, ρR − sαρR). For later use we note

(2.18)
sα(sα × Λ(x, λ, ν)) ⊗ τ(sα) = Λ(x, λ, ν + (λ− ν + ρR) − sα(λ− ν + ρR))

= Λ(x, λ, ν) ⊗ Λ(0, 〈λ− ν + ρR, α
∨〉α)

= Λ(x, λ, ν) ⊗ sgn(α)〈λ−ν+ρR,α∨〉
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2.2 Cayley transform of Λ

We now turn to Cayley transforms.
Suppose Λ = Λ(x, λ, ν), of course (λ, ν) satisfy (2.2)(a) and θ = θx.

Suppose α is a non-compact imaginary root for θ.

Definition 2.19

(2.20) cαΛ(x, λ, ν) = {Λ(σαx, λ, ν),Λ(σαx, λ, ν + α)}

Here σα is as in [4]. We check the characters on the right hand side are
well defined. We have θcαx = sαθ.

(λ+ sαθλ) − (ν + sαθν) = (λ+ θλ− 〈θλ, α∨〉) − (ν + θν − 〈θν, α∨〉α

= (λ+ θλ) − (ν + θν) + 〈θ(ν − λ), α∨〉

= 〈ν − λ, α∨〉 by (2.2)(a)

We need to show this is 0. By (2.2)(a) we have

〈(λ− ν) + (θλ− θν), α∨〉 = 0

and since θα∨ = α∨ we conclude

2〈λ− ν, α∨〉 = 0

Note that the two characters on the right hand side of (2.20) might be
same. Note that

Λ(σαx, λ, ν + α) = Λ(σαx, λ, ν) ⊗ sgn(α)

and these are different if α : Hcαx(R) → R
∗ is surjective, i.e. α (now thought

of as a real root) is type I. Equivalently by (2.2)(b) this holds if

α ∈ (1 − θ)X∗(H).

For example if G = SL(2) and α is a real root then α = (1− θ)α/2, so these
are the same. If G = PGL(2) then α/2 6∈ X∗(H) and these characters are
distinct.
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3 Maps of the Weil group

Fix y. The data (y, λ) defines a map φ : WR → 〈H∨, y〉. Choose y0 ∈ H∨y,
i.e. p(y0) = p(y). Then 〈H∨, y〉 = 〈H∨, y0〉 is an E-group for H; by this
we mean we consider y0 to be the distinguished element [6, Definition 5.9].
Recall

(3.1)(a) y2 = e2πiλ

and λ ∈ X∗(H) since we are in the integral case. Choose γ so that

(3.1)(b) y2
0 = e2πiγ

and recall 2γ ∈ X∗(H). Write

(3.1)(c) y = e2πiτy0

for some τ ∈ X∗(H∨) ⊗ C. Squaring both sides and using (3.1)(a,b) we
conclude

(3.1)(d) e2πiγ = e2πi(λ−(τ+θ∨τ))

i.e.

(3.1)(e) λ− (τ + θ∨τ) ∈ γ +X∗(H)

Definition 3.2 Given (y, λ, y0) let φ(y, λ, y0) : WR → 〈H∨, y0〉 be the corre-
sponding map. That is

(3.3)

φ(z) = zλzyλ

φ(j) = e−πiλy

= e2πi(τ− 1

2
λ)y0

Suppose (x, y) ∈ Z. Then φ defines a genuine character

(3.4) Λ[x, y, λ, y0]

of Hγ(R).
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Lemma 3.5 Suppose we are given (x, y) ∈ Z and (λ, y0). We assume
e2πiλ = y2 as usual. Choose τ satisfying

y = e2πiτy0.

Then in the notion of Section 2 we have

Λ[x, y, λ, y0] = Λ(x, λ, κ)

with
κ = λ− (τ + θ∨τ)

This is a representation of Hγ(R) where e2πiγ = y2
0.

Note that by (3.1)(e) κ ∈ γ + X∗(H) so this defines a representation of
the γ cover of Hx(R).

Example 3.6 For example suppose y = y0, so h = 1, λ = γ and τ = 0.
Then

Λ = χ(x, λ, λ).

This is a representation of Hx(R)λ, which is the trivial cover if λ ∈ X∗(H).
This is (the restriction of) a holomorphic character of Hλ.

Proof. The main point is that

φ(z) = zλzyλ

φ(j) = e−πiλy

= e−πiλhy0

= e−πiλ+2πiτy0

= e2πi(τ− 1

2
λ)y0

Then by [6, (4.7)(c)] Λ = Λ(x, λ, κ) with

κ =
1

2
(λ− θ∨λ) − ((τ −

1

2
λ) + θ∨(τ −

1

2
λ))

= λ− (τ + θ∨τ)

�
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3.1 The Cross Action

We now have to compute the standard and cross actions of W in terms of
the parameters Λ[x, y, λ, y0].

Lemma 3.7

(3.8) w × Λ[x, y, λ, y0] = Λ[x, y, wλ, y0]

Proof. This is perhaps surprising. Let’s see, write y = e2πiτy0, and then

(3.9)

w × Λ[x, y, λ, y0] = w × Λ(x, λ, λ− (τ + θ∨τ))

= Λ(x,wλ, λ− (τ + θ∨τ) + (wλ− λ))

= Λ(x,wλ,wλ− (τ + θ∨τ))

= Λ[x, y, wλ, y0]

�

Lemma 3.10

(3.11) wΛ[x, y, λ, y0] = Λ[wx,wy, wλ,wy0]

This is the natural action of W .
We sometimes combine the two:

w−1(w × Λ[x, y, λ, y0]) = Λ[w−1x,w−1y, λ, w−1y0]

which is handy since this has the same λ.

3.2 Cayley Transforms

We next need to compute cα in the Λ[x, y, λ, y0] coordinates.

Lemma 3.12 Suppose α is a noncompact imaginary root. Then

(3.13) cαΛ[x, y, λ, y0] = Λ[σαx, σ
αy, λ, σαy0]

Here σα is the possibly multivalued inverse cayley transform. That is

σαy = {y′ |σαy
′ = y}.
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Proof. Let θ = θx. Write y = e2πiτy0, so

Λ[x, y, λ, y0] = Λ(x, λ, ν)

with
ν = λ− (τ + θ∨τ).

Then
cαΛ[x, y, λ, y0] = cαΛ(x, λ, ν)

= Λ(σαx, λ, ν)

On the other hand we have

σαy = σαe
2πiτy0

= e2πisατσαy0

so
Λ[σαx, σ

αy, λ, σαy0] = Λ(σαx, λ, ν
′)

with
ν ′ = λ− (sατ + sαθ

∨sατ)

= λ− (sατ + θ∨τ)

Therefore
ν ′ − ν = λ− (sατ + θ∨τ) − λ+ (τ + θ∨τ)

= τ − sατ

= 〈τ, α∨〉α∨

We’re on the less compact Cartan here, i.e. α is a real root here, or in other
words sαθα = −α. Therefore α∨ = (1 − sαθ)

1
2
α∨, so the result follows from

(2.2)(b).
�

4 The Setup

We need to go back and forth a bit between the notation of Fokko’s notes [4]
and that of [3]. See also [1], [5].

As in [3, Section 8] we are given (G,S). Here G is a (complex) reductive
algebraic group, and S is a conjugacy class of (distinguished) splittings of
the usual exact sequence, in other words a conjugacy class of elements δ such
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that θδ is a fundamental involution. To avoid confusion we may write such
elements as δf .

Equivalently we are given a conjugacy class D of pairs (δ, B) where B
is large with respect to δ. Thus int(δ) is a quasisplit involution, so we may
write it δq. Recall [6, 9.7(d)]

δq = mρδf

Similarly on the dual side we have G∨, δ∨f ∈ S∨, and (δ∨q , B
∨) ∈ D∨.

We will work in the Fokko’s setting, so we will fix δ, δ∨ and H,B,H∨, B∨.
Here H is fundamental, and B is large, with respect to δ = δf , and similarly
on the dual side.

Recall the definitions of X , I and Z [4]. In particular I ⊂ Wδ is the set
of twisted involutions, and there is a map p : X → I. We write σ· for the
action of σ ∈ W on X and I. This map is equivariant for the actions of W
on X and I.

Our basic data will be a pair (x, y) ∈ Z. Together with an element
λ ∈ X∗(H

∨)⊗C, satisfying e2πiλ = y2, these will parametrize various things,
including maps of Weil groups, characters of Cartans of various sorts, and
representations. This is what we want to make precise.

An important but barely visible role is played by ζ. In the setting of [4]
ζ is fixed, and gives identifications

X∗(H) = X∗(H
∨), X∗(H) = X∗(H∨).

In particaulr if α ∈ X∗(H) is a root of H in G then α∨ ∈ X∗(H) = X∗(H∨)
is a root of H∨ in G∨. We use these implicitly. We also identify W (G,H)
and W (G∨, H∨).

Our fixed Borel B gives a fixed set Ψ+ (note the bold face) of positive
roots.

4.1 Some notation about root systems

The notation is verging on incomprehensible. This is an attempt to clarify
it.

We have our fixed root system Ψ, and positive roots Ψ+.
If x ∈ X then θx is an involution of G. Its restriction to H only depends

on p(x) ∈ I. We write the real roots as ΨR,x or ΨR,w to indicate this
dependence, and Ψim,xΨim,w similarly.

We define Ψ+
R,x = Ψ+ ∩ ΨR,x, and other similar versions.
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If Ψ+ is an arbitrary set of positive roots, we define Ψ+
R,x etc. the obvious

way.
On occasion we will talk about simple roots for Ψ, and also for Ψ+

im,x. In
the latter case we mean a simple root for the root system Ψim,x, as opposed
to a simple root for Ψ which happens to be in Ψim,x.

In Section 5 we introduce notation

Ψ+
im[x].

This is a set of positive roots for Ψim,x; its dependence on x is subtle.

5 Choice of Basepoints

Recall [4] I ⊂ Wδ is the set of twisted involutions, and p : X → I. We
write u· for the action of u ∈ W on X and I. Also recall we have chosen an
element δ so that B is large with respect to θδ.

We need a result of the following form. Recall X (w) = {x ∈ X | p(x) =
w}. For w ∈ I let

(5.1) X (w, δ) = {x ∈ X (w) |x is conjugate to δ}

This set is not empty [6, Lemma 9.17]. Recall the restriction of θx to H only
depends on the image of x in I, and we write θx = θw accordingly. As usual let
Ψim,w be the imaginary roots with respect to θw and let Wim,w = W (Ψim,w).
Then X (w, δ) a single Wim,w-orbit.

For x ∈ X let

(5.2) X (x, δ) = X (p(x), δ).

Fix θ. We say a set Ψ+ of positive roots is large if every simple root is
complex or non-compact imaginary. In particular if Ψ+

im is a set of positive
imaginary roots, it is large if every simple root is non-compact.

Fix w. We want a Wim,w equivariant map which takes x ∈ X (w, δ) to a
W (Kx, H)-orbit of large sets Ψ+

im,w[x] with respect to θx.

Assumption 5.3 Given w ∈ I and x ∈ X (w, δ) we have chosen a set
Ψ+

im,w[x] of positive imaginary roots, large with respect to θx, and defined
up to conjugacy by W (Kx, H). We assume these sets satisfy

(5.4) Ψ+
im,u·w[u · x] = uΨ+

im,w[x] (u ∈W )

(up to the action of W (Ku·w, H) on the left and W (Kx, H) on the right).
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In particular

(5.5) Ψ+
im,u·w[u · x] = uΨ+

im,w[x] (u ∈ Wim).

Given Ψ+
im,w[x] for a single x ∈ X (w, δ) this defines Ψ+

im[x] for all x′ ∈ X (w, δ).
A natural choice of Ψ+

im,w is Ψ+
im,w, where Ψ+ is our fixed set of positive

roots (cf. Section 4). This is large with respect to some small number of
choices of x ∈ X (w, δ). For example if w = p(δ) then we can take x = δ.
There may be other choices.

For example if G = SL(2) and w = 1 we may take x = ±δ. Of course
the natural choice is δ. Note that wδ = −δ, but w(δ, B) = (−δ, B).

Condition (5.4) now takes the following form.

Assumption 5.6 For each w ∈ I we are given an element xb[w] ∈ X (w, δ)
(the “basepoint”) satisfying: Ψ+

im,w is large with respect to xb[w]. These
satisfy the following condition. Suppose u ∈W , and choose σ ∈W satisfying

(5.7)(a) xb[u · w] = σ · xb[w]

Then

(5.7)(b) Ψ+
im,u·w = σΨ+

im,w.

Remark 5.8 For example if u · w = w, i.e. u ∈ W θw , we may take σ = 1,
and (5.7)(a) is immediate.

Remark 5.9 Note that u · xb[w] ∈ X (u · w, δ), which implies σ = τu with
τ ∈ Wim,u·w.

Definition 5.10 Given w let xb = xb[w] as in Assumption 5.6. Let

(5.11)(a) Ψ+
im,w[xb] = Ψ+

im,w

Define Ψ+
im,w[x] for all x ∈ X (w, δ) by (5.5). That is, given x ∈ X (w, δ)

choose σ ∈ W (Ψim,w) satisfying σ · xb = x and define

(5.11)(b) Ψ+
im,w[x] = σΨ+

im,w.

By (5.4) this defines Ψ+
im,w[x] (up to conjugacy by Wim(Kx, H)) for all x ∈

X (w, δ).
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We check that in fact Definition 5.10 implies (5.4) holds.

Lemma 5.12 Assume the basepoints xb[w] satisfy Assumption 5.6. Then
the map x→ Ψ+

im,w[x] of Definition 5.10 satisfies (5.4).

Proof. Fix w ∈ I, x ∈ X (w, δ), and u ∈W . We have to show

(5.13)(a) Ψ+
im,u·w[u · x] = uΨ+

im,w[x]

For the left hand side choose σ ∈W (Ψim,u·w) so that

(5.13)(b) u · x = σ · xb[u · w].

Similarly choose τ ∈ W (Ψim,w) so that

(5.13)(c) x = τ · xb[w]

Note that these two relations imply

(5.13)(d) xb[u · w] = σ−1uτ · xb[w]

We have to show

(5.13)(e) σΨ+
im,u·w = uτΨ+

im,w

i.e.

(5.13)(f) Ψ+
im,u·w = σ−1uτΨ+

im,w.

This follows from (5.13)(d) and Assumption 5.6. �

Fix w ∈ I and xb[w]. Suppose α is a real or imaginary root with respect
to θw. Then sα · w = w so

xb[sα · w] = xb[w].

(Warning: if α is real then xb[sα ·w] = sα · xb[w] = xb[w], but this may fail if
α is non-compact imaginary, since such sα may act non-trivially on X (w).)

Now suppose α is a simple root of Ψ+ which is complex. It is easy to see
that

(5.14) sαΨ
+
im,w = Ψ+

im,sα·w
.
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(The main point is that the imaginary the roots of Ψ+ and sαΨ
+ are the

same, since sα only changes the sign of the complex root α). This shows that
in (5.7)(a-b) if u = sα we may take σ = sα, i.e.

xb[sα · w] = sα · xb[w]

for α a complex simple root. This gives:

Lemma 5.15 Suppose that for all w ∈ I we are given x ∈ X (w, δ) such
that Ψ+

im,w is large with respect to xb[w]. These choices satisfy the second
condition of Assumption 5.6 if the following condition holds for all w ∈ I.
Suppose α is a simple root for Ψ+ and is complex with respect to w. Then

(5.16) xb[sα · w] = sα · xb[w]

So far these choices do two things: ensure that our definition of standard
modules is independent of the choice of Ψ+

R (Definition 6.7 and Proposition
6.9), and gives the correct cross action (Proposition 6.14).

We also need some compatibility of these choices under Cayley trans-
forms.

Lemma 5.17 Suppose Ψ+
im,w is large with respect to θw. Let α be an imagi-

nary non-compact root which is simple for Ψ+
im,w. Then Ψ+

im,σαw is large with
respect to σαw.

Proof. David sketched a proof of this. Becky Herb gave a complete case by
case proof. �

This tells us we could choose xb[σαw] = σαxb[w] with α as in the Lemma.
We put this all together.

Proposition 5.18 There exists at most one choice of {xb[w] |w ∈ I} satis-
fying the following conditions for all w ∈ I. Define real, imaginary, complex,
compact and non-compact with respect to θw.

1. xb[p(δ)] = δ.

2. Ψ+
im,w is large with respect to xb[w].

3. Suppose α is a simple root of Ψ+. Then

xb[sα · w] =

{

xb[w] if α is real or imaginary

sα · xb[w] if α is complex

17



4. Suppose α is imaginary, non-compact, and simple for Ψ+
im,w. Then

xb[σαw] = σαxb[w]

Here σα is an element mapping to sα as in [4]. Recall this is the Cayley
transform action, i.e. left multiplication by σα.

The proof is immediate; starting at p(δ) we may get to any w ∈ I by a
series of Cayley transforms and cross actions as in the Proposition.

Conjecture 5.19 There exists xb[w] as in the Proposition.

Fokko has built a check of this into the atlas software.
We will apply this on the dual side.

6 Standard Modules

We work in the setting of [4], so we have fixed H,B,H∨, B∨.

Definition 6.1 ([6], Definition 8.18) Fix θ, a set Ψ+ of positive roots,
and an element λ ∈ X∗(H) ⊗ C. We say (Ψ+, λ) is in good position if the
following conditions hold.

1. If α is real then 〈λ, α∨〉 < 0,

2. If α is imaginary then 〈λ, α∨〉 > 0,

3. Suppose α, θα are positive complex roots. Then 〈λ, α∨〉 > 0 or 〈λ, θα∨〉 >
0.

4. Suppose α,−θα are positive complex roots. Then 〈λ, α∨〉 < 0 or 〈λ, θα∨〉 <
0.

Now suppose Ψ+
R is the set of positive real roots. We say (Ψ+

R, λ) is in good
position if 〈λ, α∨〉 < 0 for all α ∈ Ψ+

R.
If Λ is a character we say (Ψ+,Λ) is in good position if (Ψ+, dΛ) is in

good position, and similarly Ψ+
R,Λ).

Definition 6.2 Fix x. Suppose Ψ+
R,x is an arbitrary set of positive real roots

and Λ is a genuine Hρ(R)-module. Let λ = dΛ. Then the standard module

I(x,Ψ+
R,x,Λ)
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is defined [6, Definition 8.27].
Since x is already specified we will sometimes drop it from the notation

and write
I(x,Ψ+

R,Λ).

We have included x to indicate the strong real form; this is a (g, Kx)-module.
We can always reduce to the case (Ψ+

R,Λ) in good position by [6, Lemma
8.24]:

(6.3) I(x,Ψ+
R,Λ) ≃ I(x,wΨ+

R,Λ ⊗ τ(Ψ+
R, w))

for w ∈ WR.

Recall τ(Ψ+
R, w) is a Z/2Z-valued character of Hx(R). See (2.8) and [6,

Proposition 8.24].

Remark 6.4 In [6, Definition 8.27] there is also a choice of positive real
roots P . Since λ is regular P is determined by λ and we have dropped it
from the notation. While Ψ+

R is also determined by λ if it is in good position,
we do not want to assume good position, so we do not drop it from the
notation.

It is worth noting that

(6.5)(a) I(wx,Ψ+
R,wx,Λ) ≃ I(x,wΨ+

R,x, wΛ) (w ∈ W (G,H)).

That is there is an isomorphism from Kx to Kwx taking the (g, Kx)-module
I(x,Ψ+

R,Λ) to the (g, Kwx)-module I(wx,wΨ+
R, wΛ). In particular

(6.5)(b) I(x,ΨR,Λ) ≃ I(x,wΨR, wΛ) (w ∈ W (Kx, H)).

Lemma 6.6 Suppose (Ψ,Λ) and (Ψ,Λ′) are in good position. Then I(x,Ψ,Λ) ≃
I(x,Ψ,Λ′) if and only if Λ ≃ wΛ′ for some w ∈ W (Kx, H) satisfing wΨ+

R =
Ψ+

R.

Note: I think this isn’t right - you might need to allow moving the positive
system and a τ term - see [6].

Because of this we sometimes want to put our data in good position.
Fix an infinitesimal character (regular integral) and write it as λ for λ ∈

X∗(H)⊗C B∨-dominant (identified with a B-dominant element ofX∗(H)⊗C

via our fixed ζ).
Now we give the crucial definition of the representation associated to

L-data.
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Definition 6.7 Suppose (x, y) ∈ Z and e2πiλ = y2. Choose y0 ∈ X (y, δ∨).
The set Ψ+

im,y[y0] for G∨ (Assumption 5.6) corresponds to a set Ψ+
R,x[y0] of

positive real roots for G. Let Ψ−
im,y[y0] = −Ψ+

im,y[y0] (cf. Definition 6.1(1)).
Define

(6.8)(a) I(x, y, λ) = I(x,Ψ−
R,x[y0],Λ[x, y, λ, y0])

Let yb = yb[y], and recall Ψ+
im,y[yb] = Ψ+

R,y (Assumption 5.6). By Propo-
sition 6.9 we may choose y0 = yb, and we see

(6.8)(b) I(x, y, λ) = I(x,Ψ−
R,x,Λ[x, y, λ, yb])

This is a (g, Kx)-module, or more casually a Gx(R)-module.
The next Lemma provides one of the justifications for Assumption 5.6.

Proposition 6.9 The module I(x, y, λ) is independent of the choice of y0 ∈
X (y, δ∨).

Implicit in this is the assertion that the module is independent of the
choice of Ψ−

R,x[y0], which is only defined up to conjugacy by K∨
y .

Proof. Let θ∨ = θy, w
∨
0 = p(y) ∈ I. Suppose y′0 is another choice, i.e.

y′0 = w∨y0 for w∨ ∈ W θ∨ (on the dual side). The action of this group on
X (w∨

0 ) is trivial, except for the action of Wim.
We need to show for w∨ ∈ Wim(G∨, H∨), with w = ζ−1(w∨) ∈ WR(G,H)

I(x,Ψ−
R(w∨y0),Λ(x, y, λ, w∨y0)) = I(x,Ψ−

R(y0),Λ(x, y, λ, y0))

By (5.4) and (6.3)

I(x,Ψ−
R(w∨y0),Λ(x, y, λ, w∨y0)) = I(x,wΨ−

R(y0),Λ(x, y, λ, w∨y0))

= I(x,Ψ−
R(y0),Λ(x, y, λ, w∨y0) ⊗ τ(w))

So it is enough to show

Lemma 6.10

(6.11) Λ[x, y, λ, w∨y0] = Λ[x, y, λ, y0] ⊗ τ(w)
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This is basically [6, Lemma 9.28].
Proof. It is enough to check this with w = sα for α a simple root of ΨR.
Then α∨ is an imaginary root. As in Section 3 write

y = e2πiτy0

so
Λ[x, y, λ, y0] = Λ(x, λ, κ)

with
κ = λ− (1 + θ∨)τ

Recall (2.9)
τ(sα) = Λ(0, α∨)

so the right hand side of (6.11) is

Λ(x, λ, κ′)

with
κ′ = λ− (1 + θ∨)τ + α∨

= λ− (1 + θ∨)(τ +
1

2
α∨)

To compute Λ[x, y, λ, sα∨y0] we write sα∨y0 = gθ∨(g−1)y0 where g ∈
NormG∨(H∨) gives sα∨ . Write gθ∨(g−1) = e2πiη. Then

y = e2πi(τ+η)y0

and therefore
Λ[x, y, λ, sα∨y0] = Λ(x, λ, κ′′)

where
κ′′ = λ− (1 + θ∨)(τ + η)

So it is enough to show

η =
1

2
α∨

i.e.
gθ∨(g−1) = α∨(−1) = mα.

Now it is crucial that y0 is large, so that α∨ is non-compact imaginary. This
is now an SL(2) calculation. See the last formula on page 126 of [6].

This proves the the Lemma. �

This completes the proof of the Proposition. �
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Remark 6.12 In the terminology of Section 2 Λ = Λ(x, λ, ν) for this given
λ, and some ν. The main thing to keep track of is therefore ν.

With this setup x hardly matters at all. Its only role is to define the real
forms of G and H.

For example suppose G is connected and contains a compact Cartan sub-
group, and suppose λ ∈ ρ + X∗(H). The discrete series with infinitesimal
character λ are the set of

I(x, ∅,Λ(x, λ, 0))

as x varies. Each Λ(x, λ, 0) is the “same” character of H; the only thing
which changes is the real form x of H and G.

6.1 Cross Action

Suppose I(x,Ψ+
R,Λ) is a standard module and w ∈ W = W (G,H). See

Remark 1.1.

Lemma 6.13 ([5])

w × I(x,Ψ+
R,Λ) ≃ I(x,Ψ+

R, w
−1 × Λ)

We need to compute this in I(x, y, λ) coordinates.

Proposition 6.14

w × I(x, y, λ) = I(wx,wy, λ)

Proof. Choose y0 ∈ X (δ, y). The left hand side is

(6.15)
w × I(x,Ψ+

R[y0],Λ[x, y, λ, y0]) = I(x,Ψ+
R[y0], w

−1 × Λ[x, y, λ, y0])

= I(x,Ψ+
R[y0],Λ[x, y, w−1λ, y0])

On the right hand side we may take wy0 as our base point. Then we get

(6.16)

I(wx,wy, λ) = I(wx,Ψ−
R[wy0],Λ[wx,wy, λ, wy0])

= I(x,w−1Ψ−
R[wy0], w

−1Λ[wx,wy, λ, wy0])

= I(x,w−1Ψ−
R[wy0],Λ[x, y, w−1λ, y0])

The result follows from (5.4), which says that w−1Ψ−
R[wy0] = Ψ−

R[y0]. �
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6.2 Parity Condition and the Cross Stabilizer

Suppose α is a real root. Then sαx = x. We see that a real root α is in the
cross stabilizer of π = I(x,Ψ−

R,Λ), i.e. sα × π ≃ π, if and only if

sαy = y.

This is on the dual side, and says that sα ∈W (K∨
y , H

∨), sα is an imaginary
reflection, in the cross stabilizer of the dual representation.

It is useful to compute this directly in terms of I(x,Ψ−
R,Λ), if only as a

sanity check. Recall the parity condition [8]. The roots which do not satisfy
the parity condition are the + part of the cograding of real roots; I like
to think of these as the “non-parity” roots, also known as the irreducibility
roots. Then α fails the parity condition implies sα×π = π, but not conversely.

Lemma 6.17 Fix π = I(x,Ψ−
R,Λ) and a real root α. Write Λ = Λ(x, λ, ν)

and let k = 〈λ− ν − ρR, α
∨〉.

1. sα × π ≃ π if and only if sgn(α)k = 1

2. α is a non-parity root if and only if k ≡ 0 (mod 2).

3. α is a non-parity root if and only if (Λ ⊗ ρ)(mα) = (−1)〈λ+ρcx,α∨〉.

Proof. We have

sα(sα × I(x,Ψ−
R,Λ)) = I(x, sαΨ−

R, sα(sα × Λ))

which by (6.3) equals

I(x,Ψ−
R, sα(sα × Λ)) ⊗ τ(Ψ−

R, α)

By (2.18) we have

(6.18)
sα(sα × Λ(x, λ, ν)) ⊗ τ(sα) = Λ(x, λ, ν) ⊗ Λ(0, 〈λ− ν + ρR, α

∨〉α)

= Λ(x, λ, ν) ⊗ sgn(a)k.

This proves the first claim.
If α is type II, i.e. sgn(α) = 1, then obviously sα × π = π. If α is type I

then this holds if and only if k ≡ 0 (mod 2). This proves (2). [Check: this
is really correct.]
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Now
〈λ− ν − ρR, α

∨〉 ∈ 2Z

if and only if
〈λ+ ρim + ρcx − (ν + ρ), α∨〉 ∈ 2Z

Here ρ = ρR + ρim + ρcx as usual. Now Λ ⊗ ρ factors to H and it is easy to
see that

(Λ ⊗ ρ)(mα) = (−1)〈ν+ρ,α∨〉

On the other hand 〈ρim, α
∨〉 = 0 and therefore

(−1)〈λ+ρim+ρcx−(ν+ρ),α∨〉 = (−1)〈λ+ρim,α∨〉Λ(mα)

�

The parity condition in this result is simpler than that of [8], it doesn’t
have the mysterious ǫα term. The relation involves the next result, cf. [2,
Lemma 14.6]. Also see Section 7.

Lemma 6.19 Suppose Ψ+ satisfies: α > 0 complex implies θα < 0. Let
ρcx = 1

2

∑

α∈Ψ+
cx
α where Ψ+

cx is the positive complex roots. Then ǫα =

(−1)〈ρcx,α∨〉.

Remark 6.20 If Ψ+ satisfies the conditions of the Lemma then Λ ⊗ ρ is
what is denoted Γ elsewhere (cf. Section 7), but not otherwise.

6.3 Cayley Transforms

Fix x let ΨR,x be the real roots with respect to θx, and choose a set of positive
real roots Ψ+

R,x. Suppose I(x,Ψ−
R,x,Λ) is a standard module.

Now suppose α is a non-compact imaginary root and Ψ+
R,cαx is a set of

positive real roots for θcαx. Then I(σαx,Ψ
−
R,σαx, c

αΛ) is defined.

Assume (Ψ+
R,x,Λ) and (Ψ+

R,σαx, c
αΛ) are in good position. For example

take Ψ+
R,x and Ψ+

R,σαx. [Actually, you need to take the opposite root sys-
tem. . . there is something to straighten out here.]

Proposition 6.21

cαI(x,Ψ−
R,x,Λ) = I(σαx,Ψ

−
R,σαx, c

αΛ)
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Note: To be honest I’m guessing here - this could be checked from the usual
definition. I’ve partly gotten it by working backwards. I’m not sure about
the “good position” aspect.

Proposition 6.22 Suppose α is a noncompact imaginary root of Ψ with
respect to x.

(6.23) cαI(x, y, λ) = I(σαx, σ
αy, λ)

Proof.
We first reduce to the case α is simple for Ψ+

im,x. If α is not simple choose
w ∈Wim so that β = wα is simple.

cαI(x, y, λ) = w × cβI(x, y, λ)

= w × I(σβx, σ
βy, λ) (assuming the result for simple roots)

= I(w · σβx,w · σβy, λ) (Proposition 6.14)

= I(σαx, σ
αy, λ)

So assume α is simple for Ψ+
im,x. Choose y0 = y0[y], so

Ψ+
R[y0] = Ψ+

R,y.

The left hand side is then

cαI(x, y, λ) = cαI(x,Ψ+
R,x,Λ[x, y, λ, y0]

= I(σαx,Ψ
+
R,σαx,Λ[σαx, σ

αy, λ, σαy0])

The last equality uses the fact that (Ψ+
R,σαx,Λ) is in good position (this only

depends on λ = dΛ).
On the other hand choose y′0 = y0[σ

αy], so the right hand side is

I(σαx, σ
αy, λ) = I(σαx,Ψ

+
R,σαx,Λ[σαx, σ

αy, λ, y′0])

So we are done provided y′0 = σαy0, i.e.

y0[σ
αy] = σαy0[y]

Writing this on the G side, and with w = p(y) in place of y we need

(6.24) xb[σαw] = σαxb[w]

for α an imaginary noncompact root, simple for Ψ+
im,w. This is precisely

Proposition 5.18, cf. Conjecture 5.19. �
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7 Relating Γ and Λ

This is taken from [7]. We relate I(Ψ+
R,Λ) to I(Γ, λ). Here (Γ, λ) is a regular

character as in [8]. We don’t need final limit parameters here.
Given I(Ψ+

R,Λ), choose any set Ψ+ of positive roots satisfying Ψ+
R ⊂ Ψ+

and

(7.1) α > 0 complex ⇒ θα < 0.

Let ρ = ρ(Ψ), and let ρim,c be one half the sum of the positive imaginary
compact roots. Write Λ = Λ(λ, ν). Let

Γ = Λ(λ+ ρi − 2ρim,c, ν + ρ− 2ρim,c)

According to [7] then have I(Λ,Ψ−
R, λ) = I(Γ, λ).

Remark 7.2 Check this. Is the Ψ+
R correct?

References

[1] J. Adams. Lifting of characters, volume 101 of Progress in mathematics.
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